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Abstract

Observer synthesis for linear positive systems is treated. The concept of observability of a linear positive
system is defined and a characterization of observability is provided. An observable canonical form is
proposed for a linear positive system with respect to an equivalent relation defined by permutations of the
state and of the output set. Observer synthesis is carried out for linear observers which are either globally
asymptotically stable or whose error dynamics is assignable. An algorithm for the construction of a linear
observer is stated which is based on the observable canonical form.
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1. Introduction

The purpose of this paper is the synthesis of observers for linear positive systems. The results
are the existence of such an observer and the proof of its properties. In addition, it includes the
concepts of observability and detectability of linear positive systems.
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The motivation for the observers of linear positive systems is their use in state estimation,
in prediction, and in system identification. Such problems arise in medicine, biology, chemical
engineering, and economics. Linear positive systems are often a first approximation to handling
nonlinear positive systems. The long term interest of the authors in this investigation is primarily
in observers for nonlinear positive systems which are models of biochemical reaction networks.
The current paper is the first step towards observers of nonlinear positive systems.

The observer problem is to synthesize for either a discrete-time or for a continuous-time linear
positive system a dynamic system, to be called an observer, which is driven by the output process
of the linear positive system, such that the estimation error between the state of the linear positive
system and the output of the observer is globally asymptotically stable. In the case of ordinary
linear systems an equivalent condition for the existence of a globally asymptotically stable linear
observer is that the system is detectable with observability as a sufficient condition. Therefore the
observer problem includes the formulation of the concepts of observability and detectability for
linear positive systems.

The concept of an observer for a dynamic system was introduced by Luenberger in [24,25]
though it was clearly inspired by the concept of the Kalman filter introduced earlier by Kalman
[19,20]. There are a few papers which discuss observers for positive systems. Van den Hof in [39]
formulates and contributes to the observer problem for linear compartmental systems. A linear
compartmental system is a linear positive system which satisfies the property of mass conservation.
Chaves and Sontag in [8,9] solve the observer problem for a class of polynomial positive systems.
Lemesle has developed observers for another particular class of nonlinear positive systems, see
[23]. Below in this paper the observer problem for linear positive systems is treated which then
extends the case of linear compartmental systems treated in [39]. Observability of linear positive
systems is treated in several papers, see [7,29,30]. Controllability of the same class is treated in the
paper [37], see also the references quoted in that paper. For realization of linear positive systems
the reader is referred to the recent tutorial article [2].

The subclass of polynomial positive systems treated in [9] does not include the general case of
linear positive systems treated below in this paper. Observability of polynomial systems, without
the positivity constraint, is treated in [32]. Observability and observers for ordinary linear systems
may be found in text books, for example [36]. An earlier draft of this paper appeared in a
proceedings, [16].

The novelty of this paper is in: the characterization of observability of linear positive systems
(Theorem 4.7 and Proposition 4.8), an observable canonical form for linear positive systems
(Definition 4.9 and Theorem 4.12), observer synthesis based on the theory of observers for linear
systems (Theorem 5.3 for not necessarily positive observers), and observer synthesis for linear
positive systems with either an irreducible system matrix (Section 5.5) or a completely reduced
system matrix (Algorithm 5.6 and Theorem 5.7).

The authors have been asked to clarify in the paper why they prefer an observer for a linear
positive system which is a positive system itself. The reason for this is the interpretation of
the observer states. Biologists, economists, and researchers in applied areas hesitate to use an
observer which produce states with negative real numbers. For example, the second named author
with his Ph.D. student Jacqueline van den Hof have cooperated with the government laboratory
Rijksinstituut voor Volksgezondheid and Milieuhygiëne (National Institute of Public Health and
Environmental Hygiene) on modeling and observers for compartmental systems. The institute
had an application where the interpretation of the observers states as concentrations in particular
organs of animals was important. Standards for the daily allowable uptake of dangerous chemicals
are set upon the medically allowable largest concentrations in particular organs like the liver. For
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this reason there is a need for observers of linear positive systems which themselves are also
positive systems. In addition, a linear positive system has an algebraic structure in terms of an
interconnection of irreducible subsystems, as explained in Section 3.2 of the paper. This structure
may also help in the interpretation of the observer state. It is true that in the paper [9] the authors
do not require the observer to be positive. An argument, which is not stated in the above quoted
paper, is that when the observer state, which is proven to be globally asymptotically stable, has
closely approached the state of the system and when the system itself is positive then the observer
state will also be positive. In most cases this may be true except if the state of the system generating
the data moves on a facet of the positive orthant or close to it.

An outline of the paper follows. In the next section the problem of observer construction is
formulated. Section 3 presents the concepts of a system graph and of a decomposition of a linear
positive system into irreducible subsystems. Section 4 presents the concept of observability of
linear positive systems and its characterization. The problem of observer synthesis is treated in
Section 5. In Section 6 a linear positive observer is constructed for glycolysis in yeast. Concluding
remarks are stated in Section 7. The corresponding results for continuous-time linear positive
systems are stated in Appendix A.

2. Problem formulation

2.1. Terminology and notation

The notation for positive system used in this paper is known though scattered over several
books and papers. The reader may want to consult the book on positive linear algebra [4] and its
more recent edition [5]. Books on positive systems are [3,12] and also [26, chapter 6].

The real numbers are denoted by R. The positive real numbers are denoted by R+ = [0, ∞) and
the strictly-positive real numbers by Rs+ = (0, ∞). This terminology differs slightly from that
used in certain books but is also used. The set of the positive real numbers is a semiring, it is closed
with respect to addition and multiplication but does not have an inverse with respect to addition.

Denote the set of the integers by Z and the set of the natural numbers by N. For n ∈ Z denote
by Zn = {1, . . . , n} the set of the first n positive integers and by Nn = {0, 1, . . . , n} the set of the
first n + 1 natural numbers.

For n ∈ Z+, the set of positive real vectors with entries in R+ is denoted by Rn+ and the set of
strictly-positive real vectors by Rn

s+. The set of positive real vectors Rn+ is a positive vector space
over the semiring R+.

For n ∈ Z+, denote the set of the positive matrices by Rn×n+ which is defined as the set of
matrices with elements in the positive real numbers. The set of positive matrices, say Rn×n+ for
n ∈ Z+, is a dioid, it does neither have an inverse with respect to addition nor with respect to
multiplication, even for nonsingular positive matrices. Denote the set of permutation matrices of
size n × n by Pn×n.

The spectrum of a matrix, say A ∈ Rn×n+ is denoted by spec(A) ⊂ C. Denote,

Do = {c ∈ C||c| < 1}, Dc = {c ∈ C||c| � 1}, C− = {c ∈ C|Re(c) < 0}.

2.2. Linear positive systems

Attention is restricted in this paper to linear positive systems without inputs. The extension to
the presence of inputs is easy and analogous to the case of ordinary linear systems.
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Definition 2.1. A time-invariant discrete-time linear positive system (without input) is a dynamic
system of the form

x(t + 1) = Ax(t), x(t0) = x0, (1)

y(t) = Cx(t), (2)

T = [t0, ∞) ⊂ R, x : T → Rn+, y : T → R
p
+, x0 ∈ Rn+,

A ∈ Rn×n+ , and C ∈ R
p×n
+ .

Call then x the state function and y the output function.

An ordinary discrete-time dynamic system, not necessarily linear, say,

x(t + 1) = f (x(t)), x(t0) = x0,

y(t) = h(x(t)), x : T → Rn, y : Y → Rp,

is called positive if the set of the positive real vectors Rn+ is forward invariant for the difference
equation and if the output y remains positive: for all x0 ∈ Rn+ and for all t ∈ T , x(t) ∈ Rn+ and
y(t) ∈ R

p
+. It is well known that the linear difference equation

x(t + 1) = Ax(t), x(t0) = x0,

y(t) = Cx(t),

x : T → Rn, y : T → Rp, A ∈ Rn×n, C ∈ Rp×n,

is positive if and only if A ∈ Rn×n+ . When the state is in the positive orthant then the output is a
positive function if and only if the output matrix satisfies C ∈ R

p×n
+ .

2.3. Problem of observer synthesis

The problem of observer synthesis for a linear positive system is formulated below but the
problem formulation is preceded by the concept of an observer.

Definition 2.2. Consider the discrete-time linear positive system

x(t + 1) = Ax(t), x(t0) = x0,

y(t) = Cx(t).

A discrete-time linear observer for this system is a dynamic system of the form

x̂(t + 1) = F x̂(t) + Ky(t), x̂(t0) = x̂0 ∈ Rn+, x̂ : T → Rn, (3)

for which the system matrices F and K are to be selected. It is called:

1. globally asymptotically stable: if the estimation error is globally asymptotically stable:

∀x0 ∈ Rn+, ∀x̂0 ∈ Rn+, lim
t→∞[x̂(t) − x(t)] = 0; (4)

2. dynamically assignable: if for any complex conjugate subset � ⊂ Do there exists a gain matrix
K ∈ Rn×p such that the eigenvalues of the error system, for x̂ − x, have � as its eigenvalues;
and
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3. a positive observer: the observer is a positive system:

y : T → R
p
+, x̂0 ∈ Rn+, t ∈ T ⇒ x̂(t) ∈ Rn+. (5)

One can then define a positive observer which is globally asymptotically stable or a positive
observer which is dynamically assignable.

For linear systems global asymptotic stability is equivalent to exponential stability but that
terminology will not be used in this paper.

Problem 2.3. Consider a linear positive system, either discrete-time or continuous-time. Con-
struct a linear observer for either system which is either globally asymptotically stable or which is
dynamically assignable. A characterization of the existence of a positive observer will be useful.
The problem includes formulating necessary and sufficient conditions for the existence of such
observer and the observer synthesis as such.

3. Graphs and decomposition of linear positive systems into irreducible subsystems

The analysis and synthesis of positive systems is facilitated by the decomposition of a positive
system into irreducible subsystems. Due to the algebraic properties of the positive real numbers
these decompositions play a more important role in the system theory of positive systems than
that of linear systems, systems over the real numbers.

The decomposition of a positive system into irreducible subsystems depends on the underlying
graph associated to the system. Below both the graphs and the decompositions of matrices and of
linear positive systems are formulated because these are used subsequently in the paper.

3.1. Graphs of linear positive systems

The reader is assumed to be familiar with the concept of a directed graph denoted by G =
(V , E) where V denotes a finite set of vertices and E ⊆ V × V denotes a finite set of edges. A
path is an ordered finite set of edges,

((v0, v1), (v1, v2), . . . , (vn−1, vn)) ⊂ E.

Denote such a path as v0 
→ vn. Define the connectivity relation Rconnect ⊆ V × V as (v1, v2) ∈
Rconnect if either (1) v1 = v2 or (2) there exists a path from vertex v1 to vertex v2 and a path
from vertex v2 to vertex v1. The equivalence classes with respect to this connectivity relation are
called strongly connected components. A strongly connected component of the graph G may be
identified with a subgraph G1 = (V1, E1) of G = (V , E) such that V1 ⊆ V and E1 ⊆ E and for
all v1, v2 ∈ V1 there exists a path v1 
→ v2 and a path v2 
→ v1. In general a directed graph has
one or more disjoint strongly connected components. Note that a strongly connected component
may also consist of a single vertex. If VS1 and VS2 are two distinct strongly connected components
then there may exist an edge from a vertex of VS1 to a vertex of VS2 but, if so, then there does
not exist an edge from a vertex of VS2 to a vertex of VS1 as the latter vertex would contradict the
definition of the disjoint strongly connected components.

Below a directed graph will be associated with a linear system. Distinguish a dynamic system
with inputs and outputs and a linear positive system. Associate with the linear dynamic system
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x(t + 1) = Ax(t), x(t0) = x0 ∈ Rn+, x : T → Rn+, A ∈ Rn×n+ ,

the directed matrix graph G = (V , E) where V = {1, 2, . . . , n} and (i, j) ∈ E if the differential
equation of xi(t) depends on the variable xj (t); thus if

xi(t + 1) =
n∑

j=1

Ai,j xj (t), with Ai,j /= 0.

The same definition is used for a continuous-time linear dynamic system. Associate with a discrete-
time linear positive system

x(t + 1) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t) + Du(t),

the directed system graph

G = (V , E), V = VX × VU × Vy,

E ⊆ V × V, (i, j) ∈ E if

(1) either i, j ∈ VX and Ai,j /= 0;
(2) or i ∈ VX, j ∈ VU and Bi,j /= 0;
(3) or i ∈ Vy, j ∈ Vx, and Ci,j /= 0.

The definition of a system graph of a continuous-time linear positive system is identical to that
of a discrete-time linear positive system. The concept of a system graph was defined for example
by Davison [10]. See [15] for graph theory.

3.2. Decomposition of linear positive systems

The following concepts are well known and are included for future reference.
The positive matrices A1, A2 ∈ Rn×n+ are said to be permutation similar if there exists a

permutation matrix P ∈ Pn×n such that A1 = PA2P
T; see [6]. Recall that for a permutation

matrix P −1 = P T. Permutation similarity is an equivalence relation.
A positive matrix A ∈ Rn×n+ is said to be reducible if n � 2 and it is permutation similar to a

matrix with the following structure:(
A1,1 0
A2,1 A2,2

)
∈ Rn×n+ ,

n1, n2 ∈ Z+, n1 + n2 = n, A1,1 ∈ R
n1×n1+ , A2,1 ∈ R

n2×n1+ , A2,2 ∈ R
n2×n2+ .

It is called irreducible if (1) n = 1 or if (2) n � 2 and it is not reducible. A positive matrix
A ∈ Rn×n+ is said to be completely reduced if n � 2 and it is permutation similar to a matrix of
the form,

⎛
⎜⎜⎜⎝

A11, 0 · · · 0
A2,1 A2,2 · · · 0

...
. . .

...

Ak,1 Ak,2 · · · Ak,k

⎞
⎟⎟⎟⎠ ∈ Rn×n+ ,
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k ∈ Z+, n1, . . . , nk ∈ Z+, n = n1 + n2 + · · · + nk;
∀i, j ∈ Zk, Ai,j ∈ R

ni×nj

+ ; ∀i ∈ Zk, Ai,i is irreducible.

Every positive matrix is either a positive real number, an irreducible matrix of size 2 × 2 or larger,
or a matrix which is permutation similar to a completely reduced matrix.

In this paper the well known Perron–Frobenius theorem will be used. The statement of this
theorem is included for future reference.

Theorem 3.1 (Due to Perron and Frobenius [31,13]). Consider an irreducible positive matrix
A ∈ Rn×n+ for n ∈ Z+.

(a) There exists a real strictly-positive eigenvalue of this matrix which has maximal modulus
with respect to all other eigenvalues. Thus,

∃λ∗ ∈ spec(A) ∩ Rs+, such that ∀λ ∈ spec(A), |λ| � λ∗.
(b) There exists also a strictly-positive real eigenvector corresponding to λ∗:

∃v∗ ∈ Rn
s+ such that Av∗ = λ∗v∗.

A proof may be found in [27, Th. 1.4.1].
Consider a positive integer n ∈ Z+ and an irreducible positive matrix A ∈ Rn×n+ with maximal

eigenvalue λ∗ ∈ (0, ∞). The index of imprimitivity of A is defined as the value k ∈ Z+ if A

has exactly k different eigenvalues of modulus λ∗. Denote the index of imprimitivity by Imprim
(A) ∈ Z+. The positive matrix A is called primitive if Imprim (A) = 1 and called imprimitive
otherwise. It is known that a positive matrix is primitive if and only if there exists an integer k ∈ Z+
such that Ak ∈ Rn×n

s+ . If an irreducible positive matrix A ∈ Rn×n+ has an index of imprimitivity k

equal to two or larger then the matrix is permutation similar to the Frobenius form,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 A12 0 0 · · · 0
0 0 A23 0 · · · 0
0 0 A34 · · · 0
...

. . .
...

0 0 0 0 · · · Ak−1,k

Ak,1 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

k ∈ Z+, n1, n2, . . . , nk ∈ Zn, n1 + n2 + · · · + nk = n,

∀i ∈ Zk, Ai,i+1 ∈ R
ni×ni+1+ ; and Ak,1 ∈ R

nk×n1+ ,

A1,2A2,3 . . . Ak−1,kAk,1 is an irreducible matrix.

See for these results [27], in particular for the Frobenius form see [27, Th. 3.4.1].

4. Observability of linear positive systems

For ordinary linear systems, not necessarily positive, there is an equivalence condition for the
existence of a globally asymptotically stable observer. The equivalence condition is detectability,
which is closely related to observability. In this section the concept of observability of a linear
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positive system is defined. A characterization of that concept is needed for actual computations.
Moreover, every linear positive system can be transformed into an observable form which is
needed for computations.

Observability of linear positive systems has been discussed elsewhere, see [7,29,30,39]. For a
discussion of detectability of polynomial positive systems see [9]. Controllability of linear positive
systems and algebraic decompositions of such systems including references to the literature may
be found in the paper by Valcher [37].

The sequence of the topics of this section is: the concept of observability, characterization
of observability of a linear positive systems, the observable form, and finally the concept of
detectability.

4.1. Observability concepts of linear positive systems

In this subsection the concept of observability of discrete-time linear positive systems is
formulated.

Definition 4.1. Consider the discrete-time linear positive system with representation,

x(t + 1) = Ax(t), x(t0) = x0,

y(t) = Cx(t), T = [t0, t1] or T = [t0, ∞).

Denote the trajectory of the output by {y(t; t0, x0), t ∈ T }. The system is called observable as a

linear positive system on the interval T if the observability map is injective:

obsmap : Rn+ → (R
p
+)T, x0 
→ y(.; t0, x0) : T → R

p
+.

In the remainder of the paper call a linear positive observable if it is observable as a linear positive

system.

Problem 4.2. Characterize when a discrete-time linear positive system is observable.

Definition 4.3. For a discrete-time linear positive system with system matrices (A, C) define the
observability matrix as

obsm(A, C) =

⎛
⎜⎜⎜⎝

C

CA
...

CAn−1

⎞
⎟⎟⎟⎠ ∈ R

np×n
+ . (6)

Then the observability map can be represented as

x0 
→ y(.; t0, x0) : T → R
p
+,

⎛
⎜⎝

y(t0)

y(t0 + 1)
...

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

C

CA

CA2

...

⎞
⎟⎟⎟⎠ x0, (7)
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proj

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

y(t0)

y(t0 + 1)
...

y(t0 + n − 1)
...

⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
R

pn
+

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

C

CA
...

CAn−1

⎞
⎟⎟⎟⎠ x0. (8)

Definition 4.4. Consider the discrete-time linear positive system

x(t + 1) = Ax(t), x(t0) = x0,

y(t) = Cx(t).

Call the system:

(a) output connected if for all i ∈ Zn there exists a path in the system graph from state xi to an
output component yk for a k ∈ Zp.

(b) trajectory observable if for all x0 ∈ Rn+
{y(t; t0, x0) = 0, ∀t ∈ T } ⇒ {x(s; t0, x0) = 0, ∀s ∈ T }.

The concept of detectability of a linear positive system is defined in Section 4.4.

4.2. Examples of nonobservable systems

There are two aspects of the formulation of the concept of observability for linear positive
systems. These aspects are illustrated by the following examples.

Example 4.5. Consider the linear positive system

x(t + 1) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎠ x(t), x(t0) = x0,

y(t) = (
1 0 0 0

)
x(t).

Then part of the observability map of this system is

⎛
⎜⎜⎝

y(t0)

y(t0 + 1)

y(t0 + 2)

y(t0 + 3)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

C

CA

CA2

CA3

⎞
⎟⎟⎠ x0 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠ x0,

while the remaining rows have a similar structure. It is then obvious that the map

x0 
→ y(.; t0, x0) : T → R
p
+,

cannot be injective because the last component of the initial state x0 never shows up in the output
function.
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The conclusion of the above example is that observability of the system requires that the state
components of each irreducible diagonal block be connected via a path to an output component.
This property is a necessary condition for the linear positive system to be observable.

Example 4.6. Consider the linear positive system,

x(t + 1) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ x(t), x(t0) = x0,

y(t) = (
1 0 0 1

)
x(t).

Then the observability map is
⎛
⎜⎜⎝

y(t0)

y(t0 + 1)

y(t0 + 2)

y(t0 + 3)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

⎞
⎟⎟⎠ x0,

rank(obsm(A, C)) = 3 < 4. Define,

x0 = (
1 0 1 0

)T
, x̄0 = (

0 1 0 1
)T

, then

obsm(A, C)x0 = obsm(A, C)x̄0, x0 /= x̄0.

Thus the system is not observable as will be proven below. Note that there is a nonzero element
in every column of the observability matrix so the comment of the previous example does not
apply.

4.3. Characterization of observability concepts

Theorem 4.7. Consider a time-invariant discrete-time linear positive system with representation,

x(t + 1) = Ax(t), x(t0) = x0,

y(t) = Cx(t), T = [t0, t1] or T = [t0, ∞).

The system is observable on the interval T if and only if

rank(obsm(A, C)) = n. (9)

Proof. (⇒) If rank(obsm(A, C)) < n then it follows from linear algebra that there exists a vector
x0 ∈ Rn such that x0 /= 0 and obsm(A, C)x0 = 0. Decompose this vector as

x0 = x+
0 − x−

0 , x+
0 = max{x0, 0} ∈ Rn+, x−

0 = max{−x0, 0} ∈ Rn+,

x0 /= 0 ⇒ x+
0 /= x−

0 ; define,

I+(x+
0 ) = {i ∈ zn|x+

0,i > 0}, I+(x−
0 ) = {i ∈ zn|x−

0,i > 0}; then

I+(x+
0 ) ∩ I+(x−

0 ) = ∅, x+
0 /= x−

0 .
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Hence x+
0 , x−

0 ∈ Rn+ are located on different faces of the positive orthant. Then

0 = obsm(A, C)x0 = obsm(A, C)(x+
0 − x−

0 )

⇔ obsm(A, C)x+
0 = obsm(A, C)x−

0 , with x+
0 , x−

0 ∈ Rn+, x+
0 /= x−

0 ;
⇔ obsm(A, C)(x+

0 + v) = obsm(A, C)(x−
0 + v), ∀v ∈ Rn+;

x+
0 + v, x−

0 + v ∈ Rn+, x+
0 + v /= x−

0 + v;
⇔ y(t; (t0, x

+
0 )) = y(t; (t0, x

−
0 )), ∀t ∈ T ,

by the Cayley–Hamilton theorem.

Hence the system is not observable. Because rank(obsm(A, C)) � n it follows that this rank is
equal to n.

(⇐) If the system is not observable then by definition there exist two vectors

x0, x̄0 ∈ Rn+, x0 /= x̄0, such that y(t; t0, x0) = y(t; t0, x̄0), ∀t ∈ T ;
⇒ obsm(A, C)x0 = obsm(A, C)x̄0, and x0 /= x̄0,

⇒ 0 /= x0 − x̄0 ∈ ker(obsm(A, C)),

⇒ rank(obsm(A, C)) < n. �

The following result establishes that the concept of output connectedness is strictly weaker
than that of observability.

Proposition 4.8. Consider the discrete-time linear positive system

x(t + 1) = Ax(t), x(t0) = x0,

y(t) = Cx(t).

(a) The system is output connected if and only if every column of the observability matrix has
at least one strictly positive element.

(b) The system is output connected if and only if it is trajectory-observable.
(c) If the system is observable then it is output connected.

(d) There exists an example of a discrete-time linear positive system which is output connected
but not observable.

Proof. (a) Consider for a linear positive system its associated system graph. For any i ∈ Zn there
exists a path from state xi to a component of the output yr for r ∈ Zp if and only if there exists a
k ∈ Zn−1 such that obsm(A, C)kp+r,i > 0. For example, if k = 2 then,

0 < obsm(A, C)2p+r,i =
n∑

s=1

Cr,s(A
2)s,i =

n∑
s=1

Cr,s

⎛
⎝ n∑

j=1

As,jAj,i

⎞
⎠

⇔ ∃s ∈ Zn, ∃j ∈ Zn such that Cr,s > 0, As,j > 0, Aj,i > 0,

⇔ ∃ path xi 
→ yr in the system graph.
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(b) (⇒) Consider an initial state x0 ∈ Rn+. Note that the observability matrix is positive,

obsm(A, C) ∈ R
np×n
+ . The characterization of output connectedness proven in (a) shows that

in every column of the observability matrix there exists a strictly positive element. Thus, if
y(t) = 0 for all t ∈ T then necessarily xi(t) = 0 for all i ∈ Zn and for all t ∈ T . Thus the system
is trajectory-observable.

(⇐) Suppose that the system is not output connected. From (a) follows that there exists a
column, say i ∈ Zn, of the observability matrix which is identically zero. Take x0 ∈ Rn+ such
that x0,i > 0 and x0,j = 0 for all j ∈ Zn\{i}. Then {x(t; t0, x0), t ∈ T } is not identically zero.
Because the system is not output connected there is no path xi 
→ yk for any k ∈ Zp. Conse-
quently the trajectory {y(t; t0, x0), t ∈ T } is identically zero (If ∃t ∈ T and if ∃k ∈ Zp such that
yk(t; t0, x0) > 0 then there exists a j ∈ Zn and there exists a path xi 
→ xj 
→ yk contradicting
the choice of xi). Hence the system is not trajectory-observable.

(c) Suppose that the system is not output connected. By (a) there exists a column of the
observability matrix obsm(A, C) which is identical zero. Then rank(obsm(A, C)) < n and from
Theorem 4.7 follows that the system is not observable.

(d) See Example 4.6. Note that the observability matrix displayed there is such that every
column has at least one strictly positive element. From (a) then follows that the system is output
connected. But from the rank of the observability matrix and from Theorem 4.7 follow that the
system is not observable. �

4.4. Towards an observable canonical form

For ordinary linear systems, not necessarily positive, there exists a canonical form for the
system matrices with respect to the equivalence relation on system matrices defined by these
realizing the same impulse response function, see [33, chapter 6] for a description.

In this subsection a canonical form of system matrices of linear positive systems with respect to
permutations of states and of outputs will be formulated. Currently the realization theory of linear
positive systems is incomplete. The main open question is the characterization of minimality and
the characterization of equivalent minimal realizations of linear positive systems. Therefore a
canonical form of the system matrices of a linear positive system will not be stated but rather a
weaker property. The following results are related to the canonical forms stated for controllability
of linear positive systems obtained by M.E. Valcher, see [37].

Consider a discrete-time linear positive system

x(t + 1) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t) + Du(t).

For realization theory of linear positive systems see the paper by Van den Hof [38], and the refer-
ences quoted in that paper. Two sets of system matrices (A1, B1, C1, D1) and (A2, B2, C2, D2),
not necessarily of the same state-space dimension, describe equivalent realizations if they corre-
spond to the same impulse response function H by

H(0) = D1 = D2, H(t) = C1(A1)
t−1B1 = C2(A2)

t−1B2, ∀t ∈ Z+.

It is stated in the paper quoted above that if (A, B, C, D) are the system matrices of a linear positive
system and if M ∈ Mn×n is a monomial matrix then (MAM−1, MB, CM−1, D) are system
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matrices and these two tuples of system matrices represent equivalent realizations. However,
there may exist state-space transformations S ∈ Rn×n not necessarily positive for which both
(A, B, C, D) and (SAS−1, SB, CS−1, D) are system matrices of equivalent realizations as linear
positive systems. Recall that any monomial matrix admits decompositions as M = D1P1 = P2D2
where P1, P2 ∈ Pn×n are permutation matrices and D1, D2 ∈ Dn×n+s are diagonal matrices with
on the diagonal strictly positive elements.

Therefore below a canonical form for system matrices of equivalent realizations of a linear
positive system will be stated with respect to permutations on the state set and on the output set.
The permutation of the output set is usually not considered in realization theory but it is taken
into consideration here.

Recall the notation
(
A11 ⊕ A22

) =
(

A11 0
0 A22

)
.

Definition 4.9. (a) A linear positive system without inputs is said to be in canonical form with
respect to permutations of the state and of the output set if the system matrices admit the
decomposition,

x(t + 1) = Ax(t), x(t0) = x0, (10)

y(t) = Cx(t), (11)

A =
(

A1,1 0
∗ Ak2+1,k2+1

)
, (12)

A1,1 = A1,1 ⊕ · · · ⊕ Ak1,k1 ⊕ Ak1+1,k1+1 ⊕ · · · ⊕ Ak2,k2 , (13)

C = (
C1 ⊕ · · · ⊕ Ck1 ⊕ Ck1+1 ⊕ · · · ⊕ Ck2 0

)
, (14)

k1, k2 ∈ Nn, n1, . . . , nk2+1, p1, . . . , pk2 ∈ N,

k2+1∑
i=1

ni = n,

k2∑
j=1

pj = p, (15)

Ai,i ∈ R
ni×ni+ , Ci ∈ R

pi×ni+ , i = 1, . . . , k2 + 1;
rank(obsm(Ai,i , Ci)) = ni, i = 1, . . . , k1; (16)

rank(obsm(Ai,i , Ci)) < ni, i = k1 + 1, . . . , k2; (17)

Ai,i =
⎛
⎜⎝

F1,1 0 0
...

. . . 0
∗ ∗ Fri,ri

⎞
⎟⎠ ∈ R

ni×ni+ , block lower-triangular, (18)

Fj,j ∈ R
ni,j ×ni,j

+ , i = 1, . . . , ri , irreducible matrix,

Ci =
⎛
⎜⎝

H1,1 0 0
...

. . . 0
∗ ∗ Hri,ri

⎞
⎟⎠ ∈ R

pi×ni+ , i = 1, . . . , k2. (19)

Note that one or more block rows or block columns may be missing in the above defined matrices.
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(b) The linear positive system is said to be in observable canonical form with respect to
permutations of the state and of the output set if the system matrices admit the decomposition

A = (
A1,1 ⊕ · · · ⊕ Ak1,k1

)
, (20)

C = (
C1 ⊕ · · · ⊕ Ck1

)
, (21)

rank(obsm(Ai,i , Ci)) = ni, i = 1, . . . , k1, (22)

where Ai,i and Ci are as stated in the Eqs. (18,19) and the relevant conditions stated there
apply.

Example 4.10. A simple example of a linear positive system is presented which is in the above
described canonical form. Consider the system matrices,

A1,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0
0 0 0 2 0 0 0 0
1 0 0 0 0 0 3 0
0 0 0 2 0 0 0 3
0 0 0 0 0 3 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)

C1 =
⎛
⎝1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0

⎞
⎠ , (24)

A2,2 =

⎛
⎜⎜⎜⎜⎝

0 4 0 0 0
0 0 4 0 0
4 0 0 0 0
1 0 0 0 5
0 0 0 5 0

⎞
⎟⎟⎟⎟⎠ , C2 = (

1 0 0 0 0
)
, (25)

A3,3 =
(

0 6
6 0

)
, (26)

A = (
A1,1 ⊕ A2,2 ⊕ A3,3

)
, C =

(
C1 0 0
0 C2 0

)
. (27)

Note that the matrix tuple (A11, C1) is an observable pair, (A22, C2) is not an observable pair,
and (A33, 0) is not an observable pair.

At this point a definition of detectability of linear positive systems can be formulated. Recall that
for any ordinary linear system, not necessarily positive, there exists a nonsingular transformation
matrix S ∈ Rn×n such that

SAS−1 =
(

A1,1 0
A2,1 A2,2

)
, CS−1 = (

C1 0
)
,

n1, n2 ∈ N, n1 + n2 = n, Ai,j ∈ Rni×nj , C1 ∈ Rp×n1 ,

(A1,1, C1) an observable pair.
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The linear system is then said to be detectable if spec(A2,2) ⊂ Do. Denote the unobservable
submatrix of A by Auo hence Auo = A22.

Definition 4.11. A linear positive system with system matrices (A, C) is said to be detectable if
after transformation of the system matrices to the observable canonical form of Definition 4.9.(a)
there holds,

(1) spec(Ak2+1,k2+1) ⊂ Do; (28)

(2) spec(Ai,i,uo) ⊂ Do, i = k1 + 1, . . . , k2. (29)

Theorem 4.12. Consider a linear positive system without input and with system matrices (A, C) ∈
Rn×n+ × R

p×n
+ .

(a) There exist permutation matrices PX ∈ Pn×n and PY ∈ Pp×p such that (PXAP T
X, PY CP T

X)

is in canonical form with respect to permutations of the state and of the output set.
The two pairs (A, C) and (PXAP T

X, PY CP T
X) of system matrices describe equivalent

realizations of linear positive systems without inputs up to permutation of the output
components.

(b) Any two sets of system matrices of system matrices (A, C) and (A, C) with the same
canonical form with respect to permutations of the state and of the output set differ in one
or more of the following ways:
1. permutation of the blocks (Ai,i , Ci) i = 1, . . . , k1;
2. permutation of the blocks (Ai,i , Ci) i = k1 + 1, . . . , k2;
3. for any i = 1, . . . , k2 with the decomposition (18), (19), permutation of the Fj,j blocks

which permutations preserve the lower triangular block structure of (Ai,i , Ci) and for any
j = 1, . . . , si a permutation of the output set which preserves the block lower triangular
structure of Ci;

4. for any i = 1, . . . , k2 and j = 1, . . . , ri a permutation of the rows and columns of the
block Fj,j . For any i = 1, . . . , k2 and j = 1, . . . , ri , a permutation of the rows and
columns of the block Hj ; and

5. any permutation of the block Ak2+1,k2+1.

(c) If the linear positive system is observable then there exists permutation matrices PX ∈ Pn×n

and PY ∈ Pp×p such that (PXAP T
X, PY CP T

X) is in observable canonical form with respect
to permutations of the state and of the output set.The uniqueness of this observable canonical
form can easily be deduced from that described in (b).

Proof. (a) (1) For each component yk of the output y ∈ R
p
+ with k ∈ Zp, define the index set of

the subset of states for which there exists a path to yk

Xyk
= {i ∈ Zn|∃i 
→ k}. (30)

Thus, i ∈ Xyk
if there exists a path in the system graph from state component xi to output

component yk . Note that by definition of a strongly connected subset of states, Xyk
is a union of

strongly connected subsets of states.
(2) Define the subsets

J1 = {k ∈ Zp|Xy1 ∩ Xyk
/= ∅}, (31)

I1 = {i ∈ Zn|∃k ∈ J1 such that i ∈ Xyk
}. (32)
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Thus J1 contains all output components yk with k ∈ Zp whose index sets Xyk
have a nonempty

intersection with Xy1 . The index set I1 equals the index set of all state components for which
there exists a path to an output component yk with k ∈ J1. For j ∈ Zp\J1, if Zp\J1 /= ∅,
define

J2 = {k ∈ Zp\J1|Xyj
∩ Xyk

/= ∅}, (33)

I2 = {i ∈ Zn|∃k ∈ J2 such that i ∈ Xyk
}. (34)

Construct thus by induction the sequence of index sets

(I1, J1), (I2, J2), . . . , (Ik2 , Jk2), k2 ∈ Zp,

till Zp\ ∪k2
j=1 Jj = ∅ which will occur in at most p steps. Put then

Ik2+1 = Zn

∖ k2∪
j=1

Ij ,

which could be empty.
(3) Construct linear transformations in the form of permutation matrices P1 ∈ Pn×n and

P2 ∈ Pp×p such that

P1 : Zn → {I1, . . . , Ik2+1}, P2 : Zp → {J1, . . . , Jk2},
where the image of P1 goes to the elements of Ij for j = 1, . . . , k2 + 1 but where for any such j

the ordering within Ij is arbitrary; and similarly for the image of P2. By definition of the collection
of sets {J1, . . . , Jk2}, the sets of the collection are disjoint and form a partition of Zp. Similarly,
the collection {I1, . . . , Ik2+1} form a partition of the set Zn. The resulting system matrices then
have the form

P1AP T
1 =

⎛
⎜⎜⎜⎝

A1,1 · · · 0 0
...

. . . 0 0
0 · · · Ak2,k2 0
∗ ∗ ∗ Ak2+1,k2+1

⎞
⎟⎟⎟⎠ , (35)

P2CP T
1 =

⎛
⎜⎝

C1 · · · 0 0
...

. . . 0 0
0 · · · Ck2 0

⎞
⎟⎠ . (36)

That the above decomposition holds is proven as follows. Suppose there exists i, j ∈ Zn with
i > j with in Equation (35) Ai,j /= 0 then there exists an element (r, s) ∈ Ij × Ii with Ar,s >

0 hence there exists a path s 
→ r , from s to r . But s ∈ Ij implies that there exists a path
s 
→ yks with s ∈ Xyj

and ks ∈ Jj . Similarly, r ∈ Ii implies that there exists a path r 
→ ykr

with r ∈ Xyi
and kr ∈ Ji . Thus there exist paths xs 
→ yks and xs 
→ xr 
→ ykr with ks ∈ Jj

and kr ∈ Ji . Hence s ∈ Xyj
∩ Xyi

/= ∅. But i > j implies that Ji and Jj are disjoint hence
Xyj

∩ Xyi
= ∅, This is a contradiction. The corresponding argument can be used if i < j .

Because the subsets J1, . . . , Jk2 are disjoint, the matrix P2CP T
1 has the structure displayed in

Eq. (36).
(4) Next permute the blocks (Ai,i , Ci) for i = 1, . . . , k2 such that,

rank(obsm(Ai,i , Ci)) = ni, i = 1, . . . , k1;
rank(obsm(Ai,i , Ci)) < ni, i = k1 + 1, . . . , k2; k1, k2 ∈ Nn.
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Denote these permutations by Pi for i = 1, . . . , k2 and compose

P3 = (P11 ⊕ P22 ⊕ · · · ⊕ Ak2,k2 ⊕ I ) ∈ Rn×n+ .

From Theorem 4.7 then follows that the first k1 subsystems are observable while the subsystems
indexed by k1 + 1, . . . , k2, if any, are not observable.

(5) For i ∈ Zk2 consider the system matrices (Ai,i , Ci) ∈ R
ni×ni+ × R

pi×ni+ of the i-the subsys-
tem. Either the matrix Ai,i is irreducible or, according to the definition of a completely reduced
matrix, there exists a permutation matrix Pi,i ∈ Rni×ni such that Pi,iAi,iP

T
i,i is a completely

reduced matrix hence it is lower block triangular with on the diagonal irreducible matrices. Next
select a permutation matrix Pi,Y such that

Pi,Y CP T
i =

⎛
⎜⎝

H1,1 · · · 0

∗ . . . 0
∗ ∗ Hri,ri

⎞
⎟⎠ ,

which can always be done though one or more block rows may be missing. Denote the permutation
matrices

P4 = (
P1,1 ⊕ P2,2 ⊕ · · · ⊕ Pk2+1,k2+1

)
,

P5 = (
P1,Y ⊕ P2,Y ⊕ · · · ⊕ Pk2+1,Y

)
,

PX = P4P3P1, PY = P5P2.

It then follows that the matrix tuples (A, C) and (PXAP T
X, PY CP T

X) described equivalent real-
izations of the impulse response function.

(b) This follows directly from (a).
(c) Because of the assumption that the linear positive system is observable it follows from (a)

that only the first k1 ∈ Nn blocks can be present. �

5. Observer synthesis for linear positive systems

The purpose of this section is to present the synthesis of observers for linear positive systems.
First equivalent conditions are formulated for the existence of an observer. The observer synthesis
is then formulated for discrete-time linear observers. For several special cases the construction
will be explicitly sketched.

5.1. Equivalent conditions for the existence of observers

The following conditions are a reformulation of those stated in [39, p. 592].

Proposition 5.1. Consider a discrete-time linear positive system and the associated candidate
linear observer

x(t + 1) = Ax(t), x(t0) = x0,

y(t) = Cx(t),

x̂(t + 1) = (A − KC)x̂(t) + Ky(t), x̂(t0) = x̂0. (37)
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The dynamic system (37) is a globally asymptotically stable linear observer if and only if the
following conditions all hold:

(1) K ∈ Rn×p, (38)

(2) spec(A − KC) ⊂ Do. (39)

The dynamic system (37) is a globally asymptotically stable linear positive observer if and only
if the following conditions all hold:

(1) K ∈ R
n×p
+ , (40)

(2) (A − KC) ∈ Rn×n+ , and (41)

(3) spec(A − KC) ⊂ Do. (42)

Proof. The observer (37) is a positive system if and only if K ∈ R
n×p
+ and (A − KC) ∈ Rn×n+

as follows from the statements below Definition 2.1. Define the error signal e(t) = x(t) − x̂(t).
Then

e(t + 1) = Ax(t) − (A − KC)x̂(t) − KCx(t) = (A − KC)e(t),

e(t0) = x0 − x̂0.

This error system is globally asymptotically stable if and only if spec(A − KC) ⊂ Do. �

Stability conditions for observers have been formulated in terms of the state-to-output stability
concept by E.D. Sontag and co-workers, see [1,34,35].

5.2. Nonexistence of linear positive observers

A linear positive observer which is globally asymptotically stable need not exist.

Example 5.2. Nonexistence of a globally asymptotically stable linear positive observer for a
discrete-time linear positive system. Consider the linear positive system,

x(t + 1) = Ax(t), x(t0) = x0, (43)

y(t) = Cx(t), (44)

A =
(

1 1
2 3

)
, C = (

1 0
)
, (45)

which system is observable. Attention is restricted to a linear observer of the form

x̂(t + 1) = Ax̂(t) + K[y(t) − Cx̂(t)], x̂(t0) = x̂0, (46)

(A − KC) =
(

1 − k1 1
2 − k2 3

)
. (47)

According to Proposition 5.1 there exists a positive observer of the form above if and only if

there exists a matrix K ∈ R
n×p
+ such that

(A − KC) ∈ Rn×n+ and spec(A − KC) ⊂ Do.
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Below a contradiction will be derived from the supposition of the existence of a linear positive
observer for the linear positive system. Suppose then that a linear positive observer exists hence
there exists a positive matrix K ∈ R

n×p
+ with the properties stated above. For the system matrices

considered the conditions then become

K =
(

k1
k2

)
∈ R2×2 ⇔ 0 � k1, 0 � k2;

(A − KC) ∈ R2×2+ ⇔ k1 � 1, k2 � 2;
spec(A − KC) ⊂ Do.

The characteristic polynomial of the matrix (A − KC) is
s2 − s[4 − k1] + (1 − 3k1 + k2) = 0.

If the two eigenvalues λ1, λ2 ∈ C are both real and in Do then the characteristic polynomial of
(A − KC) satisfies

0 = s2 − (λ1 + λ2) + λ1λ2;
λ1, λ2 ∈ Do

⇔ − 2 < λ1 + λ2 < 2, −1 < λ1λ2 < 1,

⇒ − 2 < 4 − k1 < 2, −1 < 1 − 3k1 + k2 < 1,

⇔ 2 < k1 < 6, −2 + 3k1 < k2 < 3k1.

These conditions are incompatible because of the combined condition 2 < k1 � 1. Hence no
linear positive observer exists in this case.

In case the two eigenvalues λ1, λ2 of A − KC are complex conjugate then

λ1 + λ2 = 2Re(λ1), λ1λ2 = Re(λ1)
2 + Im(λ1)

2.

λ1, λ2 ∈ Do

⇔ − 2 < λ1 + λ2 < 2, 0 < λ1λ2 < 1,

⇔ − 2 < 4 − k1 < 2, 0 < 1 − 3k1 + k2 < 1,

⇔ 2 < k1 < 6, 3k1 − 1 < k2 < 3k1,

which conditions are incompatible because 2 < k1 � 1. Hence in this case no positive observer
exists either.

A globally asymptotically stable linear observer exists though it is not a linear positive system.
Consider,

K =
(

3.6
9.48

)
∈ R2+, (48)

A − KC =
( −2.6 1

−7.48 3

)
∈ R2×2, (49)

x̂(t + 1) = Ax̂(t) + K[y(t) − Cx̂(t)] = (A − KC)x̂(t) + Ky(t) (50)

=
( −2.6 1

−7.48 3

)
x̂(t) +

(
3.6

9.48

)
y(t), (51)

spec(A − KC) = {0.8, −0.4} ⊂ Do. (52)

Thus, if x̂0 = (1, 0)T and y(t0) = 0 then x̂(1) = (−2.6, −7.48)T ∈ R2−.
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The examples of nonexistence of a linear positive observer for a linear positive system are
motivated by a result of Patrick De Leenheer on nonexistence of a positive control law to stabilize
a linear positive system, see [21,22]. However, those references do not contain examples.

A consequence of the above examples is that for a subclass of linear positive systems the reader
has to accept that an observer is not necessarily positive. Thus for a particular initial condition of
the system the observer may be such that one or more of the state components of the observer
state x̂(t) are negative for certain times: ∃t ∈ [t0, ∞) and i ∈ Zn such that x̂i (t) < 0. However,
if the state of the linear positive system x remains in the interior of the positive orthant and if
the observer state x̂ converges to the state of the system then from a particular time t1 ∈ [t0, ∞)

onwards the state of the observer will be in the positive orthant and remain so. But in case the
state of the linear positive observer moves in a facet of the positive orthant then the observer state
may be negative for an infinitely long interval of time.

5.3. Observer synthesis

In case attention is restricted to a linear observer which is not necessarily positive then the
result for observer synthesis of linear systems can be applied and this is then formulated in the
following theorem.

Theorem 5.3. Consider a linear positive system,

x(t + 1) = Ax(t), x(t0) = x0, (53)

y(t) = Cx(t). (54)

(a) There exists a linear observer, not necessarily positive, of the form

x̂(t + 1) = Ax̂(t) + K[y(t) − Cx̂(t)], x̂(t0) = x̂0 ∈ Rn, (55)

whose error system is globally asymptotically stable if and only if the linear positive system
is detectable.

(b) There exists a linear observer of the form (55) such that for any complex conjugate set � ⊂ C

of precisely n eigenvalues there exists a matrix K ∈ Rn×p with spec(A − KC) = � if and
only if the linear system is observable.

Proof. See [33, Th. 7.31] and [36]. �

The formulation of the above theorem is not always stated in the literature in the above stated
form. Yet, the reader will not have major difficulties to deduce the proof of the above theorem
from the literature.

5.4. Observer synthesis based on the decomposition of a linear positive system

Theorem 5.3 presents observer synthesis based on observer synthesis for linear systems without
positivity considerations. This does not provide information on the existence of a positive observer.
Moreover, it does not use the decomposition of a linear positive system into the observable
canonical form with respect to permutations of the state and of the output set and that based
on permutation similarity. Below observer synthesis is described based on the decompositions
mentioned.
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Distinguish the cases:

1. The matrix tuple (A, C) is observable and the system matrix A ∈ Rn×n+ is irreducible. This
case in turn is distinguished into the cases:
(a) The index of imprimitivity of the system matrix A is one. A particular case of this is when

the system matrix A is strictly positive.
(b) The index of imprimitivity of the system matrix A is the same as the size of the matrix, in

which case the matrix graph of the system matrix A consists of a single cycle.
(c) The system matrix A is irreducible with the index of imprimitivity being in the range of

2, . . . , n − 1.
2. The matrix tuple (A, C) is observable and the system matrix A ∈ Rn×n+ is permutation similar

to a completely reduced matrix.

The problem is to carry out observer synthesis for each of the above cases and based on the
appropriate decomposition of the linear positive systems, and to establish whether or not a linear
positive observer exists.

5.5. Observer synthesis in case of an irreducible system matrix

This subsection refers to Case 1.b described above. The following result is closely related to
that of Patrick De Leenheer, see [22], though part (c) of the following theorem is new.

Theorem 5.4. Observer synthesis in case the system matrix is irreducible with the index of
imprimitivity being equal to the size of the matrix.

Consider the specific discrete-time linear positive system of the form,

x(t + 1) = Ax(t), x(t0) = x0,

y(t) = Cx(t),

A =

⎛
⎜⎜⎜⎜⎜⎝

0 a1,2 0 · · · 0
0 0 a2,3 · · · 0
...

. . .
...

0 0 0 · · · an−1,n

an,1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

which is an irreducible matrix,

C = (
c1 0 0 · · · 0

) ∈ R1×n+ ,

∀i ∈ Zn−1ai,i+1 ∈ Rs+; an,1 ∈ Rs+; c1 ∈ Rs+.

Note that then

Imprim(A) = n, rank(obsm(A, C)) = n.

Hence the system matrix A is irreducible with imprimitivity index equal to the size of the matrix
and the system is observable.
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(a) The spectrum of the system matrix A has n distinct eigenvalues all satisfying |λ(A)| = a
1/n
c

with

ac = a1,2a2,3 . . . an−1,nan,1 ∈ Rs+.

(b) There exists a matrix K ∈ R
n×p
+ such that

(A − KC) ∈ Rn×n+ and spec(A − KC) ⊂ Do,

in fact the spectrum of (A − KC) has n eigenvalues all with a modulus ā
1/n
c < 1, hence

the dynamic system

x̂(t + 1) = Ax̂(t) + K(y(t) − Cx̂(t)), x̂(t0) = x̂0,

is a linear positive observer for the above system.

(c) There does not exist a positive observer with the gain matrix K having, besides the nonzero
element kn a second strictly positive element. Therefore if attention is restricted to a linear
positive observer then the spectrum of the error system is not dynamically assignable.

Proof. (a) Note that

det(sI − A) = det

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

s −a1,2 0 · · · 0
0 s −a2,3 · · · 0
...

. . .
...

0 0 0 0 . . . −an−1,n

−an,1 0 0 0 . . . s

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

= s det

⎛
⎜⎜⎜⎜⎜⎝

s −a2,3 0 · · · 0
0 s −a3,4 · · · 0
...

. . .
...

0 0 0 0. . . −an−1,n

0 0 0 0. . . s

⎞
⎟⎟⎟⎟⎟⎠

+ (−1)n−1(−an,1)det

⎛
⎜⎜⎜⎜⎜⎝

−a1,2 0 · · · 0 0
s −a2,3 · · · 0
...

. . .
...

0 0 · · · −an−2,n−1 0
0 0 · · · s −an−1,n

⎞
⎟⎟⎟⎟⎟⎠

= sn − ac, ac = a1,2a2,3. . .an−1,nan,1 ∈ Rs+.

Thus the characteristic polynomial of this matrix has n eigenvalues all satisfying |λ(A)| = a
1/n
c .

(b) If ac ∈ (0, 1) then |λ(A)| = a
1/n
c ∈ (0, 1) for all eigenvalues. In this case one may take

K = 0 ∈ R
n×p
+ . The observer will function more efficiently if the eigenvalues of the error system

are placed closer to the origin. Take

āc ∈ (0, min{1, ac}),
kn =

[
an,1 − āc

a1,2 . . . an−1,n

]/
c1,

K = (0 . . . 0 kn)
T ∈ Rn.
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Then

āc/a1,2 . . . an−1,n < ac/a1,2 . . . an−1,n = an,1,

⇒kn = [an,1 − āc/a1,2 . . . an−1,n]/c1 ∈ (0, ∞) = Rs+,

K ∈ R
n×p
+ .

Then also

A − KC =

⎛
⎜⎜⎜⎜⎜⎝

0 a1,2 0 · · · 0
0 0 a2,3 · · · 0
...

. . .
...

0 0 0 · · · an−1,n

ān,1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

,

ān,1 = an,1 − knc1 = an,1 −
(

an,1 − āc

a1,2 . . . an−1,n

)

= āc

a1,2 . . . an−1,n

∈ Rs+,

a1,2 . . . an−1,nān,1 = ā ∈ (0, 1).

From (a) then follows that |λ(A − KC)| = ā
1/n
c < 1 hence spec(A − KC) ⊂ Do.

(c) This follows directly from the expression for the matrix (A − KC). �

Observer synthesis is considered for the case in which the system matrix A ∈ Rn×n+ is ir-
reducible with Indeximprim (A)= 1. Recall from Example 5.2 that in this case there may not
exist a linear positive observer. A problem in this case is therefore to characterize when a linear
positive observer exists. Equivalent conditions for the existence of a linear positive observer
follow from Proposition 5.1. The conditions that K ∈ R

n×p
+ and that (A − KC) ∈ Rn×n+ are

linear constraints on the elements of the unknown gain matrix K . The stability condition that
spec(A − KC) ⊂ Do relates via the characteristic polynomial of the matrix to the elements of the
matrix K . An equivalent condition for spec(A − KC) ⊂ Do is that the maximal real eigenvalue
satisfies λ∗(A − KC) < 1 because the modulus of all other eigenvalues is less than or equal to
λ∗. The problem of determining a gain matrix K of a linear positive observer then becomes an
algebraic-geometric problem for which no simple mathematical solution seems possible to the
authors. This line of research is therefore left unexplored at this stage.

In a particular case necessary conditions for the gain matrix can be obtained. If a linear positive
observer is required then there follow conditions on the elements of the gain matrix K . If there exist
i, j ∈ Zn and r ∈ Zp such that Ai,j = 0 and Cr,j > 0 then the existence of a positive observer
implies that Ki,r = 0. This condition is illustrated in the following example.

Example 5.5. Consider a linear positive system with the system matrices,

A =

⎛
⎜⎜⎝

a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34
0 0 a43 a44

⎞
⎟⎟⎠ , ai,j ∈ Rs+, ∀i, j ∈ Zn;
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C =
(

1 2 0 0
0 0 3 4

)
.

If there exist linear positive observer, i, j ∈ Zn, and r ∈ Zp such that Ai,j = 0 and Cr,j > 0 then
it follows from the formula

Ai,j −
p∑

j=1

Ki,rCr,j ∈ R+,

that Ki,r = 0. When this condition is applied to the above defined matrices then the following
gain matrix K is obtained,

K =

⎛
⎜⎜⎝

K11 0
K21 0

0 K32
0 K42

⎞
⎟⎟⎠ , K11, K21, K32, K42 ∈ R+.

The experience with this example was used to design an observer for the example of
Section 6.

5.6. Observer synthesis in the completely reduced case

Next attention is focused on the case where the system matrix is completely reduced. Suppose
that the system matrices A, C admit the following decomposition:

x(t + 1) = Ax(t), x(t0) = x0, (56)

y(t) = Cx(t), (57)

A =

⎛
⎜⎜⎜⎜⎜⎝

A11 0 · · · 0
A21 A22 · · · 0
...

. . .
...

Ak−1,1 Ak−1,2 · · · 0
Ak,1 Ak,2 · · · Ak,k

⎞
⎟⎟⎟⎟⎟⎠

∈ Rn×n+ , (58)

C =

⎛
⎜⎜⎜⎝

C11 0 · · · 0
C21 C22 0
...

. . .

Ck,k Ck,2 · · · Ck,k

⎞
⎟⎟⎟⎠ , (59)

n1, n2, . . . , nk ∈ Zn, p1, p2, . . . , pk ∈ Zp,

Ai,j ∈ R
ni×nj

+ , Ci,j ∈ R
pi×nj

+ ,

k∑
j=1

nj = n,

k∑
j=1

pi = p,

Ai,i , i ∈ Zk are irreducible,

(A, C), observable pair.

Below an algorithm is presented for observer synthesis for the linear positive system described
above. A motivation of the algorithm precedes it.
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A naive approach is to carry out observer synthesis for each irreducible block of the system
matrix separately. However, this is not possible, for example for the case in which the system
matrix has the form,

A =
(

A11 0
A21 A22

)
,

C = (
0 C2

)
.

It thus becomes clear that the observer synthesis must combine several irreducible subsystems
and output components.

Yet another special case is the following:

A =
(

A11 0
A21 A22

)
,

C =
(

C11 0
C21 C22

)
,

(A11, C11), (A22, C22) observable pairs.

It is then possible to carry out observer synthesis for the matrix tuples (A11, C11) and (A22, C22)

separately though information about the first subsystem is also available in the second output
components. According to this approach the resulting matrices are then,

K =
(

K1 0
0 K2

)
,

A − KC =
(

A11 − K1C11 0
A21 − K2C21 A22 − K2C22

)
.

An alternative is to consider a block gain matrix of the form,

K =
(

K11 K12
K21 K22

)
,

A − KC =
(

A11 − K11C11 − K12C21 −K12C22
A21 − K21C11 − K22C21 A22 − K22C22

)
.

If a linear positive observer is wanted then from the (1,2) block follows that in general K12 = 0
is necessary. In addition, the condition

(A21 − K21C11 − K22C22) ∈ R
n2×n2+

is necessary besides the positiveness and the stability conditions of the two diagonal block
matrices.

Below an algorithm is presented in which observer synthesis is carried out for a sequence of
subsystems.

Algorithm 5.6. Observer synthesis in case the system matrices are of the form displayed in Eqs.
(58) and (59).
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1. Determine the least integer k1 ∈ Zk such that the following matrix tuple is an observable pair,

F11 =

⎛
⎜⎜⎜⎝

A11 0 · · · 0
A21 A22 · · · 0
...

. . .
...

Ak1,1 Ak1,2 · · · Ak1,k1

⎞
⎟⎟⎟⎠ ∈ R

n̄1×n̄1+ , (60)

H11 =

⎛
⎜⎜⎜⎝

C11 0 · · · 0
C21 C22 0
...

. . .
...

Ck1,1 Ck1,2 · · · Ck1,k1

⎞
⎟⎟⎟⎠ ∈ R

p̄1×n̄1+ . (61)

2. Determine a matrix K1 ∈ Rn̄×p̄ such that spec(F11 − K1H11) ⊂ Do. In case the linear positive
observer is required then determine a matrix K1 ∈ R

n̄×p̄
+ such that

(F11 − K1H11) ∈ R
n̄1×n̄1+ spec(F11 − K1H11) ⊂ Do.

In case no such positive matrix exists then stop and output that no positive observer exists.
3. Denote then

A =
(

F11 0
A21 A22

)
, (62)

C =
(

H11 0
C21 C22

)
. (63)

4. Proceed with the matrix tuple (A22, C22) according to Algorithm 5.6 thus start at Step 1 with
the matrix tuple (A22, C22) in stead of (A, C). Thus select matrices (F22, H22) and construct
a matrix K2 ∈ Rn̄2×p̄2 such that

spec(F22 − K2H22) ⊂ Do.

This is possible because of the assumption that the matrix tuple (A, C) is observable and
an extension argument proven in the theorem below. If a positive observer is required then
determine a matrix K2 ∈ R

n̄2×p̄2+ such that

(F22 − K2H22) ∈ R
n̄2×n̄2+ , (F21 − K2H21) ∈ R

n̄2×n̄2+ , (64)

spec(F22 − K2H22) ⊂ Do. (65)

In case no such positive matrix exists then stop and output that no positive observer exists.
5. Proceed by induction computing a sequence of gain matrices (K1, K2, . . . , Ks).
6. Compose

K =

⎛
⎜⎜⎜⎝

K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...

0 0 · · · Ks

⎞
⎟⎟⎟⎠ ∈ Rn×p. (66)

7. The observer is then

x̂(t + 1) = Ax̂(t) + K[y(t) − Cx̂(t)], (67)
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which is a globally asymptotically stable linear observer. Moreover, it is a positive observer if
the conditions in the Steps 2 and 4 for each step of the algorithm are met.

Theorem 5.7. Consider a linear positive system with the system matrices described in the equa-
tions (58) and (59). Assume that the linear positive system is observable. Algorithm 5.6 is correct,
thus it results in a globally asymptotically stable linear observer and, in addition, in a positive
observer if the conditions of the Steps 2 and 4 of the algorithm are satisfied.

Proof. The steps of the algorithm will be followed closely.
(1) An integer k1 ∈ Zk such that (F11, H11) is an observable pair exists because (A, C) is an

observable pair, the linear positive is assumed to be observable.
(2) It follows from observer synthesis of linear systems that there exists a matrix K1 ∈ Rn̄1×p̄1

such that spec(F11 − K1H11) ⊂ Do. For a positive observer one determines a positive matrixK1 ∈
R

n̄1×p̄1+ such that (F11 − K1H11) ∈ R
n̄1×n̄1+ and spec(F11 − K1H11) ⊂ Do. If no such positive

matrix exists then there does not exist a positive observer. The latter statement follows from
Proposition 5.1.

(3) It will be proven that the matrix tuple (F22, H22) is an observable pair. Recall that (A, C)

being an observable pair, satisfies the Hautus condition,

rank

(
A − λI

C

)
= n, ∀λ ∈ C.

But

n = rank

(
A − λI

C

)
= rank

⎛
⎜⎜⎝

F11 − λI 0
F21 F22 − λI

H11 0
H21 H22

⎞
⎟⎟⎠

= rank

⎛
⎜⎜⎝

F11 − λI 0
H11 0
F21 F22 − λI

H21 H22

⎞
⎟⎟⎠ = n̄1 + n̄2,

⇔ rank

(
F11 − λI

H11

)
= n̄1 and rank

(
F22 − λI

H22

)
= n̄2.

Thus (F22, H22) is an observable pair.
(4) Proceed with the matrix tuple (F22, H22) as the tuple (A, C) in Step 1 of this algorithm. To

simplify the proof, suppose that the matrix tuple (F22, H22) does not admit a further decomposition
of the form used in Step 3 of the algorithm with strictly smaller (Fii , Hii) block. Then the
observability of the matrix tuple (F22, H22) implies that there exists a matrix K2 ∈ Rn̄2×p̄2 such
that spec(F22 − K2H22) ⊂ Do. In case a positive observer is required then one determines, if one
exists, a matrix K2 ∈ R

n̄2×p̄2+ such that

(F22 − K2H22) ∈ R
n̄2×n̄2+ , (F21 − K2H21) ∈ R

n̄2×n̄1+ ,

spec(F22 − K2H22) ⊂ Do.

In case no such matrix exists then, as stated above, one concludes that no positive observer exists.
(5) In general, K is defined as indicated.
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(6) It is proven that the dynamic system of equation (67) is a globally asymptotically stable
observer. Note that for the case of only two blocks,

(A − KC) =
(

F11 0
F21 F22

)
−

(
K1 0
0 K2

) (
H11 0
H21 H22

)

=
(

F11 − K1H11 0
F21 − K2H21 F22 − K2H22

)
,

spec(A − KC) = spec(F11 − K1H11) ∪ spec(F22 − K2H22) ⊂ Do,

by the Steps 2 and 4 of the algorithm. Note that the second components of the state of the system
and that of the observer are,

x2(t + 1) = F22x2(t) + F21x1(t),

x̂2(t + 1) = F22x̂2(t) + F21x̂1(t) + K2[y2(t) − H22x̂2(t) − H21x̂1(t)],
e2(t) = x2(t) − x̂2(t), e1(t) = x1(t) − x̂1(t),

e2(t + 1) = (F22 − K2H22)e2(t) + (F21 − K2H21)e1(t).

Thus also the second component of the error system is globally asymptotically stable with the
indicated error dynamics. If the conditions of the Steps 2 and 4 of the algorithm for the existence
of positive K1 and K2 are satisfied than,

K =
(

K1 0
0 K2

)
∈ R

n×p
+ , (A − KC) ∈ Rn×n+ , spec(A − KC) ⊂ Do.

Thus the linear observer is a positive observer.
In case of three or more blocks in the A matrix one proceeds by induction. �

Example 5.8. Consider the discrete-time linear positive system

x(t + 1) = Ax(t), x(t0) = x0,

y(t) = Cx(t),

A =
(

A11 0
A21 A22

)
∈ Rn×n+ , A11 ∈ R

n1×n1+ , A22 ∈ R
n2×n2+ ,

C = (
0 C2

) ∈ R
p×(n1+n2)+ ,

(A, C) observable pair.

Then Algorithm 5.6 produces an observer by Step 2 of the form

K =
(

K1
K2

)
∈ Rn×p,

(A − KC) =
(

A11 −K1C2
A21 A22 − K2C2

)
∈ Rn×n,

spec(A − KC) ⊂ Do.

If spec(A11) �⊂ Do then no globally asymptotically stable positive observer can exist. Because if a
positive observer existed which is globally asymptotically stable and if spec(A11) �⊂ Do then the
matrix K1 ∈ R

n1×p
+ must have at least one strictly positive element. (Proven by contradiction: If

K1 = 0 then spec(A − KC) �⊂ Do.) Because (A, C) is an observable pair, the matrixC2 must have
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a strictly positive element. Hence K1C2 has at least one strictly positive element thus (A − KC) �∈
Rn×n+ . This is a contradiction of the supposition that a globally asymptotically stable positive
observer exists.

6. Positive observer for glycolysis in yeast

The development of the theorems in this article is motivated by their use for models of
biochemical systems. To illustrate this, an observer for the model of glycolysis in yeast has
been constructed. Glycolysis is the name of a cellular process in which glucose is converted
into different carbon compounds in a number of reaction steps, see Fig. 1. This process plays an
important role in the metabolism of most organisms, and its function is partly to produce energy
rich molecules and partly to produce carbon compounds that can be used for biosynthesis. The
glycolysis has been extensively explored in many organisms and several mathematical models of
it have been made, see for example [28,18,17,14,11].

Here, a model of glycolysis made by Teusink et al. [11] has been used. In order to make
this model suitable for our purpose, a few modifications were done by changing state vari-
ables to constants and certain constants into state variables. After these changes the model
contains 13 state variables, x1, . . ., x13, each representing the concentration of a carbon com-
pound, except from one, x5, which represents a module of two interconvertable carbon com-
pounds, see Fig. 1. As output variables four of the state variables have been chosen, those
which are easier to measure than the others, namely x1, x12, x10, and x13. Since the biological
process is nonlinear, the system was linearized around its steady state, which resulted in the
system

d

dt
x(t) = Ax(t), x(t0) = x0,

y(t) = Cx(t), where,

x = (x1, . . ., x13)
T, is the vector of the 13 state variables,

y = (y1, . . ., y4)
T = (x1, x12, x10, x13)

T, is the vector of the 4 output variables,

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−472.8 1.416 0 0 0 0 0 0 0 0 0 0 0

408.3 −90.04 487.4 0 0 0 0 0 0 0 0 0 0

0 88.62 −1127 51.52 0 0 0 0 0 0 0 0 0

0 0 639.9 −295.3 308.5 0 0 0 0 0 0 0 0

0 0 0 487.5 −787.3 3.361 × 104 0 0 0 0 0 6.238 0

0 0 0 0 161.4 −1.212 × 106 875.3 0 0 0 0 0 0

0 0 0 0 0 1.179 × 106 −1947 6881 0 0 0 0 0

0 0 0 0 0 0 1072 −9408 722.0 0 0 0 0

0 0 0 0 0 0 0 2527 −2137 3.938 0 0 0

0 0 0 0 0 0 0 0 1415 −10.52 0 0 0

0 0 0 0 0 0 0 0 0 6.582 −2480 0 7.645

0 0 0 0 8.984 0 0 0 0 0 0 −126.2 0

0 0 0 0 0 0 0 0 0 0 2438 0 −10.24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C =

⎛
⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎠ .
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Inside

the cell

the cell

Outside

Succinate

Dihydroxyacetone phosphate

Glucose

Cell membrane

Glycogen Trehalose

Enzymatic transport

through cell membrane

Glucose (x1)

Glucose–6–phosphate (x2)

Fructose–6–phosphate (x3)

Fructose–1,6–biphosphate (x4)

x5

1,3–Biphosphoglycerate (x6)

3–Phosphoglycerate (x7)

2–Phosphoglycerate (x8)

Phosphoenolpyruvate (x9)

Pyruvate (x10)

Acetaldehyde (x11)

Ethanol (x13)

Glycerol (x12)

Glyceraldehyde 3–phosphate

Fig. 1. Reaction diagram of glycolysis in yeast as it was described in Teusink et al. [11]. Arrows represent reactions from
one compound to another and double arrows represent reversible reactions. The state variables x1 to x13, representing the
concentrations of compounds, are indicated.
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Because A is a Metzler matrix and all its eigenvalues lie in the open left-half complex plane,
see Table 1, the system is a stable positive system. An observer for the system is

d

dt
x̂(t) = (A − KC)x̂(t) + Ky(t), x̂(t0) = x̂0 (68)

where K is chosen as

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1000 0 0 0
100 0 0 0

0 0 0 0
0 0 0 0
0 5 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 3 0
0 0 20 0
0 0 5 6.5
0 1000 0 0
0 0 0 20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix A − KC is Metzler and its eigenvalues are negative, see Table 1. Thus the system
described by Eq. (68) is a linear positive observer according to Proposition 5.1. The reason
to choose K /= 0 is to make the observer more stable. As seen in Table 1, most of the eigen-
values of A − KC are located in the left-half complex plane further to the left than those
of A.

When using this observer one has to keep in mind that it is an observer for the linearized
system. If measurements of the system have been made when the state is far away from the steady
state at which it is linearized, then the observer might give bad estimates of the state. However,
as long as the system is close to steady state, the use of a linear observer has the advantage that it
requires less design work than the design of a nonlinear observer.

Table 1
Eigenvalues of the matrices A and A − KC, respectively

A A − KC

−2.724 −22.03
−6.498 −29.11
−21.68 −29.60
−80.34 −80.98
−126.4 −205.4
−206.3 −967.8
−474.1 −1126
−967.9 −1222
−1222 −1473
−2021 −2019
−2487 −2481
−1.042 × 104 −1.042 × 104

−1.213 × 106 −1.213 × 106
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7. Concluding remarks

The paper formulates the problem of observer synthesis for linear positive systems. The concept
of observability of a linear positive system is formulated and characterized by a rank condition for
the matrix pair (A, C). An observable canonical form is formulated and interpreted. A dynamic
system for a linear positive system is defined and it is proven for several cases that the dynamic
system is indeed a linear observer which in particular cases can be a linear positive observer.
For a mathematical model of glycolysis in yeast in the form of a continuous-time linear positive
systems, a linear positive observer is synthesized.
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Appendix A. Observer synthesis for continuous-time linear positive systems

In this appendix the topics of this paper are treated for continuous-time linear positive systems.
In the main body of the paper only observer synthesis for discrete-time linear positive systems is
described.

A.1. Continuous-time linear positive systems

The matrix A ∈ Rn×n is called a Metzler matrix if for all i, j ∈ Zn with i /= j , Ai,j ∈ R+; or,
equivalently, if the off-diagonal elements are positive.

Definition A.1. A time-invariant continuous-time linear positive system (without input) is a
dynamic system as defined in, for example [33], with the equations,

d

dt
x(t) = Ax(t), x(t0) = x0, (69)

y(t) = Cx(t), (70)

T = [t0, ∞) ⊂ R, x : T → Rn+, y : T → R
p
+, x0 ∈ Rn+,

A ∈ Rn×n is a Metzler matrix and C ∈ R
p×n
+ .

The linear system

d

dt
x(t) = Ax(t), x(t0) = x0, (71)

y(t) = Cx(t), (72)

T = [t0, ∞) ⊂ R, x : T → Rn, y : T → R
p
+, x0 ∈ Rn+,

A ∈ Rn×nC ∈ Rp×n.
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has the positive orthant as an invariant set if and only if A ∈ Rn×n is a Metzler matrix. If the
state is in the positive orthant then the output is positive function if and only if the output matrix
satisfies C ∈ R

p×n
+ .

Definition A.2. Consider the continuous-time linear positive system

d

dt
x(t) = Ax(t), x(t0) = x0,

y(t) = Cx(t).

A continuous-time linear observer for this system is a dynamic system of the form

d

dt
x̂(t) = F x̂(t) + Ky(t), x̂(t0) = x̂0 ∈ Rn+, x̂ : T → Rn, (73)

for which the system matrices F and K are to be selected. It is called:

1. globally asymptotically stable: if the estimation error is globally asymptotically stable:

∀x0 ∈ Rn+, ∀x̂0 ∈ Rn+, lim
t→∞[x̂(t) − x(t)] = 0; (74)

2. dynamically assignable if for any complex conjugate subset � ⊂ C− there exists a gain matrix
K ∈ Rn×p such that the eigenvalues of the error system, for x̂ − x, have � as its eigenvalues;
and

3. a positive observer: the observer is a positive system:

y : T → R
p
+, x̂0 ∈ Rn+, t ∈ T ⇒ x̂(t) ∈ Rn+. (75)

One can then define a positive observer which is globally asymptotically stable or a positive
observer which is dynamically assignable.

A.2. Observability

The observability concepts and their characterization for continuous-time linear positive sys-
tems are quite analogous to those for discrete-time linear positive systems.

A system matrix A ∈ Rn×n of a continuous-time linear positive system can be transformed
into a system matrix of a discrete-time linear positive system by the following transformation.
Recall that a continuous-time linear system is positive if and only if A ∈ Rn×n is a Metzler
matrix and C ∈ R

p×n
+ . By definition of a Metzler matrix there exists a constant a ∈ R+ such that

(A + aI) ∈ Rn×n+ , for example,

a = max

{
0, − min

i∈Zn

Ai,i

}
; then Ai,i + a � 0, ∀i ∈ Zn.

Call the transformation

A ∈ Rn×n Metzler 
→ (A + aI) ∈ Rn×n+ ,

the Metzler-to-positive-matrix transform.
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Definition A.3. Consider the continuous-time linear positive system

d

dt
x(t) = Ax(t), x(t0) = x0,

y(t) = Cx(t), T = [t0, t1], or T = [t0, ∞).

The system is called observable as a continuous-time linear positive system on the interval T if
the observability map is injective:

obsmap : Rn+ → (Rn+)T, x0 
→ {y(.; t0, x0) : T → R
p
+} is injective.

From now on the term observable will be used to describe observable as a continuous-time
linear positive system.

Theorem A.4. The continuous-time linear positive system of Definition A.3 is observable if and
only if

rank(obsm(A, C)) = n.

Proof. As is well known from observability for ordinary linear systems, the following relations
hold.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y(s)
d
ds

y(s)
...

dk

dsk y(s)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣
s=t0

=

⎛
⎜⎜⎜⎜⎜⎜⎝

C

CA
...

CAk−1

...

⎞
⎟⎟⎟⎟⎟⎟⎠

x0.

The projection of this infinitely long vector to a finite vector of lengthpnon the firstpn components
then produces on the right-hand side the observability matrix of the matrix pair (A, C).

Next apply the Metzler-to-positive-matrix-transformation. With the use of elementary linear
algebra it follows thats

rank(obsm((A + aI), C))

= rank

⎛
⎜⎜⎜⎝

C

C(A + aI)
...

C(A + aI)n−1

⎞
⎟⎟⎟⎠ = rank

⎛
⎜⎜⎜⎜⎜⎝

S

⎛
⎜⎜⎜⎜⎜⎝

C

CA

CA2

...

CAn−1

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

S ∈ Rpn×pn, nonsingular,

= rank(obsm(A, C)).

The result then follows from Theorem 4.7. �
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A.3. Observer synthesis – equivalent conditions

Proposition A.5. Consider a continuous-time linear positive system and the associated candidate
linear observer

d

dt
x(t) = Ax(t), x(t0) = x0,

y(t) = Cx(t),

d

dt
x̂(t) = (A − KC)x̂(t) + Ky(t), x̂(t0) = x̂0. (76)

The dynamic system (76) is a globally asymptotically stable linear observer if and only if the
following conditions all hold:

(1) K ∈ Rn×p, (77)

(2) spec(A − KC) ⊂ C−. (78)

The dynamic system (76) is an globally asymptotically stable linear positive observer if and only
if the following conditions all hold:

(1) K ∈ R
n×p
+ , (79)

(2) (A − KC) ∈ Rn×n is a Metzler matrix; and (80)

(3) spec(A − KC) ⊂ C−. (81)

A.4. Nonexistence of a continuous-time linear positive observer

Example A.6. Nonexistence of a continuous-time linear positive observer for a linear positive
system. Consider the linear positive system,

ẋ(t) = Ax(t), x(t0) = x0, (82)

y(t) = Cx(t), (83)

A =
(

1 2
1 3

)
, C = (

1 0
)
, (84)

which system is observable. Attention is restricted to a linear observer of the form

dx̂(t)/dt = Ax̂(t) + K[y(t) − Cx̂(t)], x̂(t0) = x̂0. (85)

Using Proposition A.5 one then shows that a linear positive observer does not exist.

A.5. Observer synthesis

The observer synthesis for a continuous-time linear observer or a linear positive observer can
now easily be deduced from the associated observer problem for discrete-time linear positive
systems via the Metzler-to-positive-matrix transformation described in Section A.2.



606 H.M. Härdin, J.H. van Schuppen / Linear Algebra and its Applications 425 (2007) 571–607

References

[1] D. Angeli, E.D. Sontag, Characterizations of forward completeness, in: Proc. 38th IEEE Conference on Decision
and Control, IEEE, New York, 1999, pp. 2551–2556.

[2] L. Benvenuti, L. Farina, A tutorial on the positive realization problem, IEEE Trans. Automatic Control 49 (2004)
651–664.

[3] A. Berman, M. Neumann, R.J. Stern, Nonnegative Matrices in Dynamic Systems, John Wiley & Sons, New York,
1989.

[4] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
[5] A. Berman, R.J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics in Applied Mathematics,

vol. 9, SIAM, Philadelphia, 1993.
[6] G. Birkhoff, A. MacLane, A Survey of Modern Algebra, fourth ed., MacMillan Publ. Co. Inc., New York, 1977.
[7] R.F. Brammer, Geometrically constrained observability, SIAM J. Control Opt. 12 (1974) 449–459.
[8] M. Chaves, E.D. Sontag, Observers for chemical reaction networks, in: Proceedings European Control Conference

2001, Porto, Portugal, 2001, pp. 3715–3720.
[9] Madelena Chaves, Eduardo D. Sontag, State-estimators for chemical reaction networks of Feinberg–Horn–Jackson

zero deficiency type, Eur. J. Control 8 (2002) 343–359.
[10] E.J. Davison, Connectability and structural controllability of composite systems, Automatica 13 (1977) 109–123.
[11] B. Teusink, et al., Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? testing

biochemistry, Eur. J. Biochem. 267 (2000) 5313–5329.
[12] L. Farina, S. Rinaldi, Positive linear systems: theory and applications, Pure and Applied Mathematics, John Wiley

& Sons, New York, 2000.
[13] G. Frobenius, Über matrizen aus nicht negativen elementen, S.-B. Preuss. Akad. Wiss. (Berlin) (1912) 456–477.
[14] J.L. Galazzo, J.E. Bailey, Fermentation pathway kinetics and metabolic flux control in suspended and immobilized

Saccharomyces-cerevisiae, Enz. Microbial Tech. 12 (3) (1990) 162–167.
[15] M. Gondran, M. Minoux, Graphs and Algorithms, John Wiley & Sons, Chichester, 1984.
[16] Hanna M. Härdin, Jan H. van Schuppen, Observers for linear positive systems, in: Proc. International Symposium

MTNS (MTNS.2006; CD-ROM only), Kyoto, 2006.
[17] S. Helfert, A.M. Estevez, B. Bakker, P. Michels, C. Clayton, Roles of triosephosphate isomerase and aerobic

metabolism in Trypanosoma brucei, Biochem. J. 357 (1) (2001) 117–125.
[18] F. Hynne, S. Dano, P.G. Sorensen, Full-scale model of glycolysis in Saccharomyces cerevisiae, Biophys. Chem. 94

(1–2) (2001) 121–163.
[19] R.E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng. 82 (1960) 35–45.
[20] R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory, J. Basic Eng. 83 (1961) 95–107.
[21] P. De Leenheer, Stabiliteit, regeling en stabilisatie van positieve systemen (in Dutch), Ph.D. Thesis, Universiteit

Gent, Gent, 2000.
[22] P. De Leenheer, D. Aeyels, Stabilization of positive linear systems, Syst. Control Lett. 44 (2001) 259–271.
[23] Valérie Lemesle, Modélisation mathématique structurée de la croissance cellulaire en chemostat: Analyse et

estimation, Ph.D. Thesis, l’ Université de Nice-Sophia Antipolis, Sophia Antipolis, 2004.
[24] D.G. Luenberger, Observing the state of a linear system, IEEE Trans. Military Electronics 23 (1964) 119–125.
[25] D.G. Luenberger, Observers for multivariable systems, IEEE Trans. Automatic Control 11 (1966) 190–197.
[26] D.G. Luenberger, Introduction to Dynamic Systems – Theory, Models and Applications, J. Wiley & Sons, New

York, 1979.
[27] H. Minc, Nonnegative Matrices, Wiley, New York, 1988.
[28] K. Nielsen, P.G. Sorensen, F. Hynne, H.G. Busse, Sustained oscillations in glycolysis: an experimental and theoretical

study of chaotic and complex periodic behavior and of quenching of simple oscillations, Biophys. Chem. 72 (1998)
49–62.

[29] Y. Ohta, H. Maeda, S. Kodama, Reachability, observability, and realizability of continuous positive systems, SIAM
J. Control Optim. 22 (1984) 171–180.

[30] M. Pachter, D.H. Jacobson, Observability with a conic observation set, IEEE Trans. Automatic Control 24 (1979)
632–633.

[31] O. Perron, Zur theorie der matrices, Math. Ann. 64 (1907) 248–263.
[32] E.D. Sontag, On the observability of polynomial systems, I: Finite-time problems, SIAM J. Control Opt. 17 (1979)

139–151.
[33] E.D. Sontag, Mathematical control theory: deterministic finite dimensional systems, Graduate Text in Applied

Mathematics, second ed., vol. 6, Springer, 1998.



H.M. Härdin, J.H. van Schuppen / Linear Algebra and its Applications 425 (2007) 571–607 607

[34] E.D. Sontag, Yuan Wang, New characterizations of input-to-state stability, IEEE Trans. Automatic Control 41 (1996)
1283–1294.

[35] E.D. Sontag, Yuan Wang, Output-to-state stability and detectability of nonlinear systems, Syst. Control Lett. 29
(1997) 279–290.

[36] H.L. Trentelman, A.A. Stoorvogel, M. Hautus, Control Theory for Linear Systems, Springer, United Kingdom, 2001.
[37] M.E. Valcher, Controllability and reachability criteria for discrete time positive systems, Int. J. Control 65 (1996)

511–536.
[38] J.M. Van den Hof, Realization of positive linear systems, Linear Algebra Appl. 256 (1997) 287–308.
[39] J.M. Van den Hof, Positive linear observers for linear compartmental systems, SIAM J. Control Opt. 36 (1998)

590–608.


	Introduction
	Problem formulation
	Terminology and notation
	Linear positive systems
	Problem of observer synthesis

	Graphs and decomposition of linear positive systems into irreducible subsystems
	Graphs of linear positive systems
	Decomposition of linear positive systems

	Observability of linear positive systems
	Observability concepts of linear positive systems
	Examples of nonobservable systems
	Characterization of observability concepts
	Towards an observable canonical form

	Observer synthesis for linear positive systems
	Equivalent conditions for the existence of observers
	Nonexistence of linear positive observers
	Observer synthesis
	Observer synthesis based on the decomposition of a linear positive system
	Observer synthesis in case of an irreducible system matrix
	Observer synthesis in the completely reduced case

	Positive observer for glycolysis in yeast

	Concluding remarks
	Observer synthesis for continuous-time linear positive systems
	Continuous-time linear positive systems
	Observability
	Observer synthesis -- equivalent conditions
	Nonexistence of a continuous-time linear positive observer
	Observer synthesis

	References

