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Applying the counterterm method in minimal subtraction scheme we calculate the three-loop quantum
correction to field anomalous dimension in a Lorentz-violating O(N) self-interacting scalar field theory.
We compute the Feynman diagrams using dimensional regularization and ε-expansion techniques. As
this approximation corresponds to a three-loop term, to our knowledge this is the first time in literature
in which such a loop level is attained for a LV theory.
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1. Introduction

In high energy physics the main aspects of many physical effects involving particles and fields such as pair annihilation, Compton
effect, positronium lifetime, Bremsstrahlung can be understood by lowest-order perturbative calculations [1,2], although higher-level com-
putations give more precise knowledge about these effects. On the other hand, the many-body behavior of some physical systems is
satisfactorily described only if higher-order approximations are used for studying them. As an example, both three-level and one-loop
quantum correction for the renormalization group outcome for the correlation function critical exponent η, related to field anomalous
dimension, which characterizes a second order phase transition in ferromagnetic systems are null [3,4]. Thus the nonvanishing leading
quantum contribution to this critical exponent lies just at two-loop order. As ferromagnetic systems present large thermal fluctuations
near critical point, any higher-loop correction, albeit small, is highly relevant for an accurate determination of the numerical value of a
critical exponent. For these systems, the critical exponents up to a five-loop level approximation were evaluated [5,6].

All physical phenomena above are described by theories satisfying certain symmetry principles, one of them is Lorentz invariance.
However some of these phenomena and many others are been studied in the limit in which this symmetry is violated. These theories
were proposed as natural extensions of their Lorentz-invariant (LI) counterparts [7–19]. More specifically, in a recent paper [20], the β
function and field anomalous dimension γ were calculated up to two-loop approximation for a Lorentz-violating (LV) O(N) scalar field
theory. This theory may have many applications in the standard model LV Higgs sector. The mass in this theory was renormalized up to
the same loop level [21]. While the β function and mass were computed up to next-to-leading order, only the leading quantum correction
to field anomalous dimension were obtained. The aim of this Letter is to calculate the γ function up to next-to-leading approxima-
tion.

We begin this Letter discussing the bare theory for the O(N) scalar field theory with Lorentz violation and its three-loop diagrammatic
expansion for two-point function necessary in this work in the Section 2. In the Section 3 we will discuss the evaluation of the three-loop
level renormalization constant for field renormalization and the respective loop-order Wilson function γ . We will finalize the Letter in
Section 4 with our conclusions.
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2. Basics

2.1. Bare theory

The unrenormalized Euclidean Lagrangian density for the massive self-interacting O(N) LV scalar field theory is given by [20]

L = 1

2
∂μφB∂μφB + 1

2
Kμν∂μφB∂νφB + 1

2
m2

Bφ2
B + λB

4! φ4
B . (1)

This Lagrangian density is invariant under rotations in an O(N) internal symmetry field space. The field is a N-component vector field and
the last term in Eq. (1) represents its quartic self-interaction where φ4 = (φ2

1 +· · ·+φ2
N )2. The quantities φB , mB and λB are the bare field,

mass and coupling constant, respectively. The LV second term above breaks the Lorentz symmetry through the dimensionless symmetric
constant coefficients Kμν (the components of Kμν are chosen such that this two-component mathematical object does not transform as a
second order tensor under Lorentz transformations) which are the same for all N components of the vector field. This tensor is responsible
for a slight symmetry violation when |Kμν | � 1. We can also see that the unrenormalized inverse free propagator in momentum space of
the theory is given by q2 + Kμνqμqν +m2

B and thus we have a modified version of a conventional scalar field theory. Another modification
comes from the emergence of the factor

Π = 1 − 1

2
Kμνδμν + 1

8
Kμν Kρσ δ{μνδρσ } + · · · (2)

present in the results for the β and γ functions where δ{μνδρσ } ≡ δμνδρσ + δμρδνσ + δμσ δνρ . The factor in Eq. (2) has a similar form in
Minkowski space–time [20]. These two forms are connected by a Wick rotation when we have δμν → ημν where ημν is the Minkowski
metric tensor. As it is known [6], the bare two-point vertex function Γ

(2)
B has two divergent terms: one proportional to external momen-

tum P 2 and another to bare mass m2
B . In the process of field renormalization for a scalar field theory, it is needed to renormalize just the

former. The latter can be used to mass renormalization purposes. Our task is to analyze the three-loop level field renormalization term
for this function. This will be the subject of next section.

2.2. Bare three-loop contribution to two-point function

The single component field (N = 1) three-loop diagrams for the unrenormalized bare two-loop function are [6]

Γ
(2)

B,3-loop = −1

4
− 1

12
− 1

4
− 1

8
− 1

8
. (3)

As we are not interested in diagrams proportional to m2
B , which is the case of tadpole diagram for all orders in the tensor Kμν [20],

we see both topologically and mathematically that the last three diagrams have, at least, a tadpole diagram on their expressions as seen
below

= −λ3
B

∫
ddq1

(2π)d

ddq2

(2π)d

ddq3

(2π)d

1

(q2
1 + Kμνqμ

1 qν
1 + m2

B)2

1

q2
2 + Kμνqμ

2 qν
2 + m2

B

× 1

(q1 + q2 + P )2 + Kμν(q1 + q2 + P )μ(q1 + q2 + P )ν + m2
B

1

q2
3 + Kμνqμ

3 qν
3 + m2

B

, (4)

= −λ3
B

∫
ddq1

(2π)d

ddq2

(2π)d

ddq3

(2π)d

1

(q2
1 + Kμνqμ

1 qν
1 + m2

B)2

1

(q2
2 + Kμνqμ

2 qν
2 + m2

B)2

1

q2
3 + Kμνqμ

3 qν
3 + m2

B

, (5)

= −λ3
B

∫
ddq1

(2π)d

ddq2

(2π)d

ddq3

(2π)d

1

(q2
1 + Kμνqμ

1 qν
1 + m2

B)3

1

q2
2 + Kμνqμ

2 qν
2 + m2

B

1

q2
3 + Kμνqμ

3 qν
3 + m2

B

. (6)

So these diagrams do not contribute to field renormalization.
The second diagram

= −λ3
B

∫
ddq1

(2π)d

ddq2

(2π)d

ddq3

(2π)d

1

(q2
1 + Kμνqμ

1 qν
1 + m2

B)2

1

q2
2 + Kμνqμ

2 qν
2 + m2

B

1

q2
3 + Kμνqμ

3 qν
3 + m2

B

× 1

(q + q + q )2 + K (q + q + q )μ(q + q + q )ν + m2
(7)
1 2 3 μν 1 2 3 1 2 3 B
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has no dependence on external momentum and, consequently, will be discarded for γ function calculation purposes. Although it has no
tadpole on its expression, we can show explicitly that it is proportional to m2

B . This is achieved by using the “partial-q” ∂qμ/∂qμ = d [22]
identity. Introducing

1 = 1

3d

(
∂qμ

1

∂qμ
1

+ ∂qμ
2

∂qμ
2

+ ∂qμ
3

∂qμ
3

)
(8)

in the diagram above, it can be written as being proportional to m2
B

= 2λ3
Bm2

B

3d − 10
(2E + 3F ) (9)

where

E =
∫

ddq1

(2π)d

ddq2

(2π)d

ddq3

(2π)d

ddq3

(2π)d

1

(q2
1 + Kμνqμ

1 qν
1 + m2

B)3

1

q2
2 + Kμνqμ

2 qν
2 + m2

B

1

q2
3 + Kμνqμ

3 qν
3 + m2

B

× 1

(q1 + q2 + q3)2 + Kμν(q1 + q2 + q3)μ(q1 + q2 + q3)ν + m2
B

, (10)

F =
∫

ddq1

(2π)d

ddq2

(2π)d

ddq3

(2π)d

ddq3

(2π)d

1

(q2
1 + Kμνqμ

1 qν
1 + m2

B)2

1

(q2
2 + Kμνqμ

2 qν
2 + m2

B)2

1

q2
3 + Kμνqμ

3 qν
3 + m2

B

× 1

(q1 + q2 + q3)2 + Kμν(q1 + q2 + q3)μ(q1 + q2 + q3)ν + m2
B

. (11)

Finally the first diagram

= −λ3
B

∫
ddq1

(2π)d

ddq2

(2π)d

ddq3

(2π)d

1

q2
1 + Kμνqμ

1 qν
1 + m2

B

1

q2
2 + Kμνqμ

2 qν
2 + m2

B

1

q2
3 + Kμνqμ

3 qν
3 + m2

B

× 1

(q1 + q2 + P )2 + Kμν(q1 + q2 + P )μ(q1 + q2 + P )ν + m2
B

× 1

(q1 + q3 + P )2 + Kμν(q1 + q3 + P )μ(q1 + q2 + P )ν + m2
B

(12)

can be cast into another form using once again the “partial-q” identity (8). Thus we obtain

= 2λ3
B

3d − 10

[
5m2C B(P ) + D B(P )

]
(13)

where

C B(P ) =
∫

ddq1

(2π)d

ddq2

(2π)d

ddq3

(2π)d

1

q2
1 + Kμνqμ

1 qν
1 + m2

B

1

q2
2 + Kμνqμ

2 qν
2 + m2

B

1

q2
3 + Kμνqμ

3 qν
3 + m2

B

× 1

(q1 + q2 + P )2 + Kμν(q1 + q2 + P )μ(q1 + q2 + P )ν + m2
B

× 1

[(q1 + q3 + P )2 + Kμν(q1 + q3 + P )μ(q1 + q2 + P )ν + m2
B ]2

, (14)

D B(P ) =
∫

ddq1

(2π)d

ddq2

(2π)d

ddq3

(2π)d

1

q2
1 + Kμνqμ

1 qν
1 + m2

B

1

q2
2 + Kμνqμ

2 qν
2 + m2

B

1

q2
3 + Kμνqμ

3 qν
3 + m2

B

× 1

(q1 + q2 + P )2 + Kμν(q1 + q2 + P )μ(q1 + q2 + P )ν + m2
B

× P (q1 + q3 + P ) + Kμν Pμ(q1 + q3 + P )ν

[(q1 + q3 + P )2 + Kμν(q1 + q3 + P )μ(q1 + q2 + P )ν + m2
B ]2

. (15)

The first term in Eq. (13) is proportional to unrenormalized mass m2
B and will be not used. We will use the second term which will be

shown to be proportional to external momentum P 2 and will give the three-loop contribution to γ function. This will be approached in
the next section.
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3. Field renormalization

3.1. Renormalized theory and the three-loop contribution to γ function

In this Letter we apply the counterterm method in minimal subtraction scheme [22] in the renormalization process and use a given
fixed notation [6]. In this scheme the renormalized theory is attained after some diagrams are added to initial bare perturbative diagram-
matic expansion for cancelling infinities where the external momenta are held arbitrary, although the final renormalized theory satisfies
these conditions at vanishing external momenta. These new diagrams are called counterterm diagrams and can be seen as generated
by a few terms added to original unrenormalized Lagrangian density. As a consequence of this addition, the finite theory (with all bare
parameters substituted by their renormalized counterparts) is now composed by both the initial and counterterm Lagrangian density and
the divergences of the theory are absorbed by renormalization constants, Zφ for field renormalization. Thus the renormalized theory is
attained, whose n-point functions with n � 1 satisfy the Callan–Symanzik equation

[
μ

∂

∂μ
+ β(g)

∂

∂ g
− nγ (g) + γm(g)m

∂

∂m

]
Γ (n) = 0 (16)

where Γ (n) ≡ Γ (n)(k1, . . . ,kn;m, g,μ) and

γ (g) = 1

2
μ

∂

∂μ
Zφ

∣∣∣∣
B

(17)

where |B indicates that we have to calculate the parameters in the bare theory. The β and γm (associated to mass renormalization)
functions were obtained earlier [20,21], g is the renormalized dimensionless coupling constant given by g = λμ−ε and μ is an arbitrary
mass parameter. The three-loop quantum correction to γ function for a self-interacting N-component scalar field is the objective of this
work. Thus, all we need is the field renormalization constant up to three-loop. It is given by [6]

Zφ

(
g, ε−1) = 1 + 1

P 2

[
1

6
K

( )∣∣∣∣
m2=0

S + 1

4
K

( )∣∣∣∣
m2=0

S + 1

3
K

( )
S

]
. (18)

The operator K extracts only the divergent terms of diagrams and the renormalization constant Zφ(g, ε−1) is a Laurent expansion in ε
and a function of g . The factor S is the symmetry factor for a scalar theory with O(N) symmetry for the respective diagram and so

on. We utilize dimensional regularization [22–24]

∫
ddq

(2π)d

1

(q2 + 2pq + M2)α
= Ŝd

1

2

�(d/2)

�(α)

�(α − d/2)

(M2 − p2)α−d/2
(19)

to regularize the diagrams in ε-expansion where ε = 4 − d. In the equation above we have the definitions Ŝd = Sd/(2π)d =
2/(4π)d/2�(d/2) [21]. The factor Sd = 2πd/2/�(d/2) is the surface area of a unit d-dimensional sphere and has the finite value
Ŝ4 = 2/(4π)2 in four dimensions. In four-dimensional space, each loop integration contributes with a factor Ŝ4. We use the integral
expressed in this way because it is more convenient. It avoids the appearing of Euler–Mascheroni constants in the middle of calculations
[25]. As these constants are not present in the renormalized theory, if we would not use the Eq. (19) the referred constants would have
to cancel precisely. All diagrams have the renormalized free propagator in their expressions and can be expanded in a Taylor series

1

(q2 + Kμνqμqν + m2)n
= 1

(q2 + m2)n

[
1 − n

Kμνqμqν

q2 + m2
+ n(n + 1)

2!
Kμν Kρσ qμqνqρqσ

(q2 + m2)2
+ · · ·

]
(20)

in the Kμν small parameters.
The first diagram in the Eq. (18) is the sunset diagram. Its expression is given by

= λ2
∫

ddq1

(2π)d

ddq2

(2π)d

1

q2
1 + Kμνqμ

1 qν
1 + m2

1

q2
2 + Kμνqμ

2 qν
2 + m2

× 1

(q1 + q2 + P )2 + Kμν(q1 + q2 + P )μ(q1 + q2 + P )ν + m2
(21)

and we can write it as a sum of others two integrals. Using one more time the “partial-q” [21], we get

= − λ2

d − 3

[
3m2 A(P ) + B(P )

]
(22)

where

A(P ) =
∫

ddq1

(2π)d

ddq2

(2π)d

1

q2
1 + Kμνqμ

1 qν
1 + m2

1

q2
2 + Kμνqμ

2 qν
2 + m2

× 1

[(q + q + P )2 + K (q + q + P )μ(q + q + P )ν + m2]2
, (23)
1 2 μν 1 2 1 2
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B(P ) =
∫

ddq1

(2π)d

ddq2

(2π)d

1

q2
1 + Kμνqμ

1 qν
1 + m2

1

q2
2 + Kμνqμ

2 qν
2 + m2

× P (q1 + q2 + P ) + Kμν Pμ(q1 + q2 + P )ν

[(q1 + q2 + P )2 + Kμν(q1 + q2 + P )μ(q1 + q2 + P )ν + m2]2
. (24)

The integral A(P ) is part of a term proportional to m2 and is commonly used in mass renormalization. The integral B(P ) is proportional to
P 2 and was used to renormalize the field and to calculate the γ function up to two-loop [20], namely γ2-loop(g) = (N + 2)g2Π2/36(4π)4.

The third diagram in Eq. (18) is a counterterm diagram. It can be written as an operation over the sunset diagram, namely

=
∣∣∣∣
m2=0,−με g→−με gc1

g

(25)

where c1
g is the first order coupling constant counterterm and is proportional to divergent term for “fish” diagram calculated

previously [20]. As c1
g introduces a first order pole in the counterterm diagram, we have to calculate the sunset finite part. Introducing

Feynman parameters [25], making the change of integration variables q1 + P → q′
1 and after q′

1 → q1 and after momentum integration for
zero order in K , the integral B(0)(P ) assumes the form

B(0)(P ) = P 2

4(4π)4ε
(1 − ε)

1∫
0

dx
[
x(1 − x)

]−ε/2
1∫

0

dy yε/2(1 − y)

{
y(1 − y)P 2

4π
+

[
1 − y + y

x(1 − x)

]
m2

4π

}−ε

. (26)

As the calculation of the finite part of a diagram involves more effort than just its pole term [26], we will make our calculations up to
O(K ). Adding this contribution to the counterterm diagram we have (see Appendix A)

= − 3P 2 g3

2(4π)6ε2

[
1 + 1

4
ε − 2ε J3(P )

]
Π3 + 3P 2 g3

(4π)6ε
Kμν Jμν

3 (P ) (27)

where

J3(P ) =
1∫

0

dx dy (1 − y) ln

{
y(1 − y)P 2

4πμ2
+

[
(1 − y) + y

x(1 − x)

]
m2

4πμ2

}
, (28)

Jμν
3 (P ) =

1∫
0

dx dy y(1 − y)2 Pμ Pν

y(1 − y)P 2 + [(1 − y) + y
x(1−x) ]m2

. (29)

The second diagram present in the Eq. (18) was written as a sum of others two integrals. As we saw, the useful term in this diagram for
the field renormalization task is proportional to the integral D(P ), i.e. Eq. (15) (with bare parameters substituted by its respective renor-
malized parameters). This integral can be written, once again after the change of integration variables q1 + P → q′

1 and after q′
1 → q1, as

D(P ) = −1

2
Pμ′ ∂

∂ Pμ′

∫
ddq1

(2π)d

ddq2

(2π)d

ddq3

(2π)d

1

(q1 − P )2 + Kμν(q1 − P )μ(q1 − P )ν + m2

1

q2
2 + Kμνqμ

2 qν
2 + m2

× 1

(q1 + q2)2 + Kμν(q1 + q2)μ(q1 + q2)ν + m2

1

q2
3 + Kμνqμ

3 qν
3 + m2

1

(q1 + q3)2 + Kμν(q1 + q3)μ(q1 + q3)ν + m2
. (30)

Following the same steps as for the counterterm diagram above we get
∣∣∣∣
m2=0

= 4P 2 g3

3(4π)6ε2

[
1 + 1

2
ε − 3ε J3(P )

]
Π3 − 4P 2 g3

(4π)6ε
Kμν Jμν

3 (P ). (31)

Inserting the three-loop diagrams in Eq. (18), we have the cancellation of integrals J3(P ) and Jμν
3 (P ) asserting renormalizability of the

theory. So the respective renormalization constant is

Zφ,three-loop = − (N + 2)(N + 8)

162(4π)6ε2

(
1 − 1

4
ε

)
Π3 g3. (32)

Now, the γ function up to three-loop is given by

γ (g) = (N + 2)Π2 g2

36(4π)4
− (N + 2)(N + 8)Π3 g3

432(4π)6
. (33)

The Eq. (33) above possesses the Π factor through a new effective dimensionless renormalized coupling constant g → Π g which gives a
correction to the LV behavior of the system in terms of the corresponding LI theory (see Ref. [6] for the LI corresponding three-loop order
quantum contribution to field anomalous dimension). This factor also appeared in the explicit expressions up to two-loop order and at
all-loop level for the β , γ [20] and γm functions [21]. Thus this result confirms explicitly the three-loop term showed by induction early
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for the field anomalous dimension. This result can be understood by using the well-known coordinate redefinition xμ → xμ − 1
2 K μ

ν xν [20].
This coordinate redefinition permits us to remove the K tensor from the LV original Lagrangian density by transforming it into a new one,
namely the Lagrangian density for the LI scalar field theory but now as being a function of the new coordinates and rescaled parameters
(an effective coupling constant as the one above for example). Thus the original and new theories are connected by a simple rescaling and
the all-loop LV β and Wilson functions are easily obtained from their LI counterparts.

4. Conclusions

In this Letter the three-loop contribution to field anomalous dimension for O(N) massive self-interacting scalar field theory with Lorentz
violation was calculated explicitly. We used the minimal subtraction scheme for subtracting divergences of the theory where the Feynman
diagrams were regularized using DR in d = 4 − ε . We showed explicitly that the three-loop term in LV theory for the γ function is exactly
as that predicted by a proof by induction for all-loop orders. We presented an argument for comprehending how this LV term is related
to its LI counterpart by a simple coordinate redefinition and generalized this idea for all-loop level. We think that this three-loop outcome
give more accurate results on future studies involving the LV standard model scalar Higgs sector.

Appendix A. Integral formulas in d-dimensional Euclidean momentum space

∫
ddq

qμ

(q2 + 2pq + M2)α
= − Ŝd

1

2

�(d/2)

�(α)

pμ�(α − d/2)

(M2 − p2)α−d/2
, (A.1)

∫
ddq

qμqν

(q2 + 2pq + M2)α
= Ŝd

1

2

�(d/2)

�(α)

[
1

2
δμν �(α − 1 − d/2)

(M2 − p2)α−1−d/2
+ pμpν �(α − d/2)

(M2 − p2)α−d/2

]
. (A.2)
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