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a b s t r a c t

We continue our recent work on inference with two-step, monotone incomplete data
from a multivariate normal population with mean µ and covariance matrix Σ. Under
the assumption that Σ is block-diagonal when partitioned according to the two-step
pattern, we derive the distributions of the diagonal blocks of Σ̂ and of the estimated
regression matrix, Σ̂12Σ̂

−1
22 . We represent Σ̂ in terms of independent matrices; derive its

exact distribution, thereby generalizing theWishart distribution to the setting ofmonotone
incomplete data; and obtain saddlepoint approximations for the distributions of Σ̂ and
its partial Iwasawa coordinates. We prove the unbiasedness of a modified likelihood ratio
criterion for testing H0 : Σ = Σ0, whereΣ0 is a givenmatrix, and obtain the null and non-
null distributions of the test statistic. In testing H0 : (µ,Σ) = (µ0,Σ0), where µ0 andΣ0
are given, we prove that the likelihood ratio criterion is unbiased and obtain its null and
non-null distributions. For the sphericity test,H0 : Σ ∝ Ip+q, we obtain the null distribution
of the likelihood ratio criterion. In testing H0 : Σ12 = 0 we show that a modified locally
most powerful invariant statistic has the same distribution as a Bartlett–Pillai–Nanda trace
statistic in multivariate analysis of variance.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we continue our work in [1] on inference with two-step, monotone incomplete, multivariate normal data
that are of the form(

X1
Y1

)(
X2
Y2

)
· · ·

(
Xn
Yn

)
Yn+1 Yn+2 · · · YN

, (1.1)

where each Xj is p× 1, each Yj is q× 1, the complete data (X ′j , Y
′

j )
′, j = 1, . . . , n, are drawn from Np+q(µ,Σ), a multivariate

normal population with meanµ and covariance matrixΣ, the incomplete data Yj, j = n+1, . . . ,N , are observations on the
last q characteristics of the population, and all N observations are mutually independent.
Closed-form expressions for µ̂ and Σ̂, the maximum likelihood estimators of µ and Σ, are well-known (Anderson [2],

Anderson and Olkin [3], Giguère and Styan [4], Jinadasa and Tracy [5]), and those formulas have been utilized in inference for
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µ andΣ (Bhargava [6,7], Morrison [8], Little and Rubin [9], Kanda and Fujikoshi [10]); we note that a closed-form expression
for Σ̂ requires the assumption that data are missing completely at random, an assumption stated and discussed in [1] and
maintained here. In this paper, we continue our program of research on finite-sample inference for µ and Σ by means of
results on the exact distributions of µ̂ and Σ̂; having derived in [1] the exact distribution of µ̂ and made applications to
inference for µ, we now turn our attention to inference forΣ.
Assuming that Σ is block-diagonal when partitioned into p × p and q × q submatrices, we derive in Section 3 the

distributions of the diagonal blocks of Σ̂ and the estimated regression matrix, Σ̂12Σ̂
−1
22 . We also obtain a stochastic

representation for Σ̂ and derive its exact distribution, thereby extending theWishart distribution to the setting ofmonotone
incomplete data, and we obtain saddlepoint approximations for Σ̂ and its partial Iwasawa coordinates.
In Section 4, we consider four tests of hypotheses on µ and Σ. For H0 : Σ = Σ0, where Σ0 is specified, we derive the

non-null moments of the likelihood ratio criterion and a stochastic representation for its null distribution, and we show
that the criterion is not unbiased; we also construct a modified likelihood ratio criterion, and prove unbiasedness and a
monotonicity property of its power function. In the case of H0 : (µ,Σ) = (µ0,Σ0), where (µ0,Σ0) is given, we prove that
the likelihood ratio criterion is unbiased, and derive its non-null moments and its null distribution. For the sphericity test,
H0 : Σ ∝ Ip+q, the identity matrix, we derive the null moments and distribution of the likelihood ratio criterion. In testing
independence between the first p and last q characteristics of the population, Eaton and Kariya [11] derived a locally most
powerful invariant criterion; the null distribution theory of that statistic appearing to be recondite, we modify it and prove
that the modified statistic is distributed as a Bartlett–Pillai–Nanda trace statistic in multivariate analysis of variance.

2. Preliminary results

We retain throughout this paper the notation and conventions of [1], writing all vectors and matrices in boldface type.
We denote by 0 any zero vector or matrix, the dimension of which will be clear from the context, and we denote by Id the
identity matrix of order d. We write A > 0 to denote that a matrix A is positive definite (symmetric), and we write A ≥ B
to mean that A − B is positive semidefinite. We writeW ∼ Wd(a,Λ), a Wishart distribution, with a > d − 1 and Λ > 0,
wheneverW is a d× d randommatrix with density function

1
2ad/2|Λ|a/20d(a/2)

|W |
1
2 a−

1
2 (p+1) exp

(
−
1
2
trΛ−1W

)
, (2.1)

W > 0, where the multivariate gamma function [12, p. 62] is

0d(a) = πd(d−1)/4
d∏
j=1

0

(
a−

1
2
(j− 1)

)
. (2.2)

We partition µ andΣ in conformity with (1.1), writing µ =
(

µ1
µ2

)
andΣ =

(
Σ11 Σ12
Σ21 Σ22

)
where µ1 and µ2 are of dimen-

sions p and q, respectively, and Σ11, Σ12 = Σ′21, and Σ22 are of orders p × p, p × q, and q × q, respectively. We assume
throughout that n > q + 2 to ensure that all means and variances are finite and that all integrals arising are absolutely
convergent. We denote by τ the proportion, n/N , of data which are complete and denote 1− τ by τ̄ .
Define sample means

X̄ =
1
n

n∑
j=1

Xj, Ȳ1 =
1
n

n∑
j=1

Yj, Ȳ2 =
1

N − n

N∑
j=n+1

Yj, Ȳ =
1
N

N∑
j=1

Yj,

and corresponding matrices of sums of squares and products,

A11 =
n∑
j=1

(Xj − X̄)(Xj − X̄)′, A12 = A′21 =
n∑
j=1

(Xj − X̄)(Yj − Ȳ1)′,

A22,n =
n∑
j=1

(Yj − Ȳ1)(Yj − Ȳ1)′, A22,N =
N∑
j=1

(Yj − Ȳ )(Yj − Ȳ )′.

(2.3)

By [2,3,8,5], the maximum likelihood estimator of µ is µ̂ =
(

µ̂1
µ̂2

)
, where

µ̂1 = X̄ − τ̄A12A−122,n(Ȳ1 − Ȳ2), µ̂2 = Ȳ . (2.4)
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3. The distribution of Σ̂

Let A11·2,n := A11 − A12A−122,nA21. By [2,3] (cf. [4,8]), the maximum likelihood estimator ofΣ is Σ̂ =
(

Σ̂11 Σ̂12
Σ̂21 Σ̂22

)
, where

Σ̂11 =
1
n
A11·2,n +

1
N
A12A−122,nA22,NA

−1
22,nA21,

Σ̂12 = Σ̂
′

21 =
1
N
A12A−122,nA22,N ,

Σ̂22 =
1
N
A22,N .

(3.1)

3.1. A representation for Σ̂

Proposition 3.1. With the notation above, we have

nΣ̂ = τ
(
A11 A12
A21 A22,n

)
+ τ̄

(
A11·2,n 0

0 0

)
+ τ

(
A12A−122,n 0

0 Iq

)(
B B
B B

)(
A−122,nA21 0

0 Iq

)
, (3.2)

where
(
A11 A12
A21 A22,n

)
∼ Wp+q(n−1,Σ) andB ∼ Wq(N−n,Σ22) aremutually independent. Moreover, NΣ̂22 ∼ Wq(N−1,Σ22).

Proof. We write A22,N in the form

A22,N =
n∑
j=1

(Yj − Ȳ1 + Ȳ1 − Ȳ )(Yj − Ȳ1 + Ȳ1 − Ȳ )′ +
N∑

j=n+1

(Yj − Ȳ2 + Ȳ2 − Ȳ )(Yj − Ȳ2 + Ȳ2 − Ȳ )′,

and expand each term as a sum of products to obtain

A22,N = A22,n + B, (3.3)

where

B = B1 + B2 (3.4)

with

B1 =
N∑

j=n+1

(Yj − Ȳ2)(Yj − Ȳ2)′ (3.5)

and

B2 =
n(N − n)
N

(Ȳ1 − Ȳ2)(Ȳ1 − Ȳ2)′.

Substituting (3.3) and (3.4) into (3.1), we obtain (3.2). (For p = 1, (3.3) is due to Morrison [8, Eq. (3.4)].)
By the independence of the sample mean and covariance matrix, and the independence of the individual observations in

(1.1), the matrix
n∑
j=1

(
Xj − X̄
Yj − Ȳ1

)(
Xj − X̄
Yj − Ȳ1

)′
≡

(
A11 A12
A21 A22,n

)

is independent of {Ȳ1, Yn+1, . . . , YN}. Therefore
(
A11 A12
A21 A22,n

)
is independent of B1 and B2, and hence also is independent of B.

Note also that A22,n, B1, and B2 are mutually independent Wishart matrices, with A22,n ∼ Wq(n− 1,Σ22), B1 ∼ Wq(N −
n − 1,Σ22), and B2 ∼ Wq(1,Σ22). Therefore, by (3.4), B ∼ Wq(N − n,Σ22) and hence NΣ̂22 = A22,N = A22,n + B ∼
Wq(N − 1,Σ22). �

We now establish some results whose proofs were postponed from [1, Section 4].

Proposition 3.2. Suppose that Σ12 = 0. Then A22,n, A11·2,n, A12A−122,nA21, B1, X̄ , Ȳ1, and Ȳ2 are mutually independent. Also, B2
and Ȳ are independent.
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Proof. By the independence of the mean and covariance matrix of a normal random sample, and by the mutual indepen-
dence of the data, we see that

(
A11 A12
A21 A22,n

)
and {B1, X̄, Ȳ1, Ȳ2} are mutually independent. SinceΣ12 = 0 then X̄ is indepen-

dent of {B1, Ȳ1, Ȳ2} and, by [13, pp. 142–143], the matrices A22,n, A11·2,n, and A12A−122,nA21 are mutually independent. Thus,
A22,n, A11·2,n, A12A−122,nA21, X̄ and {B1, Ȳ1, Ȳ2} are mutually independent.
Next, Ȳ1 and {B1, Ȳ2} are mutually independent since they are constructed from disjoint sets of independent observa-

tions. And by again applying the independence of the mean and covariance matrix of a normal random sample, we see that
B1 is independent of Ȳ2. Therefore A22,n, A11·2,n, and A12A−122,nA21, B1, X̄ , Ȳ1, and Ȳ2 are mutually independent.
Finally, we show that B2 is independent of Ȳ . Since B2 ∝ (Ȳ1 − Ȳ2)(Ȳ1 − Ȳ2)′ then we need only show that Ȳ1 − Ȳ2

is independent of Ȳ . The pair (Ȳ1 − Ȳ2, Ȳ ), being a linear function of Y1, . . . , YN , is jointly normally distributed; hence, to
establish their independence, it suffices to verify that E(Ȳ1 − Ȳ2)(Ȳ −µ2)

′, their cross-covariance matrix, is zero. We write
this matrix in the form

E(Ȳ1 − Ȳ2)(Ȳ − µ2)
′
= E

(
(Ȳ1 − µ2)− (Ȳ2 − µ2)

) (
τ(Ȳ1 − µ2)+ τ̄ (Ȳ2 − µ2)

)′
,

expand the right-hand side, and evaluate the expectation of all four terms in that expansion. For j, k = 1, 2, E(Ȳj−µ2)(Ȳk−
µ2)
′ equals 0 if j 6= k and equals Cov(Ȳj) if j = k; hence the cross-covariance matrix equals τCov(Ȳ1) − τ̄Cov(Ȳ2) =

(τn−1 − τ̄ (N − n)−1)Σ22 = 0, since τn−1 = τ̄ (N − n)−1 = N−1. The proof now is complete. �

For the remainder of this section, we assume that p ≤ q. As in [1, Section 4], we denote by O(q) the group of all q × q
orthogonal matrices, and by Sp,q the Stiefel manifold of all p×qmatricesH1 such thatH1H ′1 = Ip. As noted in [1], the uniform
distribution on Sp,q is the unique probability distributionwhich is left-invariant underO(p) and right-invariant underO(q). If

a randommatrixH ∈ O(q) is distributed according to the Haar probabilitymeasure, and if wewriteH in the formH =
(
H1
H2

)
,

where H1 ∈ Sp,q, then H1 is uniformly distributed on Sp,q. Conversely, a uniformly distributed H1 ∈ Sp,q may be completed
to form a random q× q orthogonal matrix H =

(
H1
H2

)
having the Haar probability distribution on O(q).

A q× q randommatrix F ≥ 0 is said to have amatrix F-distribution, denoted as F ∼ F (q)a,b , with degrees of freedom (a, b),

a ≥ 0, b > q− 1, if F L
= B−1/2AB−1/2, where A and B are mutually independent Wishart matrices with A ∼ Wq(a,Σ22) and

B ∼ Wq(b,Σ22). If a ≤ q−1 then A is singular, so F also is singular, almost surely. If both a, b > q−1 then F is nonsingular,
almost surely, and its density function is

0q((a+ b)/2)
0q(a/2)0q(b/2)

|F |
1
2 a−

1
2 (q+1)/2|Iq + F |−(a+b)/2,

F > 0. From this result, we see that the distribution of F is orthogonally invariant, i.e., F L
= HFH ′ for H ∈ O(q). It is

also well-known [12, pp. 312–313] that if A and B are independent nonsingular Wishart matrices with A ∼ Wq(a,Σ22),
B ∼ Wq(b,Σ22) then both A1/2B−1A1/2 and B−1/2AB−1/2 are distributed as F (q)a,b . Further, if F ∼ F

(q)
a,b then F−1 ∼ F (q)b,a . If

F ∼ F (q)a,b then, assuming without loss of generality thatΣ22 = Iq, we obtain |F |
L
= |A|/|B|; recalling that |A| L

=
∏q
j=1 χ

2
a−j+1,

a product of independent chi-squared variables, with a similar result also holding for |B|, we obtain |F | L
=
∏p
j=1 F

(1)
a−j+1,b−j+1.

Lemma 3.3. Let F ∼ F (q)a,b , H1 be uniformly distributed on Sp,q, and F and H1 be independent. Then H1FH ′1 ∼ F
(p)
a,b−q+p and

H1FH ′1
L
= F11, the upper p× p principal submatrix of F .

Proof. By augmenting H1 to a Haar-distributed matrix H =
(
H1
H2

)
on O(q), we obtain(

F11 F12
F21 F22

)
≡ F L
= HFH ′ =

(
H1
H2

)
F
(
H1
H2

)′
=

(
H1FH ′1 H1FH ′2
H2FH ′1 H2FH ′2

)
,

proving that H1FH ′1
L
= F11. Next, since F ∼ F

(q)
a,b then F

L
= A1/2B−1A1/2, where A ∼ Wq(a, Iq), B ∼ Wq(b, Iq), and A and B are

independent. Then, withM = (Ip
... 0)A1/2,

F11 = (Ip
... 0)F(Ip

... 0)′ L
= (Ip

... 0)A1/2B−1A1/2(Ip
... 0)′ ≡ MB−1M ′.

By [12, p. 95], conditional onM , (MB−1M ′)−1 ∼ Wp(b−q+p, (MM ′)−1); hence the conditional density function ofR = F−111
given S = MM ′ is

f (R|S) = const.× |R|
1
2 (b−q+p)−

1
2 (p+1)|S|

1
2 (b−q+p) exp

(
−
1
2
tr SR

)
,
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R, S > 0. Since S = MM ′ = (Ip
... 0)A(Ip

... 0) ≡ A11 ∼ Wp(a, Ip) then the joint density function of R and S is

f (R, S) = f (R|S)f (S)

∝ |R|
1
2 (b−q+p)−

1
2 (p+1) |S|

1
2 (b−q+p) exp

(
−
1
2
tr SR

)
· |S|

1
2 (a−p−1) exp

(
−
1
2
tr S
)

= |R|
1
2 (b−q+p)−

1
2 (p+1) |S|

1
2 (a+b−q+p)−

1
2 (p+1) exp

(
−
1
2
tr (Ip + R)S

)
for R, S > 0. Integrating over S , we obtain the density function of R as

f (R) = const.× |R|
1
2 (b−q+p)−

1
2 (p+1)|Ip + R|−

1
2 (a+b−q+p),

R > 0. Therefore R ∼ F (p)b−q+p,a, so F11 = R−1 ∼ F (p)a,b−q+p. �

Proposition 3.4. Suppose that Σ12 = 0. Then

Σ
−1/2
11 Σ̂11Σ

−1/2
11

L
=
1
n
W1 +

1
N
W 1/2
2 (Ip + F)W 1/2

2 , (3.6)

whereW1 ∼ Wp(n− q− 1, Ip),W2 ∼ Wp(q, Ip), F ∼ F
(p)
N−n,n−q+p−1, andW1,W2, and F are independent.

Proof. LetW1 = Σ
−1/2
11 A11·2,nΣ

−1/2
11 and K = Σ

−1/2
11 A12A

−1/2
22,n . By (3.1) and (3.3),

NΣ
−1/2
11 Σ̂11Σ

−1/2
11

L
=
N
n

Σ
−1/2
11 A11·2,nΣ

−1/2
11 + Σ

−1/2
11 A12A−122,n(A22,n + B)A−122,nA21Σ

−1/2
11

=
N
n
W1 + K (Iq + A−1/222,n BA−1/222,n )K

′.

Since A11·2,n ∼ Wp(n − q − 1,Σ11) thenW1 ∼ Wp(n − q − 1, Ip). By [12, p. 93] A11·2,n, and henceW1, is independent of
{A12,A22,n} and B. Since Σ12 = 0 then K |A22,n ∼ N(0, Ip ⊗ Iq) and, because this conditional distribution does not depend
on A22,n, it is the unconditional distribution of K . ThereforeW1, K , A22,n, and B are mutually independent.
Note also that the distribution of K is right-invariant under O(q), i.e., K L

= KH for all H ∈ O(q). By polar coordinates on
matrix space ([14, p. 482], [15, p. 163]), K L

= W 1/2
2 H1 whereW2 and H1 are independent,W2 = KK ′ ∼ Wp(q, Ip), and H1 is

uniformly distributed on the Stiefel manifold Sp,q [12, pp. 67–72].
Since B ∼ Wq(N − n,Σ22) and A22,n ∼ Wq(n− 1,Σ22) then F = A−1/222,n BA−1/222,n ∼ F

(q)
N−n,n−1. Therefore

NΣ
−1/2
11 Σ̂11Σ

−1/2
11

L
=
N
n
W1 +W 1/2

2 H1(Iq + F)H ′1W
1/2
2

=
N
n
W1 +W 1/2

2 (Ip + H1FH ′1)W
1/2
2 .

By Lemma 3.3, H1FH ′1 ∼ F
(p)
N−n,n−q+p−1, and the proof now is complete. �

Remark 3.5. Since the F-matrix in (3.6) is positive semidefinite, it follows that the right-hand side of (3.6) is stochastically
greater thanW1 +W2 in the sense that the difference

N
n
W1 +W 1/2

2 (Ip + F)W 1/2
2 − (W1 +W2) =

N − n
n

W1 +W 1/2
2 FW 1/2

2

is positive semidefinite, almost surely; we write this as

NΣ
−1/2
11 Σ̂11Σ

−1/2
11

L
≥
N
n
W1 +W2

L
≥ W1 +W2 ∼ Wp(n− 1, Ip).

Hence, we obtain the stochastic ordering Np|Σ̂11|/|Σ11|
L
≥ |W1 +W2|, so for all δ ≥ 0,

P(Np|Σ̂11|/|Σ11| ≥ δ) ≥ P(|W1 +W2| ≥ δ).

As an application, we construct a one-sided confidence interval for |Σ11|whenΣ12 = 0. SinceW1+W2 ∼ Wp(n−1, Ip)
then |W1 +W2| is distributed according to a product of independent chi-squared variables. If δα is an upper α% percentage
point for |W1 +W2|, i.e., P(|W1 +W2| ≥ δα) = α, then

P(Np|Σ̂11|/|Σ11| ≥ δα) ≥ P(|W1 +W2| ≥ δα) = α.

Therefore the interval (0,Np|Σ̂11|/δα) is a one-sided confidence interval for |Σ11|with confidence level at least 100(1−α)%.
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3.2. The distribution of the estimated regression matrix

We now consider the marginal distribution of Σ̂12Σ̂
−1
22 and some of its properties, making no assumptions aboutΣ12.

Theorem 3.6. The distribution of Σ̂12Σ̂
−1
22 satisfies the stochastic representation

Σ̂12Σ̂
−1
22

L
= Σ12Σ

−1
22 + Σ

1/2
11·2W

−1/2KΣ
−1/2
22 , (3.7)

whereW and K are independent,W ∼ Wp(n− q+ p− 1, Ip), and K ∼ N(0, Ip ⊗ Iq). In particular, E(Σ̂12Σ̂
−1
22 ) = Σ12Σ

−1
22 .

Proof. By (3.1), Σ̂12Σ̂
−1
22 = A12A−122,n. Define B12 = A12 − Σ12Σ

−1
22 A22,n; then it is easily seen that Σ̂12Σ̂

−1
22 = B12A−122,n +

Σ12Σ
−1
22 , or equivalently, Σ̂12Σ̂

−1
22 − Σ12Σ

−1
22 = B12A−122,n. By proceeding as in the proof of Theorem 3.1 in [1], we obtain

B12|A22,n ∼ N(0,Σ11·2 ⊗ A22,n). Therefore, B12
L
= Σ

1/2
11·2KA

1/2
22,n where K ∼ N(0, Ip ⊗ Iq), and it follows that

Σ
−1/2
11·2 (Σ̂12Σ̂

−1
22 − Σ12Σ

−1
22 ) = Σ

−1/2
11·2 B12A−122,n

L
= KA−1/222,n . (3.8)

Let T ∈ Rp×q, the space of all p× qmatrices; then the characteristic function of (3.8) is

E exp(itr T ′Σ−1/211·2 (Σ̂12Σ̂
−1
22 − Σ12Σ

−1
22 )) = E exp(itr T

′KA−1/222,n )

= E exp(itr (TA−1/222,n )
′K )

= E exp
(
−
1
2
trA−1/222,n T ′TA−1/222,n

)
= E exp

(
−
1
2
tr T ′TA−122,n

)
.

Since A22,n ∼ Wq(n− 1,Σ22) then this characteristic function equals

2−(n−1)q/2 |Σ22|−
1
2 (n−1)

0q((n− 1)/2)

∫
A22,n>0

exp
(
−
1
2
tr T ′TA−122,n

)
|A22,n|

1
2 (n−1)−

1
2 (q+1) exp

(
−
1
2
trΣ−122 A22,n

)
dA22,n.

This integral can be expressed in termsofB(q)δ , the Bessel function ofmatrix argument of the secondkinddefined byHerz [14].
Applying a formula from [14, p. 506], we have

B(q)δ (Λ1Λ2) = |Λ1|
−δ

∫
W>0

exp(−tr (WΛ1 +W−1Λ2)) |W |−δ−
1
2 (q+1)dW , (3.9)

whereW ,Λ1, andΛ2 are q× q positive definite matrices, so it follows that

E exp(itr T ′Σ−1/211·2 (Σ̂12Σ̂
−1
22 − Σ12Σ

−1
22 )) =

1
0q((n− 1)/2)

B(q)
−
1
2 (n−1)

(
1
4
Σ−122 T

′T
)
.

Since Σ−122 T
′T and TΣ−122 T

′ have the same set of non-zero eigenvalues and hence the same rank then, by [14, p. 509, Theo-
rem 5.10],

B(q)
−
1
2 (n−1)

(
1
4
Σ−122 T

′T
)
=

0q((n− 1)/2)
0p((n− q+ p− 1)/2)

B(p)
−
1
2 (n−q+p−1)

(
1
4
TΣ−122 T

′

)
,

and therefore

E exp(itr T ′Σ−1/211·2 (Σ̂12Σ̂
−1
22 − Σ12Σ

−1
22 )) =

1
0p((n− q+ p− 1)/2)

B(p)
−
1
2 (n−q+p−1)

(
1
4
TΣ−122 T

′

)
.

On applying (3.9) to express this Bessel function as an integral over the space of p× p positive definite matrices, we obtain

E exp(itr T ′Σ−1/211·2 (Σ̂12Σ̂
−1
22 − Σ12Σ

−1
22 )) = E exp

(
−
1
2
tr TΣ−122 T

′W−1
)
, (3.10)

W ∼ Wp(n− q+ p− 1, Ip). However the right-hand side of (3.10) equals

E exp
(
−
1
2
tr (W−1/2TΣ

−1/2
22 )(W−1/2TΣ

−1/2
22 )′

)
= E exp

(
−
1
2
trΣ−1/222 T ′W−1/2K

)
= E exp

(
−
1
2
tr T ′W−1/2KΣ

−1/2
22

)
,
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K ∼ N(0, Ip ⊗ Iq). Equivalently, Σ
−1/2
11·2 (Σ̂12Σ̂

−1
22 − Σ12Σ

−1
22 )

L
= W−1/2KΣ

−1/2
22 and we then obtain (3.7). Finally, by taking

expectations in (3.7) we obtain E(Σ̂12Σ̂
−1
22 ) = Σ12Σ

−1
22 . �

Remark 3.7. We note that, by (3.7),

Σ
−1/2
11·2 (Σ̂12Σ̂

−1
22 − Σ12Σ

−1
22 )Σ22(Σ̂12Σ̂

−1
22 − Σ12Σ

−1
22 )
′Σ
−1/2
11·2

L
= W−1/2(KK ′)W−1/2. (3.11)

Since KK ′ ∼ Wp(q, Ip) then the right-hand side of (3.11) has an F
(p)
q,n−q+p−1 distribution.

3.3. The distributions of Σ̂ and ∆̂

Let Σ be partitioned as before, and let ∆11 = Σ11·2, ∆12 = ∆′21 = Σ12Σ
−1
22 , and ∆22 = Σ22 be the partial Iwasawa

coordinates of Σ [16], and set ∆ =
(

∆11 ∆12
∆21 ∆22

)
. There is a unique correspondence between Σ and ∆, and also between Σ̂

and ∆̂, the corresponding maximum likelihood estimators [15, loc. cit.]. Moreover, ∆̂ :=
(

∆̂11 ∆̂12
∆̂21 ∆̂22

)
where, by (3.1),

∆̂11 = Σ̂11·2 =
1
n
A11·2,n, ∆̂12 = Σ̂12Σ̂

−1
22 = A12A−122,n, ∆̂22 = Σ̂22 =

1
N
A22,N . (3.12)

To obtain f∆̂, the density function of ∆̂, we need a preliminary result.

Lemma 3.8. Let Ξ1, Ξ2, and Ξ3 be absolutely continuous random matrices of the same dimension such that (Ξ1,Ξ2) and Ξ3
are independent. Then the conditional density function of Ξ1 given Ξ2 + Ξ3 = ξ, is

fΞ1|Ξ2+Ξ3=ξ(ξ1) =
1

fΞ2+Ξ3(ξ)

∫
fΞ1|Ξ2=ξ2(ξ1)fΞ2(ξ2)fΞ3(ξ − ξ2)dξ2. (3.13)

Proof. By a direct calculation,

fΞ2+Ξ3(ξ)fΞ1|Ξ2+Ξ3=ξ(ξ1) = fΞ1,Ξ2+Ξ3(ξ1, ξ)

=

∫
fΞ1,Ξ2,Ξ3(ξ1, ξ2, ξ − ξ2)dξ2

=

∫
fΞ1,Ξ2(ξ1, ξ2)fΞ3(ξ − ξ2)dξ2

=

∫
fΞ1|Ξ2=ξ2(ξ1)fΞ2(ξ2)fΞ3(ξ − ξ2)dξ2.

Dividing both sides of this equation by fΞ2+Ξ3(ξ) completes the proof. �

In deriving the distribution of ∆̂we shall need the multivariate beta function,

Bq(a, b) =
0q(a)0q(b)
0q(a+ b)

, (3.14)

Re(a), Re(b) > (q− 1)/2; and the confluent hypergeometric function of matrix argument,

1F
(q)
1 (a; b;M) =

1
Bq(a, b− a)

∫
0<U<Iq

|U |a−
1
2 (q+1)|Iq − U |b−a−

1
2 (q+1) exp(trMU)dU , (3.15)

whereM is q×q and symmetric; Re(b− a), Re(a) > (q−1)/2; and the region {0 < U < Iq} consists of all q×qmatrices U
such thatU and Iq−U both are positive definite ([14], [12, p. 264]). For general a, b, the functions (3.15) satisfy the reduction
formula

1F
(q)
1 (a; a;M) = exp(trM), (3.16)

and Kummer’s formula ([14, Eq. (2.8)], [12, p. 265]),

1F
(q)
1 (a; b;M) = exp(trM) 1F

(q)
1 (b− a; b;−M). (3.17)

IfM is of rank p ≤ q, andM0 is any p× p symmetric matrix whose non-zero eigenvalues coincide with those ofM then by
Herz [14, Theorems 3.10, p. 497 and 4.15, p. 505],

1F
(q)
1 (a; b;M) = 1F

(p)
1 (a; b;M0). (3.18)
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Theorem 3.9. Let n > p+q andN−n > q−1. Then f∆̂, the density function of ∆̂, evaluated at T =
(
T11 T12
T21 T22

)
, a (p+q)×(p+q)

positive definite matrix, is

f∆̂(T ) = f∆̂11(T11)f∆̂22(T22)f∆̂12|∆̂22=T22(T12), (3.19)

where the marginal density of ∆̂11 is

f∆̂11(T11) =
( 12n)

(n−q−1)p/2
|T11|

1
2 (n−q−1)−

1
2 (p+1) exp

(
−
1
2n tr T11∆

−1
11

)
|∆11|

(n−q−1)/20p((n− q− 1)/2)
, (3.20)

the marginal density of ∆̂22 is

f∆̂22(T22) =
( 12N)

(N−1)q/2
|T22|

1
2 (N−1)−

1
2 (q+1) exp

(
−
1
2N tr T22∆

−1
22

)
|∆22|

(N−1)/20q((N − 1)/2)
, (3.21)

and the conditional density function of ∆̂12 given ∆̂22 is

f∆̂12|∆̂22=T22(T12) = (2π)
−pq/22−q(N−1)/2Nq(N+p−1)/2

0q(
1
2 (n+ p− 1))

0q(
1
2 (n− 1))0q(

1
2 (N + p− 1))

× |∆11|
−q/2
|∆22|

−(N−1)/2 exp
(
−
1
2
trN∆−122 T22

)
|T22|

1
2 (N+p−1)−

1
2 (q+1)

× 1F
(p)
1

(
1
2
(n+ p− 1);

1
2
(N + p− 1);−

1
2
N∆−111 (T12 −∆12)T22(T12 −∆12)

′

)
. (3.22)

Proof. By Proposition 3.1,(
A11 A12
A21 A22,n

)
∼ Wp+q(Σ, n− 1); (3.23)

consequently, by [12, p. 93], A11·2,n and {A12,A22,n} are mutually independent, and hence so are A11·2,n and {A12,A22,N}.
Therefore ∆̂11 and {∆̂12, ∆̂22} are mutually independent, so the joint density of ∆̂ is of the form (3.19). By (3.23), n∆̂11 =
A11·2,n ∼ Wp(n− q− 1,∆11) and then (3.20) is obtained by a transformation of the Wishart density (2.1). Also, since N∆̂22
= A22,N ∼ Wq(N − 1,∆22) then (3.21) is obtained similarly.
By [12, p. 93], ∆̂12|A22,n = A12A−122,n|A22,n ∼ N(∆12,∆11 ⊗ A−122,n). Therefore, for T12 ∈ Rp×q and a q× qmatrix U > 0,

f∆̂12|N−1A22,n=U (T12) ≡ f∆̂21|A22,n=NU (T12)

= (2π)−pq/2|∆11|−q/2Npq/2|U |p/2 exp
(
−
1
2
N tr∆−111 (T12 −∆12)U(T12 −∆12)

′

)
. (3.24)

Since A22,n ∼ Wq(n− 1,∆22) then N−1A22,n has density function

fN−1A22,n(U) =
N (n−1)q/2|U |

1
2 (n−1)−

1
2 (q+1) exp

(
−
1
2N trU∆−122

)
2(n−1)q/2|∆22|(n−1)/20q((n− 1)/2)

, (3.25)

U > 0. Similarly, in (3.3), B ∼ Wq(N − n,∆22) so N−1B has marginal density function

fN−1B(U) =
Nq(N−n)/2|U |

1
2 (N−n)−

1
2 (q+1) exp

(
−
1
2N trU∆−122

)
2q(N−n)/2|∆22|(N−n)/20q((N − n)/2)

, (3.26)

U > 0. To evaluate f∆̂12|∆̂22 , we apply Lemma 3.8 with Ξ1 = A12A−122,n ≡ ∆̂12, Ξ2 = N−1A22,n, and Ξ3 = N−1B. Noting that
Ξ2 + Ξ3 = N−1(A22,n + B) ≡ ∆̂22, it follows from (3.13) that we need to evaluate the integral∫

0<U<T22
fΞ1|Ξ2=U (T12)fΞ2(U)fΞ3(T22 − U)dU .

Introducing the notation M1 = 1
2N(T12 − ∆12)

′∆−111 (T12 − ∆12) and M2 = 1
2N∆−122 , and collecting terms in U from

(3.24)–(3.26), we find that we are to evaluate∫
0<U<T22

|U |
1
2 (n+p−1)−

1
2 (q+1)|T22 − U |

1
2 (N−n)−

1
2 (q+1) exp(−trM1U)dU .
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Changing variables from U to T 1/222 UT 1/222 transforms this integral to

|T22|
1
2 (N+p−1)−

1
2 (q+1)

∫
0<U<Iq

|U |
1
2 (n+p−1)−

1
2 (q+1)|Iq − U |

1
2 (N−n)−

1
2 (q+1) exp(−tr T 1/222 M1T

1/2
22 U)dU

= Bq

(
1
2
(n+ p− 1),

1
2
(N − n)

)
|T22|

1
2 (N+p−1)−

1
2 (q+1) 1F

(q)
1

(
1
2
(n+ p− 1);

1
2
(N + p− 1);−M1T22

)
, (3.27)

where the last equality follows from (3.15).
Combining and simplifying (3.24)–(3.27), we obtain

f∆̂12|∆̂22=T22(T12) = (2π)
−pq/22−q(N−1)/2Nq(N+p−1)/2

Bq( 12 (n+ p− 1),
1
2 (N − n))

0q(
1
2 (n− 1))0q(

1
2 (N − n))

× |∆11|
−q/2
|∆22|

−(N−1)/2 exp
(
−
1
2
trN∆−122 T22

)
|T22|

1
2 (N+p−1)−

1
2 (q+1)

× 1F
(q)
1

(
1
2
(n+ p− 1);

1
2
(N + p− 1);−

1
2
N(T12 −∆12)

′∆−111 (T12 −∆12)T22

)
, (3.28)

where T12 ∈ Rp×q, T22 > 0. By (3.14),

Bq( 12 (n+ p− 1),
1
2 (N − n))

0q(
1
2 (n− 1))0q(

1
2 (N − n))

=
0q(

1
2 (n+ p− 1))

0q(
1
2 (n− 1))0q(

1
2 (N + p− 1))

.

Note that the matrixM1 is of rank p; therefore, its non-zero eigenvalues are the eigenvalues of 12N∆−111 (T12−∆12)T22(T12−
∆12)

′. It now follows from (3.18) that

1F
(q)
1

(
1
2
(n+ p− 1);

1
2
(N + p− 1);−

1
2
N(T12 −∆12)

′∆−111 (T12 −∆12)T22

)
= 1F

(p)
1

(
1
2
(n+ p− 1);

1
2
(N + p− 1);−

1
2
N∆−111 (T12 −∆12)T22(T12 −∆12)

′

)
.

Applying these last two results to (3.28), we obtain (3.22). �

Corollary 3.10. Under the assumptions of Theorem 3.9, the density function of Σ̂ is

fΣ̂(T ) = |T22|
−pf∆̂11(T11 − T12T−122 T21)f∆̂22(T22)f∆̂12|∆̂22=T22(T12T

−1
22 ),

where T =
(
T11 T12
T21 T22

)
> 0.

Proof. We apply the transformation from ∆̂ to Σ̂ given by (3.12). The Jacobian of this transformation is

J(∆̂11 → Σ̂11) · J(∆̂12 → Σ̂12) · J(∆̂22 → Σ̂22) = 1 · |Σ̂
−1
22 |

p
· 1 = |Σ̂22|−p.

Therefore, the density function of Σ̂ is

fΣ̂(T ) = f∆̂11,∆̂12,∆̂22(T11 − T12T−122 T21, T12T−122 , T22)|T22|
−p,

which equals the stated formula. �

Remark 3.11. If the density function of ∆̂ is to be integrated over subsets of the space of positive definite matrices, we
recommend that the saddlepoint approximations of Butler and Wood [17] be applied to approximate the function 1F

(p)
1 , as

follows. Let T be a positive definite p× pmatrix with eigenvalues t1, . . . , tp. For a < b, define

ŝi =


[
ti − b+

(
(ti − b)2 + 4ati

)1/2]/
2ti, if ti 6= 0

a/b, if ti = 0

i = 1, . . . , p,

J̃1,1 =
p∏
i=1

p∏
j=1

[
a(1− ŝi)(1− ŝj)+ (b− a)ŝiŝj

]
,
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and

Ĵ1,1 =
p∏
i=1

p∏
j=1

[
ŝiŝj
a
+
(1− ŝi)(1− ŝj)

b− a

]
.

For a, b− a > (p− 1)/2 the raw Laplace approximation to 1F
(p)
1 (a; b; T ) is

1̃F
(p)
1 (a; b; T ) =

2p/2πp(p+1)/4

Bp(a, b− a)
J̃−1/21,1

p∏
i=1

[
ŝai (1− ŝi)

b−a exp(tiŝi)
]
, (3.29)

and the calibrated Laplace approximation is

1F̂
(p)
1 (a; b; T ) = b

pb−p(p+1)/4 Ĵ−1/21,1

p∏
i=1

[(
ŝi
a

)a (1− ŝi
b− a

)b−a
eti ŝi
]
, (3.30)

both of which satisfy (3.16) and (3.17).

4. Tests of hypotheses about µ and Σ

4.1. Testing thatΣ equals a given matrix

Consider the problem of testing H0 : Σ = Σ0 against Ha : Σ 6= Σ0, where Σ0 is a given positive definite matrix, on the
basis of the monotone sample (1.1). Hao and Krishnamoorthy [18] used an invariance argument to show that, without loss
of generality, we may assumeΣ0 = Ip+q, and they proved that the likelihood ratio statistic for testing H0 against Ha is

λ1 = (e/N)Nq/2|A22,N |N/2 exp
(
−
1
2
trA22,N

)
× (e/n)np/2|A11·2,n|n/2 exp

(
−
1
2
trA11·2,n

)
exp

(
−
1
2
trA12A−122,nA21

)
. (4.1)

In the case of a complete sample, it is well-known that the likelihood ratio statistic for this problem is not unbiased, so the
same can be expected to hold for λ1. Hao and Krishnamoorthy [18] then modified λ1 in the usual way, replacing sample
sizes by degrees of freedom to obtain

λ2 = (e/(N − 1))(N−1)q/2|A22,N |(N−1)/2 exp
(
−
1
2
trA22,N

)
× (e/(n− q− 1))(n−q−1)p/2|A11·2,n|(n−q−1)/2 exp

(
−
1
2
trA11·2,n

)
exp

(
−
1
2
trA12A−122,nA21

)
, (4.2)

and they derived an approximation to the asymptotic null distribution of this statistic. We shall prove that a sufficient
condition for λ2 to be unbiased is that, under Ha, |Σ11| ≤ 1. Since λ2 might not always be unbiased, we propose a new
statistic,

λ3 = (e/(N − 1))(N−1)q/2|A22,N |(N−1)/2 exp
(
−
1
2
trA22,N

)
× (e/(n− q− 1))(n−q−1)p/2|A11·2,n|(n−q−1)/2 exp

(
−
1
2
trA11·2,n

)
× (e/q)qp/2|A12A−122,nA21|

q/2 exp
(
−
1
2
trA12A−122,nA21

)
, (4.3)

and establish that it is always unbiased. The crucial difference between λ2 and λ3 is that the term |A12A−122,nA21|
q/2 in (4.3)

causes certain integrals to be invariant under some matrix transformations, and those invariance properties cause λ3 to be
unbiased.
We now calculate the non-null moments of λ3, and thereby identify its exact null distribution, derive approximations to

that distribution, and establish unbiasedness. In the next result, we denote by ep,q,n,N the constant in (4.3).
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Theorem 4.1. For h = 0, 1, 2, . . . the h-th non-null moment of λ3 is

E(λh3) = e
h
p,q,n,N 2

((N−1)q+(n−1)p)h/20q((N − 1)(1+ h)/2)
0q((N − 1)/2)

0p((n− q− 1)(1+ h)/2)
0p((n− q− 1)/2)

0p(q(1+ h)/2)
0p(q/2)

× |Σ22|
(N−1)h/2

|Iq + hΣ22|−(N−1)(1+h)/2|Σ11·2|(n−q−1)h/2|Ip + hΣ11·2|−(n−q−1)(1+h)/2

× |Σ11|
qh/2
|Ip + hΣ11|−q(1+h)/2. (4.4)

Proof. Under Ha, we apply invariance arguments to allow us to assume, without loss of generality, that Σ is diagonal
[18, p. 66]. Then, by Proposition 3.2, A22,N , A11·2,n, and A12A−122,nA21 are mutually independent, and A22,N ∼ Wq(N − 1,Σ22),
A11·2,n ∼ Wp(n− q− 1,Σ11), and A12A−122,nA21 ∼ Wp(q,Σ11). Therefore

λ3
L
= ep,q,n,N |W1|

(N−1)/2 exp
(
−
1
2
trW1

)
|W2|

(n−q−1)/2 exp
(
−
1
2
trW2

)
|W3|

q/2 exp
(
−
1
2
trW3

)
, (4.5)

whereW1 ∼ Wq(N−1,Σ22),W2 ∼ Wp(n−q−1,Σ11),W3 ∼ Wp(q,Σ11), andW1,W2, andW3 aremutually independent.
ForW ∼ Wd(a,Σ), it follows from (2.1) that

E
(
|W |α/2 exp

(
−
1
2
trW

))h
= 2αdh/2

0d ((αh+ a)/2)
0d(a/2)

|Σ|ah/2|Id + hΣ|−(αh+a)/2, (4.6)

Re(αh + a) > p − 1. Applying this formula to each Wishart matrix in (4.5) and simplifying the resulting expression, we
obtain (4.4). �

By expressing each determinant in (4.4) as a product of its eigenvalues, we thereby deduce a stochastic representation
for λ3 as a product of independent random variables. We state this result explicitly in the null case, bearing in mind that we
have then assumedΣ0 = Ip+q.

Corollary 4.2. Under the null hypothesis H0 : Σ = Ip+q, we have

λ3
L
= ep,q,n,N e−Q0/2

q∏
j=1

Q (N−1)/2j,1 e−Qj,1/2 ·
p∏
j=1

Q (n−q−1)/2j,2 e−Qj,2/2Q q/2j,3 e
−Qj,3/2, (4.7)

where Q and all Qj,k are mutually independent, Q ∼ χ21
2 q(q−1)+p(p−1)

;Qj,1 ∼ χ2N−j, j = 1, . . . , q;Qj,2 ∼ χ2n−q−j, and Qj,3 ∼

χ2q−j+1, j = 1, . . . , p.

Proof. SubstitutingΣ = Ip+q in (4.4), we obtain the null moments of λ3, viz.,

E(λh3) = e
h
p,q,n,N 2

((N−1)q+(n−1)p)h/2 (1+ h)−((N−1)q+(n−1)p)(1+h)/2

×
0q((N − 1)(1+ h)/2)

0q((N − 1)/2)
0p((n− q− 1)(1+ h)/2)

0p((n− q− 1)/2)
0p(q(1+ h)/2)

0p(q/2)
.

SubstitutingΣ = Id at (4.6), the right-hand side of that formula reduces to

2adh/2
0d(a(1+ h)/2)

0d(a/2)
(1+ h)−ad(1+h)/2

= (1+ h)−d(d−1)/4
d∏
j=1

[
2ah/2

0( 12 (a− j+ 1)+
1
2ah)

0( 12 (a− j+ 1))
(1+ h)−(a−j+1+ah)/2

]
.

On recognizing that each of the d+ 1 terms in this latter product is the h-th moment of a function of a chi-squared random
variable, we deduce that ifW ∼ Wd(a, Id) then

|W |a/2 exp
(
−
1
2
trW

)
L
= e−Q0/2

d∏
j=1

Q a/2j e−Qj/2,

where Q0, . . . ,Qd are independent chi-squared variables, Q0 ∼ χ2d(d−1)/2, and Qj ∼ χ
2
a−j+1 for j = 1, . . . , d. Applying this

result to each matrix in (4.5), we obtain

λ3
L
= ep,q,n,N e−(Q0,1+Q0,2+Q0,3)/2

q∏
j=1

Q (N−1)/2j,1 e−Qj,1/2 ·
p∏
j=1

Q (n−q−1)/2j,2 e−Qj,2/2 ·
p∏
j=1

Q q/2j,3 e
−Qj,3/2,
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where the Qj,k are independent, Q0,1 ∼ χ2q(q−1)/2, Qj,1 ∼ χ
2
N−j, j = 1, . . . , q; Q0,2 ∼ χ

2
p(p−1)/2, Qj,2 ∼ χ

2
n−q−j, j = 1, . . . , p;

and Q0,3 ∼ χ2p(p−1)/2, Qj,3 ∼ χ
2
q−j+1, j = 1, . . . , p. Letting Q = Q0,1 + Q0,2 + Q0,3, so that Q ∼ χ

2
1
2 q(q−1)+p(p−1)

, we obtain

(4.7). �

A complete treatment of the exact distribution of λ3 would take us too far afield, so we restrict our attention to its
asymptotic distribution and approximations thereof. With regard to the null distribution of λ3, we apply the results of
[12, p. 359] (see also [18, p. 68]) to each of the three terms in the representation of λ3 as a product of independent random
entities in (4.3) or (4.5). Under H0, the asymptotic distribution of λ3 for large n and N is given by

− 2 ln λ3 ≈
3∑
j=1

ρ−1j χ
2
dj , (4.8)

where χ2dj , j = 1, 2, 3, are independent, d1 = q(q+ 1)/2, d2 = d3 = p(p+ 1)/2, and

ρ1 = 1−
2q2 + 3q− 1
6(N − 1)(q+ 1)

, ρ2 = 1−
2p2 + 3p− 1

6(n− q− 1)(p+ 1)
, ρ3 = 1−

2p2 + 3p− 1
6q(p+ 1)

.

Let ρ(1) and ρ(3) denote the smallest and largest of ρ1, ρ2, ρ3, respectively. On applying to the right-hand side of (4.8) the
results of Kotz et al. [19, Section 5], we obtain the asymptotic distribution function of−2 ln λ3 in the form

P(−2 ln λ3 ≤ t) ' P(χ2d1+d2+d3 ≤ t/β1),

t > 0, where β1 = (ρ−1(1) + ρ
−1
(3) )/2. This approximation is the first term in the Laguerre series expansions of [19], and

additional terms in our approximation may be obtained accordingly from their series. Alternatively, by applying the results
of [19, Section 6], we also obtain

P(−2 ln λ3 ≤ t) ' c0(β2)P(χ2d1+d2+d3 ≤ t/β2),

where β2 = (d1 + d2 + d3)/(d1ρ1 + d2ρ2 + d3ρ3) and c0(β2) =
∏3
j=1(β2ρj)

dj/2.
Saddlepoint approximations to the distribution of (4.8) are noteworthy for they generally are superior to standard

asymptotic approximations in the case of small sample sizes. Let

K(ζ ) = −
1
2

3∑
j=1

dj ln(1− 2ρ−1j ζ )

denote the cumulant-generating function of the right-hand side of (4.8). Applying the results of Kuonen [20, Eq. (3)], we
obtain

P(−2 ln λ3 ≤ t) ' Φ
(
w + w−1 ln(vw−1)

)
,

t > 0, where Φ denotes the standard normal distribution function, ζ̂ is the unique solution of the equation K ′(ζ ) = t ,
w = sign(ζ̂ )[2{ζ̂ t − K(ζ̂ )}]1/2, and v = ζ̂ [K ′′(ζ̂ )]1/2.
We remark also that although the above results constitute a saddlepoint approximation only to the asymptotic

distribution of λ3, the methods of Booth et al. [21] may be applied to obtain a saddlepoint approximation to the exact
distribution of λ3.
We consider next the unbiasedness of λ2 and λ3. The proof of the following result follows the argument of Sugiura and

Nagao [22] (see [12, p. 367]).

Theorem 4.3. The statistic λ3 is unbiased. Further, if |Σ11| ≤ 1 then λ2 is unbiased.

Proof. As before, without loss of generality, we assume under Ha that Σ is diagonal. By (4.5), a critical region of size α for
λ3 is the set C3 = {(W1,W2,W3) : λ3/ep,q,n,N ≤ kα}, where W1 ∼ Wq(N − 1,Σ22), W2 ∼ Wp(n − q − 1,Σ11), and
W3 ∼ Wp(q,Σ11) aremutually independent, and the constant kα is such that P(λ3 ∈ C3|H0) = α. Denote by cq(N−1,Σ22),
cp(n−q−1,Σ11), and cp(q,Σ11) the normalizing constants in theWishart density functions ofW1,W2, andW3, respectively.
Again applying (4.5), we obtain

P(λ3 ∈ C3|Ha) =
∫
(W1,W2,W3)∈C3

cq(N − 1,Σ22)|W1|
1
2 (N−1)−

1
2 (q+1) exp

(
−
1
2
trΣ−122W1

)
× cp(n− q− 1,Σ11)|W2|

1
2 (n−q−1)−

1
2 (p+1) exp

(
−
1
2
trΣ−111W2

)
× cp(q,Σ11)|W3|

1
2 q−

1
2 (p+1) exp

(
−
1
2
trΣ−111W3

) 3∏
j=1

dWj.
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Making the transformation

(W1,W2,W3) = (Σ
1/2
22 W̃1Σ

1/2
22 ,Σ

1/2
11 W̃2Σ

1/2
11 ,Σ

1/2
11 W̃3Σ

1/2
11 ) (4.9)

in this integral, we obtain

P(λ3 ∈ C3|Ha) =
∫
(W̃1,W̃2,W̃3)∈C∗3

cq(N − 1, Iq)|W̃1|
1
2 (N−1)−

1
2 (q+1) exp

(
−
1
2
tr W̃1

)
× cp(n− q− 1, Ip)|W̃2|

1
2 (n−q−1)−

1
2 (p+1) exp

(
−
1
2
tr W̃2

)
× cp(q, Ip)|W̃3|

1
2 q−

1
2 (p+1) exp

(
−
1
2
tr W̃3

) 3∏
j=1

dW̃j,

where

C∗3 = {(W̃1, W̃2, W̃3) : (Σ
1/2
22 W̃1Σ

1/2
22 ,Σ

1/2
11 W̃1Σ

1/2
11 ,Σ

1/2
11 W̃1Σ

1/2
11 ) ∈ C3}. (4.10)

Under H0, C∗3 = C3; denoting the null joint density function of (W̃1, W̃2, W̃3) by f0, we have

P(λ3 ∈ C3|Ha)− P(λ3 ∈ C3|H0) =

{∫
C∗3

−

∫
C3

}
f0(W̃1, W̃2, W̃3)

3∏
j=1

dW̃j

=

{∫
C∗3\C3

−

∫
C3\C

∗
3

}
f0(W̃1, W̃2, W̃3)

3∏
j=1

dW̃j.

For (W̃1, W̃2, W̃3) ∈ C3 \ C∗3 ⊂ C3,

|W̃1|
1
2 (N−1) exp

(
−
1
2
tr W̃1

)
|W̃2|

1
2 (n−q−1) exp

(
−
1
2
tr W̃2

)
|W̃3|

q/2 exp
(
−
1
2
tr W̃3

)
≤ kα,

and hence f0(W̃1, W̃2, W̃3) ≤ kα̃ f0(W̃1, W̃2, W̃3), where

f̃0(W̃1, W̃2, W̃3) = cq(N − 1, Iq) cp(n− q− 1, Ip) cp(q, Ip)|W̃1|
−
1
2 (q+1)|W̃2|

−
1
2 (p+1)|W̃3|

−
1
2 (p+1),

W̃1, W̃2, W̃3 > 0. For (W̃1, W̃2, W̃3) ∈ C∗3 \ C3 ⊂ C∗3 ,

f0(W̃1, W̃2, W̃3) > kα̃ f0(W̃1, W̃2, W̃3);

therefore

P(λ3 ∈ C3|Ha)− P(λ3 ∈ C3|H0) > kα

{∫
C∗3\C3

−

∫
C3\C

∗
3

}
f̃0(W̃1, W̃2, W̃3)

3∏
j=1

dW̃j

= kα

{∫
C∗3

−

∫
C3

}
f̃0(W̃1, W̃2, W̃3)

3∏
j=1

dW̃j.

Now substitute (W̃1, W̃2, W̃3) = (Σ
−1/2
22 W1Σ

−1/2
22 ,Σ

−1/2
11 W2Σ

−1/2
11 ,Σ

−1/2
11 W3Σ

−1/2
11 ). Since the measure |W̃1|

−
1
2 (q+1)

|W̃2|
−
1
2 (p+1)|W̃3|

−
1
2 (p+1)

∏3
j=1 dW̃j is invariant under this transformation, we obtain∫

C∗3

f̃0(W̃1, W̃2, W̃3)

3∏
j=1

dW̃j =

∫
C3

f̃0(W̃1, W̃2, W̃3)

3∏
j=1

dW̃j.

Therefore P(λ3 ∈ C3|Ha)− P(λ3 ∈ C3|H0) > 0, which proves that λ3 is unbiased.
In the case of λ2, let C2 = {(W1,W2,W3) : λ2/e2,p,q,n,N ≤ kα} denote the critical region of size α and kα be the

corresponding percentage point, where e2,p,q,n,N denotes the constant term in (4.2). We again apply the transformation
(4.9) and, similar to (4.10), define C∗2 = {(W̃1, W̃2, W̃3) : (Σ

1/2
22 W̃1Σ

1/2
22 ,Σ

1/2
11 W̃1Σ

1/2
11 ,Σ

1/2
11 W̃1Σ

1/2
11 ) ∈ C2}. By an argument

analogous to that given for λ3, we obtain

P(λ2 ∈ C2|Ha)− P(λ2 ∈ C2|H0) > kα
(
|Σ11|

−qp/2
− 1

) {∫
C∗2

−

∫
C2

}
|W3|−

1
2 (p+1)̃f0(W1,W2,W3)

3∏
j=1

dWj.

For |Σ11|−qp/2 − 1 ≥ 0, or equivalently |Σ11| ≤ 1, it follows that λ2 is unbiased. �
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Next, we show that the statistic λ1 in (4.1) is not unbiased for all n and N . Here, the proof follows the classical approach
of Das Gupta [23] (see also [12, p. 357]).

Proposition 4.4. For testing H0 : Σ = Σ0 against Ha : Σ 6= Σ0, the likelihood ratio test statistic λ1 in (4.1) is not unbiased.

Proof. As before, we shall assumewithout loss of generality thatΣ is diagonal, say,Σ = diag(σ1,1, . . . , σp+q,p+q). By Propo-
sition 3.2, the matrices A22,N , A11·2,n, and A12A−122,nA21 are mutually independent with A22,N ∼ Wq(N − 1,Σ22), A11·2,n ∼
Wp(n− q− 1,Σ11), and A12A−122,nA21 ∼ Wp(q,Σ11). By (4.1),

(e/N)−Nq/2(e/n)−np/2λ1 = |A22,N |N/2 exp
(
−
1
2
trA22,N

)
|A11·2,n|n/2 exp

(
−
1
2
trA11·2,n

)
exp

(
−
1
2
trA12A−122,nA21

)

=

 |A22,N |
p+q∏
j=p+1

(A22,N)jj


N/2

p+q∏
j=p+1

(A22,N)
N/2
jj exp

(
−
1
2
(A22,N)jj

)

×

 |A11·2,n|
p∏
j=1
(A11·2,n)jj


N/2

p∏
j=1

(A11·2,n)
N/2
jj exp

(
−
1
2
(A11·2,n)jj

)
exp

(
−
1
2
trA12A−122,nA21

)
.

The rest of the proof now proceeds as in the classical case. The random variables (A22,N)jj, j = p + 1, . . . , p + q, and
|A22,N |/

∏p+q
j=p+1(A22,N)jj are mutually independent. Moreover, the distribution of |A22,N |/

∏p+q
j=p+1(A22,N)jj does not depend

onΣ22 and (A22,N)jj/σj,j ∼ χ2N−1. By [12, p. 356, Lemma 8.4.3], there exists σ
∗
p+q ∈ (1,N/(N − 1)) such that, for any c > 0,

P
(
(A22,N)

N/2
p+q,p+q exp

(
−
1
2
(A22,N)p+q,p+q

)
≥ k|σp+q,p+q = 1

)
< P

(
(A22,N)

N/2
p+q,p+q exp

(
−
1
2
(A22,N)p+q,p+q

)
≥ c|σp+q,p+q = σ ∗p+q

)
.

The conclusion is obtainedwhenwe evaluate P(λ1 ≥ c) by conditioning on the variables {(A22,N)jj, j = p+1, . . . , p+q−1},
|A22,N |/

∏p+q
j=p+1(A22,N)jj, and A12A

−1
22,nA21. �

As in the classical case, we can obtain a result which is stronger than the unbiasedness property of λ3 [12, p. 358];
however, we also note that it does not provide the unbiasedness property of λ2 which was deduced in Theorem 4.3. The
proof of the following result is similar to the classical case.

Theorem 4.5. For Σ = diag(σ1,1, . . . , σp+q,p+q), the power function of the modified likelihood ratio statistic λ3 increases
monotonically with |σj,j − 1|, 1 ≤ j ≤ p+ q.

Proof. By [12, p. 357, Corollary 8.4.4],

P
(
(A22,N)

(N−1)/2
p+q,p+q exp

(
−
1
2
(A22,N)p+q,p+q

)
≤ k|σp+q,p+q

)
increasesmonotonically as |σp+q,p+q−1| increases, and an analogous result holds for A11·2,n and A12A−122,nA21. The conclusion
is now obtained by a conditioning argument similar to the one applied in Proposition 4.4. �

4.2. Testing that µ andΣ equal a given vector and matrix

On the basis of themonotone sample (1.1), consider the problemof testingH0 : (µ,Σ) = (µ0,Σ0) againstHa : (µ,Σ) 6=
(µ0,Σ0), whereµ0 andΣ0 are completely specified. Hao andKrishnamoorthy [18, Eq. (4.1)] showed that the likelihood ratio
test statistic is

λ4 = λ1 exp
(
−
1
2
(nX̄ ′X̄ + NȲ ′Ȳ )

)
, (4.11)
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where λ1 is the test statistic in (4.1). By invariance arguments we may assume, without loss of generality, that (µ0,Σ0) =
(0, Ip+q) and thatΣ is diagonal under Ha. Substituting (4.1) into (4.11), we obtain

λ4 = (e/N)Nq/2|A22,N |N/2 exp
(
−
1
2
trA22,N

)
(e/n)np/2|A11·2,n|n/2 exp

(
−
1
2
trA11·2,n

)
× exp

(
−
1
2
trA12A−122,nA21

)
exp

(
−
1
2
(nX̄ ′X̄ + NȲ ′Ȳ )

)
.

By (3.3) and Proposition 3.2 we have that A22,N , A11·2,n, A12A−122,nA21, X̄ , and Ȳ are mutually independent under H0 and
A22,N ∼ Wq(N − 1,Σ22), A11·2,n ∼ Wp(n − q − 1,Σ11), A12A−122,nA21 ∼ Wp(q,Σ11), X̄ ∼ Np(µ1, n

−1Σ11), and Ȳ ∼
Nq(µ2,N−1Σ22). In particular, the individual terms on the right-hand side of (4.11) are mutually independent.
To identify the exact null distribution of λ4 and investigate its unbiasedness properties, we proceed as in the case of λ3.

We omit the proof of the following result since the details are similar to those in the previous subsection.

Theorem 4.6. The likelihood ratio statistic λ4 for testing H0 : (µ,Σ) = (0, Ip+q) against Ha : (µ,Σ) 6= (0, Ip+q) is unbiased.
For h = 0, 1, 2, . . . the h-th non-null moment of λ4 is

E(λh4) =
(
2e
N

)Nqh/2 (2e
n

)nph/2
0q((Nh+ N − 1)/2)
0q((N − 1)/2)

0p((nh+ n− q− 1)/2)
0p((n− q− 1)/2)

× |Σ22|
Nh/2
|Iq + hΣ22|−(Nh+N−1)/2|Σ11|nh/2|Ip + hΣ11|−(nh+n−1)/2

× exp
(
−(nµ′1µ1 + Nµ′2µ2)h

)
|Ip + 2hΣ11|−1/2|Iq + 2hΣ22|−1/2

× exp
(
2h2[nµ′1(Ip + 2hΣ11)

−1µ1 + Nµ′2(Iq + 2hΣ22)
−1µ2]

)
(4.12)

and, under H0,

λ4
L
= (2e/N)Nq/2(2e/n)np/2e−(Q1+2Q2)/2

(
p∏
j=1

Q n/2j,1 e
−Qj,1/2

)(
q∏
j=1

Q N/2j,2 e
−Qj,2/2

)
, (4.13)

where Q1 ∼ χ21
2 p(p−1)+

1
2 q(q−1)+pq

;Q2 ∼ χ2p+q;Qj,1 ∼ χ
2
n−q−j, 1 ≤ j ≤ p;Qj,2 ∼ χ

2
N−j; and all such χ

2 variables are mutually

independent.

We remark that, in the non-null case, the distribution of λ4 may also be obtained from (4.12); the final result is similar
to (4.13) and involves noncentral chi-square random variables.

4.3. The sphericity test

Consider the problemof testing sphericity, inwhich the null hypothesis isH0 : Σ = σ 2Ip+q and the alternative hypothesis
is Ha : Σ 6= σ 2Ip+q, where σ 2 > 0 is unspecified. Bhargava [6, Section 6] derived the likelihood ratio test statistic for a
problemmore general than the sphericity test and obtained the null distribution of a modified form of that statistic in terms
of independent chi-squared random variables. We shall treat the sphericity problem in a form closer to that of the classical
approach ([13, p. 431], [12, p. 433]), deriving its moments and a stochastic representation for its null distribution.
First, we derive the likelihood ratio criterion. Under H0, it is simple to show that the maximum likelihood estimators of

µ1, µ2 and σ 2 are, respectively, µ̂10 = X̄ , µ̂20 = Ȳ , and

σ̂ 20 =
1

np+ Nq

[
n∑
j=1

(Xj − X̄)′(Xj − X̄)+
N∑
j=1

(Yj − Ȳ )′(Yj − Ȳ )

]

=
1

np+ Nq

[
trA11 + trA22,N

]
.

Under Ha, the maximum likelihood estimators of µ and Σ are given in (2.4) and (3.1), respectively. By a straightforward
calculation, we deduce that the likelihood ratio criterion for testing H0 against Ha is

λ5 =
|n−1A11·2,n|n/2|N−1A22,N |N/2(

(np+ Nq)−1(trA11 + trA22,N)
)(np+Nq)/2 . (4.14)

For the classical case [13, p. 433], it is well-known that the likelihood ratio statistic is the quotient of an arithmetic and a
geometricmean, and that result leads to an immediate proof that the statistic is no larger than 1. Generalizing that result, we
now apply an arithmetic–geometric mean inequality to prove directly that λ5 ≤ 1. LetA1 and G1 denote the arithmetic and
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geometric means, respectively, of the eigenvalues of n−1A11·2,n, and let A2 and G2 denote the same for N−1A22,N . Because
A11 = A11·2,n + A12A−122,nA21 then

λ25 =
|n−1A11·2,n|n|N−1A22,N |N(

(np+ Nq)−1(trA11·2,n + trA12A−122,nA21 + trA22,N)
)np+Nq

≤
|n−1A11·2,n|n|N−1A22,N |N(

(np+ Nq)−1(trA11·2,n + trA22,N)
)np+Nq

≡
G
np
1 G

Nq
2(

(np+ Nq)−1(npA1 + NqA2)
)np+Nq . (4.15)

By the weighted arithmetic–geometric mean inequality (Marshall and Olkin [24, p. 455]),

(np+ Nq)−1(npA1 + NqA2) ≥ (A
np
1 A

Nq
2 )
1/(np+Nq).

Therefore, since Gj ≤ Aj, j = 1, 2, we obtain

λ25 ≤
G
np
1 G

Nq
2(

(A
np
1 A

Nq
2 )
1/(np+Nq)

)np+Nq ≡ ( G1

A1

)np (
G2

A2

)Nq
≤ 1.

We remark also that (4.15) shows how λ5 may be expressed entirely in terms of the eigenvalues of A11·2,n, A12A−122,nA21,
and A22,N .

Theorem 4.7. For h = 0, 1, 2, . . . the h-th null moment of λ5 is

E(λh5) =
(np+ Nq)(np+Nq)h/2

nnph/2NNqh/2
0p
( 1
2 (nh+ n− q− 1)

)
0q
( 1
2 (Nh+ N − 1)

)
0p
( 1
2 (n− q− 1)

)
0q
( 1
2 (N − 1)

)
×

0
( 1
2 ((n− 1)p+ (N − 1)q)

)
0
( 1
2 ((n− 1)p+ (N − 1)q)+

1
2 (np+ Nq)h

) . (4.16)

Under H0,

λ5
L
=
(np+ Nq)(np+Nq)/2

nnp/2NNq/2

(
p∏
j=1

Uj

)n/2 ( p+q∏
j=p+1

Uj

)N/2 ( p∏
j=2

U1j

)n/2 ( p+q∏
j=p+1

Uj

)N/2
, (4.17)

where

(U1, . . . ,Up+q) ∼ SDp+q

12 (n− q− 1), . . . , 12 (n− q− 1)︸ ︷︷ ︸
p

,
1
2
(N − 1), . . . ,

1
2
(N − 1)︸ ︷︷ ︸

q

 ,
a singular Dirichlet distribution; U1j ∼ β( 12 (n− q− i+ 1),

1
2 (i− 1)), 2 ≤ j ≤ p; U2j ∼ β(

1
2 (N − i+ 1),

1
2 (i− 1)), 2 ≤ j ≤ q;

and (U1, . . . ,Up+q), U12, . . . ,U1p, U22, . . . ,U2p are mutually independent.

Proof. Under H0 an invariance argument allows us to assume that σ 2 = 1, and hence Σ = Ip+q. Then A11·2,n, A12A−122,nA21,
and A22,N are mutually independent. By (4.14),

E(λh5) = n
−nph/2N−Nqh/2(np+ Nq)(np+Nq)h/2E|W1|

nh/2
|W3|

Nh/2(trW1 + trW2 + trW3)
−(np+Nq)h/2, (4.18)

whereW1 ∼ Wp(n−q−1, Ip),W2 ∼ Wp(q, Ip), andW3 ∼ Wq(N−1, Iq) are independent.When the density function ofW1 is
multiplied by the term |W1|

nh/2, the outcome is a constant multiple of the density function of W̃1 ∼ Wp(nh+ n− q− 1, Ip).
Similarly, when the density function of W3 is multiplied by the term |W3|

Nh/2, the outcome is a constant multiple of the
density function of W̃3 ∼ Wq(Nh+ N − 1, Iq). Therefore

E|W1|
nh/2
|W3|

Nh/2(trW1 + trW2 + trW3)
−(np+Nq)h/2

=
cp(n− q− 1, Ip)cq(N − 1, Iq)

cp(nh+ n− q− 1, Ip)cq(Nh+ N − 1, Iq)
E(tr W̃1 + trW2 + tr W̃3)

−(np+Nq)h/2, (4.19)
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where cp(n− p− 1, Ip) denotes the usual Wishart normalizing constant. By [12, p. 107, Theorem 3.2.20], we have tr W̃1 ∼

χ2(nh+n−q−1)p, trW2 ∼ χ
2
qp, and tr W̃3 ∼ χ

2
(Nh+N−1)q, and hence tr W̃1 + trW2 + tr W̃3 ∼ χ

2
(nh+n−1)p+(Nh+N−1)q. Applying the

formula

E(χ2r )
−δ/2
=
0 ((r − δ)/2)
2δ/20(r/2)

,

δ < r , to tr W̃1 + trW2 + tr W̃3 in (4.19) and substituting the result in (4.18), we obtain

E(λh5) =
(np+ Nq)(np+Nq)h/2

nnph/2NNqh/2
cp(n− q− 1, Ip)cq(N − 1, Iq)

cp(nh+ n− q− 1, Ip)cq(Nh+ N − 1, Iq)

×
0
( 1
2 ((n− 1)p+ (N − 1)q)

)
2(np+Nq)h/20

( 1
2 ((n− 1)p+ (N − 1)q)+

1
2 (np+ Nq)h

) .
Substituting from (2.2) for the multivariate gamma function, we obtain (4.16).
To prove (4.17), we rewrite (4.16) as a product of four ratios,

E(λh5) =
0p
( 1
2 (nh+ n− q− 1)

)
0p
( 1
2 (n− q− 1)

)
0p
( 1
2 (n− q− 1)

)
0p
( 1
2 (nh+ n− q− 1)

) 0q ( 12 (Nh+ N − 1))0q ( 12 (N − 1))
0q
( 1
2 (N − 1)

)
0q
( 1
2 (Nh+ N − 1)

)
×

0
( 1
2 ((n− 1)p+ (N − 1)q)

)
0
( 1
2 ((n− 1)p+ (N − 1)q)+

1
2 (np+ Nq)h

) 0p ( 12 (nh+ n− q− 1))0q ( 12 (Nh+ N − 1))
0p
( 1
2 (n− q− 1)

)
0q
( 1
2 (N − 1)

) . (4.20)

The first ratio in this product is the h-th moment of a classical sphericity statistic; see [13, p. 435, Eq. (16)], from which we
deduce that the ratio is the h-thmoment of a product of powers of independent beta random variables, (

∏p
j=2 U1j)

n/2, where
U1j ∼ β( 12 (n−q− i+1),

1
2 (i−1)), 2 ≤ j ≤ p. Similarly, the second ratio in (4.20) is the h-th moment of (

∏q
j=2 U2j)

N/2, with
independent U2j ∼ β( 12 (N − i + 1),

1
2 (i − 1)), 2 ≤ j ≤ q. By applying the formula for the density function of the singular

Dirichlet distribution (see [24, p. 307], Eq. (11)), we find that the product of the last two ratios in (4.20) is the h-th moment
of (
∏p
j=1 Uj)

n/2(
∏p+q
j=p+1 Uj)

N/2, where (U1, . . . ,Up+q) is as stated earlier. Combining these results, we obtain (4.17). �

We have been unable to determine whether or not λ5 is unbiased; in particular, the methods of Gleser [25] or Sugiura
and Nagao [22] seem inapplicable to this problem. On the other hand, the non-null distribution of λ5 can be obtained using
the methods given here, suitably generalizing the approach provided by Muirhead [12, p. 339 ff.].

4.4. Testing independence between subsets of the variables

Consider the problem of testing H0 : Σ12 = 0 against Ha : Σ12 6= 0with the sample (1.1). Eaton and Kariya [11] showed
that the likelihood ratio test statistic ignores the incomplete data Yj, j = n + 1, . . . ,N , and they proved that, among the
class of affinely invariant test procedures, the test that rejects H0 for small values of

λ6 = trA22,n(A22,n + B1)−1 − np−1trA−111 A12(A22,n + B1)−1A21
is locally most powerful invariant, where A11, A12, A22,n, and B1 are given in (2.3) and (3.5), respectively; cf. [26–28]. To
date, the distribution theory of λ6 remains explored and seems recondite. On the other hand, by omitting the term np−1, we
obtain the modified statistic,

λ7 = trA22,n(A22,n + B1)−1 − trA−111 A12(A22,n + B1)−1A21
= tr

(
A22,n − A21A−111 A12

)
(A22,n + B1)−1.

The statistic λ7 will not generally enjoy the same optimality properties as λ6. However, λ6 ≤ λ7 for n ≥ p, in which case
if H0 is rejected for small values of λ7 then H0 also is rejected by λ6. Moreover, λ7 has a null distribution which is simpler
than that of λ6. Indeed, with W1 = A22,n − A21A−111 A12 and W2 = A21A−111 A12 + B1, we have λ7 = trW1(W1 + W2)

−1.
By [13, pp. 142–143] we obtain that, under H0,W1 ∼ Wq(n − p − 1,Σ22),W2 ∼ Wq(N − n + p − 1,Σ22), andW1 and
W2 are independent. Therefore, under H0, λ7 is exactly of the form of the Bartlett–Nanda–Pillai criterion in MANOVA ([13,
Section 8.6.3], [12, Section 10.6.3]), and its null distribution may be derived accordingly.

5. Concluding remarks

In the case of k-step monotone incomplete data, many open problems remain. Romer [29] has derived some results on
exact stochastic representations for µ̂ and Σ̂ for k = 3, but little is known for k ≥ 4 and this has prevented extensions of
results in [1,30]. The likelihood ratio test procedures in Section 4 have been extended [18, Section 3.4] to the k-step case,
however it seems formidable to extend similarly the unbiasedness results in Section 4. Romer [29] has derived, by highly
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non-trivial methods, an exact stochastic representation for the analog of Hotelling’s T 2-statistic in the two-step case, and
the k-step case remains open.
As regards the case of non-monotone incomplete data, many problems remain unexplored. In the case of [11], the

likelihood equations for µ̂ and Σ̂ are unsolved; indeed, Romer and Richards (unpublished notes) have proved that those
equations have multiple solutions.
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