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Abstract

The relation between open topological strings and Chern–Simons theory was discovered by Witten. He proved thatA-model
on T ∗M whereM is a three-dimensional manifold is equivalent to Chern–Simons theory onM and thatA-model on arbitrary
Calabi–Yau 3-fold is related to Chern–Simons theory with instanton corrections. In present Letter we discuss multidim
generalization of these results.
 2005 Elsevier B.V.Open access under CC BY license.
en
s
ela-
l
ased

of

-

ni-

t
e
at

rec-
lts

nal

al
k of
-
s

om
1. Introduction

In present Letter we analyze the relation betwe
multidimensionalA-model of open topological string
and generalized Chern–Simons theory. Such a r
tion was discovered by Witten[1] in three-dimensiona
case; we generalize his results. Our approach is b
on rigorous mathematical results of[2–6]; in three-
dimensional case it gives mathematical justification
some of Witten’s statements.

In modern language Witten considersA-model in
presence of a stack ofN coinciding D-branes wrap
ping a Lagrangian submanifoldM . In the neighbor-
hood of Lagrangian submanifold a symplectic ma
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fold V looks like T ∗M . In the caseV = T ∗M ,
dimM = 3 Witten shows thatA-model is equivalen
to Chern–Simons theory onM . He considers also th
case whenV is a Calabi–Yau 3-fold and shows th
in this case Chern–Simons action functional onM ac-
quires instanton corrections.

We remark that one can analyze instanton cor
tions to Chern–Simons functional combining resu
by Fukaya [4] and Cattaneo–Froehlich–Pedrini[2]
and that this approach works also in multidimensio
case.

To study the origin of Chern–Simons function
and its generalizations one can replace the stac
N coinciding D-branes byN Lagrangian submani
folds depending onε and tending to the same limit a
ε → 0. This situation was studied by Fukaya–Oh[5]
and Kontsevich–Soibelman[6]; we will show that the
appearance of Chern–Simons functional follows fr
their results.
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2. Generalized Chern–Simons theory

Multidimensional generalization of Chern–Simo
theory can be constructed in the following way. W
consider differential forms ond-dimensional compac
manifold M taking values in Lie algebraG. One as-
sumes thatG is equipped with invariant inner produc
We will restrict ourselves to the only case we ne
G = gl(N); then invariant inner product can be defin
as〈a, b〉 = Trab where Tr denotes the trace in vect
representation ofG = gl(n). The graded vector spac
Ω∗(M) ⊗ G of such forms will be denoted byE . The
bilinear form〈C,C′〉 = ∫

M
TrC · C′ specifies an odd

symplectic structure onE if dim M is odd and even
symplectic structure if dimM is even.

The generalized Chern–Simons functionalCS(C)

is defined by the standard formula

(1)

S(C) = CS(C) = 1

2

∫
M

TrC dC + 1

3

∫
M

TrC[C,C]

whereC ∈ E = Ω∗(M) ⊗ gl(n) andd stands for the
de Rham differential. We can replaced in (1) by the
differential dA corresponding to flat connectionA;
corresponding functional will be denoted bySA. No-
tice that the functionalSA for arbitrary flat connection
in trivial vector bundle can be obtained from the fun
tional (1) with the standard de Rham differential b
means of shift of variables. It is easy to see that
any solutionA of equationdA+ 1

2[A,A] = 0 we have

S(C + A) = S(A) + 1

2

∫
M

Tr
(
C dC + C[A,C])

(2)+ 1

3

∫
M

TrC[C,C].

If A is a 1-form such a solution determines a flat c
nection and(2) coincides (up to a constant) with th
corresponding action functional. This remark perm
us to reduce the study of Chern–Simons functio
with flat connection to the study of functional(1).

In the case when dimM is oddE is an odd sym-
plectic space hence we can define an odd Pois
bracket on the space of functionals onE (on the space
of preobservables); the functionalSA obeys the BV
classical master equation{SA,SA} = 0 and therefore
can be considered as an action functional of class
mechanical system in BV-formalism. Correspond
equations of motion have the form

dAC + 1

2
[C,C] = 0.

The functionalS determines an odd differentia
δ on the algebra of preobservables by the form
δ(O) = {S,O}; homology of δ are identified with
classical observables.

In the case of even-dimensional manifoldM the
functional (1) has an interpretation in terms of BFV
formalism. The Poisson bracket on the space of fu
tionals onE (on the space of preobservables) is ev
the operatorδ can be interpreted as BRST operator a
its homology as classical observables.

The generalized Chern–Simons action functio
(1) was considered in[7,8] in the framework of BV
sigma-model. In the definition of BV sigma-mod
we consider the spaceE of maps ofΠT M , where
M is a d-dimensional manifold into (odd or even
symplecticQ-manifold X. (One says that a supe
manifold equipped with an odd vector field obeyi
{Q,Q} = 0 is a Q-manifold. De Rham differentia
specifies the structure ofQ-manifold onΠT M .) The
space of maps ofQ-manifold into aQ-manifold also
can be regarded as aQ-manifold. From the other sid
using the volume element onΠT M and symplectic
structure onX we can define odd or even symplec
structure onE . These facts permit us to consider B
or BFV theory where fields are identified with fun
tionals onE .

Numerous topological theories can be obtained
particular cases of BV sigma-model. It was shown
[7] thatA-model andB-model can be constructed th
way.

To obtain generalized Chern–Simons theory fr
BV-sigma model we should takeX = ΠG in this con-
struction. (IfG is a Lie algebra we can considerΠG as
aQ-manifold whereQ is a vector field1

2f
γ
αβcαcβ ∂

∂cγ .
We use the notationcα for coordinates inΠG cor-
responding to the basiseα in G; structure constant
of G corresponding to this basis are denoted byf α

βγ .
An invariant inner product onG specifies a symplecti
structure onΠG.)

In [9] Kontsevich constructed a multidimension
generalization of perturbation series for stand
Chern–Simons. It was shown in[8] that the pertur-
bation theory for generalized Chern–Simons the



182 A. Schwarz / Physics Letters B 620 (2005) 180–186

-
ons
iv-
gy
lized
to

on-

nc-

ari-
ce:
-

rn–

e-
the

l-

re
d

-

he
hat

nc-
s
-

e.,
the
ider

red

rn–

ns

bles

es-

ted

ons
ms

e-

ant

p

e

s;

ves

on-

be
i-

-

f

coincides with Kontsevich generalization. It is im
portant to emphasize that usual correlation functi
of multidimensional Chern–Simons theory are tr
ial, however, one can define non-trivial cohomolo
classes of some space that play the role of genera
correlation functions. (In[9] this space was related
the classifying space of diffeomorphism group ofM ,
in [8] it was interpreted as moduli space of gauge c
ditions in the corresponding BV sigma-model.)

Notice that one can construct Chern–Simons fu
tional for every differential associativeZ2-graded al-
gebraA equipped with invariant inner product〈 , 〉.
(We assume that the algebra is unital; then the inv
ant inner product can be written in terms of tra
〈a, b〉 = trab.) For everyN we define the associa
tive algebraAN as tensor productA ⊗ MatN where
MatN stands for the matrix algebra. We define Che
Simons functional forA ∈AN by the formula

CS(A) = 1

2
trAdA + 2

3
trA3

= 1

2
trAdA + 1

3
trA[A,A].

(Notice that we need really only the super Lie alg
bra structure defined by the super commutator in
associative algebraAN .)

The functionalCS coincides with(1) in the case
whenA is the algebraΩ(M) of differential forms on
manifoldM equipped with a trace trC = ∫

M
C.

The construction ofCS functional can be genera
ized to the case whenA is anA∞-algebra equipped
with invariant inner product. Recall that the structu
of A∞-algebraA on a Z2-graded space is specifie
by means of a sequence(k)m of operations; in a co
ordinate system the operation(k)m is specified by a
tensor(k)ma

a1,...,ak
having one upper index andk lower

indices. Having an inner product we can lower t
upper index; invariance of inner product means t
the tensor(k)µa0,a1,...,ak

= ga0am
a
a1,...,ak

is cyclically
symmetric (in graded sense). The Chern–Simons fu
tional can be defined onA⊗MatN by means of tensor
(k)µ; see[10] for details. Notice that two quasiiso
morphic A∞-algebras are physically equivalent, i.
corresponding Chern–Simons functionals lead to
same physical results. (In this statement we cons
action functionals at the level of classical theory.)

A differential associative algebra can be conside
as anA -algebra where only operations(1)m and(2)m
∞
do not vanish; in this case both definitions of Che
Simons functional coincide.

3. Observables of Chern–Simons theory

If Chern–Simons theory is constructed by mea
of associative graded differential algebraA with inner
product it is easy to check that classical observa
of this theory correspond to cyclic cohomology ofA.
This fact is equivalent to the statement that infinit
imal deformations ofA into A∞-algebra with inner
product are labeled by cyclic cohomologyHC(A) of
A [11]. (Recall, that classical observables are rela
to infinitesimal deformations of the theory.) AlgebraA
determines Chern–Simons theory for allN the observ-
ables we were talking about were defined for everyN .

As we mentioned the generalized Chern–Sim
theory corresponds to the algebra of differential for
Ω∗(M) with de Rham differential. It is well known
[12,13] that cyclic cohomology of this algebra are r
lated to equivariant homology of loop spaceL(M).
More precisely, there exists a map of equivari
homology HS1(L(M)) into cyclic cohomology
HC(Ω∗(M), d); if M is simply connected this ma
is an isomorphism.

Recall that the loop spaceLM is defined as a spac
of all continuous maps of the circleS1 = R/Z into M ;
the groupS1 acts onLM in obvious way:γ (t) →
γ (t + s). It will be convenient to modify the definition
of LM considering only piecewise differential map
this modification does not change the homology.

Instead of equivariant homology ofLM one can
consider homology of the space of closed cur
(string space)SM obtained fromLM by means of
factorization with respect toS1. The manifoldM is
embedded inLM and in SM = LM/S1 as the space
of constant loops; excluding constant loops from c
sideration we can identifyS1-equivariant homology
of LM \ M with homology of SM \ M . (In general
S1-equivariant homology of over real numbers can
identified with homology of quotient space if all stab
lizers are finite.)2

2 The spaceSM \M is an infinite-dimensional orbifold with orb
ifold points corresponding ton-fold curves. See[14] for the first
analysis of orbifold structure ofSM and calculation of homology o
SM in simple cases.
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Following [3] we will use the term “string homolo
gy” and the notationH∗M for the homology of string
spaceSM.

The homomorphism ofH∗M into the space of ob
servables of Chern–Simons theory can be describe
the following way[2].

Let us consider the standard simplex∆n = {(t1,
. . . , tn) ∈ Rn | 0 � t1 � · · · � tn � 1} and evaluation
mapsevn,k :∆n × LM → M that transform a poin
(t1, . . . , tn, γ ) ∈ ∆n × LM in γ (tk) (here 1� k � n).
Using these maps we can construct a differential fo
on LM by the formula

h(C) = Tr
∫
∆n

ev∗
n,1C · · · ev∗

n,nC,

whereC ∈ E = Ω∗(M) ⊗ MatN is a differential form
on M taking values inN × N matrices. We obtain a
map of the space of fields of Chern–Simons theory
Ω∗(LM).

The formh(C) descends to the string spaceSM. If
a is a singular chain inSM, then

(3)ρa(C) =
∫
a

h(C)

specifies a functional on the spaceE of fields (a pre-
observable of Chern–Simons theory). It follows fro
results of[2] that

(4)δρa = (−1)nρ∂a,

where∂a stands for the boundary of the chaina. This
means, in particular, that in the case whena is a cy-
cle in the homology ofSM (in the string homology)
ρa is an observable and that two homologous cyc
specify equivalent observables. We obtain a map
string homologyH∗M into the space of observable
of Chern–Simons theory onM .

4. String bracket

Let us describe some operations in homology
loop spaceLM and string spaceSM that were intro-
duced in[3].

The most fundamental of these operation is
loop product on the loop space. It assigns (under s
transversality assumptions) an(i+j −d)-dimensional
chain a • b in LM to i-dimensional chaina and j -
dimensional chainb. To constructa • b one first in-
tersects inM the chain of marked points ofa with
the chain of marked points ofb to obtain an(i + j −
d)-dimensional chain inM along which the marked
points ofa coincides with the marked points ofb. Now
one defines the chaina • b by means of concatenatio
of the loops ofa and the loops ofb having common
marked points.

The operator∆ on the chains of the loop spac
LM transforms ani-dimensional chaina into (i + 1)-
dimensional chain∆a obtained by means of circl
action onLM.

The bracket{a, b} of i-dimensional chaina in LM
and j -dimensional chainb in LM is an (i + j + 1)-
dimensional chain that can be defined by the formu

(5){a, b} = (−1)i∆(a • b) − (−1)i∆a • b − a • ∆b.

All these operations descend to homology ofLM; the
homology becomes a Batalin–Vilkovisky algebra[15,
16] with respect to them.

A natural map ofLM ontoSM (erasing the marke
point) determines a homomorphism proj of chain co
plexes. Ani-dimensional chain inSM can be lifted to
(i + 1)-dimensional chain inLM (we insert marked
points in all possible ways); corresponding homom
phism of chain complexes will be denoted by lift.

The string bracket of two chains inSM can be de-
fined by the formula

(6)[a, b] = proj(lift b • lift a).

If dim a = i, dimb = j , then dim[a, b] = i+j −d +2.
This bracket descends to homology ofSM (to string
homology), defining a graded Lie algebra. The ab
definition of bracket agrees with[2]; in the definition
of [3] a andb are interchanged.

As we know, there exists a map of string homolo
into the space of observables. The main result of[2] is
a theorem that this map is compatible with Lie alg
bra structures on string homology and on the spac
observables:

(7){ρa,ρb} = ρ[a,b],

where{ , } stands for the Poisson bracket.
It is important to notice that(7) remains correct ifa

andb are arbitrary chains not necessary cycles obey
some transversality conditions. Thenρ andρ are in
a b
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general preobservables. This fact follows immediat
from the considerations of[2].

Notice that the action of the group Diff(S1) of ori-
entation preserving diffeomorphims of circleS1 deter-
mines an action of this group onLM. FactorizingLM
with respect to this action we obtain a spaceSMnew
that is homotopically equivalent toSM. (This follows
from the fact that Diff(S1) is homotopically equiva
lent toS1.) Similarly, instead ofLM we can conside
a spaceLMnew obtained fromLM by means of factor
ization with respect to the contractible group Diff0 S1

defined as a subgroup of Diff(S1) consisting of maps
leaving intact the point 1∈ ∂D.

5. A-model and string bracket

In this section we review some results of Fuka
[4]. We will give also modification of these results
the form that allows us to relate them with the co
structions of[2].

Let us consider a symplectic manifoldV and a
Lagrangian submanifoldM ⊂ V . Correlation func-
tions ofA-model onV can be calculated by means
localization to moduli spaces of (psedo)holomorp
maps of Riemann surfaces; in the case of open str
one should consider maps of bordered surfaces tr
forming the boundary intoM [1]. We restrict our-
selves to the genus zero case; then one should con
holomorphic mapsϕ of the diskD into V obeying
ϕ(∂D) ⊂ M . Every such map specifies an eleme
of π2(V ,M). One denotes byM̃(M,β) the mod-
uli space of holomorphic mapsϕ : (D, ∂D) → (V ,M)

that have a homotopy typeβ ∈ π2(V ,M). We use
the notationsM̂(M,β) = M̃(M,β)/Aut(D2,1) and
M(M,β)/PSL(2,R) where PSL(2,R) is the group
of fractional linear transformations identified with b
holomorphic mapsD → D and Aut(D,1) denotes its
subgroup consisting of maps leaving intact the po
1 ∈ ∂D. The spacesM̂(M,β) andM(M,β) should
be compactified by including stable maps from op
Riemann surfaces of genus 0; we will use the sa
notation for compactified spaces.

Notice thatM(M,β) specifies a chainMβ in
the string spaceSM. (We define a mapM(M,β) →
SMnew restricting every mapϕ :D → V belonging to
M(M,β) to the boundary of the diskD. We use in this
construction the modified definition ofSM discussed
r

at the end of Section4. To obtain a chain inSM we
use a map ofSMnew ontoSM that specifies homotop
equivalence of these two spaces.) Similarly,M̂(M,β)

specifies a chainM̂β in the loop spaceLM; the chain
M̂β can be considered as a lift ofMβ . (Again we
are using modified definition ofLM at the intermedi-
ate step.)

Fukaya[4,17] proved the following relation

(8)∂M̂β + 1

2

∑
β=β1+β2

{M̂β1, M̂β2} = 0,

where{, } stands for the loop bracket inLM. We will
derive from(8) the relation

(9)∂Mβ + 1

2

∑
β=β1+β2

[Mβ1,Mβ2] = 0,

where[ , ] denotes the string bracket inSM.
The derivation is based on relation̂Mβ = lift Mβ .

We notice that

(10)∂M̂β = ∂(lift Mβ) = lift (∂Mβ).

From the other side

∂M̂β = −1

2

∑
β1+β2=β

{M̂β1,M̂β2}

= −1

2

∑
β1+β2=β

{lift Mβ1, lift Mβ2}

= −1

2

∑
β1+β2=β

(
(−1)(dimMβ1+1)

× ∆(lift Mβ1 • lift Mβ2)

− (−1)(dimMβ1+1)∆(lift Mβ1) • lift Mβ2

− (lift Mβ1) • ∆(lift Mβ2)
)

(11)= lift

(
−1

2

∑
β1+β2=β

[Mβ1,Mβ2]
)

.

In the derivation of this formula we used(5)–(7)
and relations∆ • lift = 0, ∆ = lift •proj.

We obtain(9) comparing(8) and(11).
Let us fix a ringΛ and a mapα :H2(V ,M) → Λ

obeyingα(β1 + β2) = α(β1) · α(β2).
We can construct aΛ-valued chainM on SM tak-

ing

(12)M =
∑

αβMβ.
β
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It follows immediately from(11) that

(13)∂M+ 1

2
[M,M] = 0.

Usually one takes asΛ the Novikov ring (a ring of
formal expressions of the form

∑
aiT

λi whereai ∈ R,
λi ∈ R, λi → +∞). The mapα should be fixed in a
way that guarantees finiteness of all relevant exp
sions. Our considerations will be completely form
we refer to[18] for an appropriate choice ofα.

6. A-model and Chern–Simons theory

Let us start with the chainM on SM constructed a
the end of Section5.

We can construct the corresponding preobserv
of generalized Chern–Simons theory using(13). It fol-
lows immediately from(7) and (13) that the preob-
servableρ = ρM obeys

δρ + 1

2
{ρ,ρ} = 0.

We can modify the Chern–Simons functional ad
ing ρ. The new functionalS + ρ verifies

{S + ρ,S + ρ} = 0.

This means thatS + ρ can be considered as a so
tion of classical master equation (an action functio
in BV formalism) if dimM is odd and as a BRS
generator if dimM is even. In the case dimM = 3
the functionalρ represents instanton corrections to
Chern–Simons action; one can argue that this is tru
any dimension.

The above consideration is not completely rig
ous. We used the results of[2,3,12] about the string
bracket on the space of chains inSM. These paper
use different definitions of string bracket; all of the
agree on homology, however, it is essential for us
consider the bracket of chains that are not necess
cycles. To give a rigorous proof one has to check t
all results we are using can be verified with the sa
definition of string bracket; this should not be a pro
lem.

We have seen thatA-model instanton correction
to Chern–Simons functional can be generalized v
naturally to any dimension. This is a strong indic
tion that Chern–Simons functional by itself also a
pears in multidimensionalA-model. Indeed, analyz
ing Witten’s arguments[1] based on the applicatio
of string field theory one can reach a conclusion t
A-model on T ∗M is equivalent to the generalize
Chern–Simons theory onM . (One can understan
from Witten’s paper, that he was aware of possib
ity of multidimensional generalization of his constru
tions.)

It seems that the mathematical justification of t
statement can be based on the idea that a stac
N coinciding D-branes can be replaced byN La-
grangian submanifolds that depend on some param
and coincide when the parameter tends to 0. This s
ation was studied by Fukaya–Oh[5] and Kontsevich–
Soibelman[6].

Let us considerN transversal Lagrangian subman
foldsM1, . . . ,MN in symplectic manifoldV . One can
construct correspondingA∞-category (Fukaya cate
gory) [18]. The construction of operations in this ca
gory is based on the consideration of moduli space
pseudoholomorphic maps of a diskD into V . (One as-
sumes thatV is equipped with almost complex stru
ture J ; in the case whenV = T ∗M one assume
that almost complex structure is induced by a me
on M .) One fixes the intersection pointsxi ∈ Mi ∩
Mi+1 for 1 � i � N − 1 andxN ∈ MN ∩ M1. The
Fukaya category is defined in terms of moduli spa
Mz

J (V,Mi, xi) of J -holomorphic mapsv :D → V

transforming given pointszi ∈ ∂D into pointsxi .
One should consider also the union of all spa

Mz
J where zi run over all cyclically ordered sub

sets of∂D and factorize this union with respect
the group PSL(2,R) acting as a group of biholo
morphic automorphisms of the disk; one obta
the moduli spacesMJ (V ,Mi, xi). The definition of
operations in Fukaya category involves summat
overMJ .

Following [5] we can consider the case wh
V = T ∗M and the Lagrangian submanifoldsMi are
defined as graphsMi = (x, ξ) ∈ T ∗M|ξ = εdfi(x)

wheref1, . . . , fN are such functions onM that dif-
ference between any two of them is a Morse functi
then the corresponding Lagrangian submanifolds
transversal and intersection pointsxi ∈ Mi ∩Mi+1 are
critical points of functionsfi − fi+1. Fukaya and Oh
[5] have studied the moduli spacesM (V ,M ,x ) for
J i i
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this choice of Lagrangian submanifolds. They ha
proved that for smallε these moduli spaces are d
feomorphic to moduli spacesMg(M,fi,pi) of graph
flows. (An element of moduli spacesMg(M,fi,pi)

wherepi are critical points offi − fi+1 is a map of a
metric graphγ intoM transforming edges of the grap
γ into trajectories of negative gradient flow of the d
ference of two of the functions. It is assumed that
graphγ is a rooted tree embedded into the diskD and
the exterior vertices are mapped into∂D.)

This picture is very close to the Witten’s pictu
[1] where graphs appear as degenerate instanton
is clear from it thatA-model onT ∗M can be reduced
to quantum field theory—summation over embedd
holomorphic disks can be replaced by the summa
over graphs. However, it is not clear yet that this qu
tum field theory coincides with Chern–Simons theo
To establish this one can apply the results of[6].

The papers[5,6] use the language ofA∞-categories
In this language the results of[5] can be formulated in
the following way: FukayaA∞-category constructe
by means of Lagrangian submanifolds ofT ∗M is
equivalent to MorseA∞-category of smooth func
tions on M . It is proved in [6] under certain con
ditions that the MorseA∞-category is equivalent t
de Rham category. AllA∞-categories (or, more pre
cisely, A∞-precategories) in question are equipp
with inner product; the equivalence is compatible w
inner product.

The minimal model of FukayaA∞-category is
related to tree level string amplitudes; the relat
of these amplitudes to Chern–Simons theory can
derived from the remark that quasiisomorphicA∞-
algebras with inner product specify equivalent Che
Simons theories.

It is important to emphasize thatA-model for any
genus is related to Chern–Simons theory. It was m
tioned in [5] that not only moduli spaces of pseud
holomorphic disks onT ∗M but also moduli space
of higher genus pseudoholomorphic curves can be
scribed in terms of graphs. Again, this is consist
with equivalence ofA-model to quantum field theory
In simplest case the relation to Chern–Simons the
was studied in[19].
t
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