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The quasi-greedy algorithm, as proposed by Glover and Klingman [8], efficiently solves 
minimum weight spanning tree problems with a fixed (or bounded) number of edges incident to 
a specified vertex. As observed in [8], the results carry through to general matroid problems 
(where a base contains a bounded number of elements from a specified set). We extend this work 

to provide an efficient 2-quasi-greedy algorithm where a minimum weight base is constrained to 
have a fixed number of elements from two disjoint sets. 

Our main results show that optimal bases for adjacent states may not themselves be adjacent. 
However, optimal solutions for adjacent states may be identified solely from information avail- 
able in the current base, yielding a method whose efficiency rivals that of the quasi-greedy 
method. We also give theorems making it possible to jump over certain adjacent states, further 

increasing efficiency. 

1. Introduction 

Consider the two problems: 

P: Find a minimum weight base B (in matroid M). 

P(k): Find a minimum weight base B that contains k elements of an arbitrary set S. 

Problem P is the classical minimum weight base problem solvable by the greedy 
algorithm. Problem P(k) does not admit of a greedy solution. For example, one can- 
not solve P(k) by first selecting k best elements from S, and then the remaining 
elements from outside S, subject to maintaining independence at each step. 

Although P(k) represents a level of complexity above that of P, it can be solved 
very efficiently. Theorems giving primal and dual algorithms for P(k) in the graph 
theory setting, where B is a spanning tree and S is the set of edges incident to a 
specified node, were provided in Glover and Klingman [8]. These algorithms were 
collectively labeled quasi-greedy algorithms. In contrast to the greedy solutions, ap- 
propriate moves consist of "trading things between two buckets" instead of simply 
"putting things into a bucket" (in Jack Edmonds' terminology [1]). 

The results for solving P(k) in the graph theory setting, as noted in [7], carry over 
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directly to the matroid setting and apply as well to solving the problems where at 
least k or at most k elements of S must be contained in B. 

A good deal of attention has focussed on the greedy algorithm for problem P. 
This has occurred particularly in reference to solving relaxations for the traveling 
salesman problem, as in the work of Held and Karp [10, 11], and in establishing the 
'goodness' of the greedy solution for other problems, as in the work of Faigle [2, 3], 
Fisher [4], Jenkyns [12], Karp [13], Lawler [14] Korte et al., [15, 16], and others. 
The quasi-greedy algorithm clearly permits the solution of stronger traveling sales- 
man relaxations than the greedy algorithms, with scarcely more effort, and invites 
speculation as to whether improved 'goodness of solution' results may be obtained 
by analyses related to those cited. 

Our concern here is with establishing that a somewhat more difficult problem can 
also be solved highly efficiently. The form of this problem is: 

P(kl, k2): Find a minimum weight base B that contains kl elements of $1 and k 2 

elements of $2, for two arbitrary disjoint sets Sl and $2. 

The increased combinatorial complexity of this two parameter problem is 
evidenced by the fact, as we show, that optimal bases for adjacent states (where ex- 
actly one parameter differs by a unit amount) may not themselves be adjacent, i.e., 
obtained from each other by a single base exchange step. By contrast, given an op- 
timal base B for P(k), an optimal base for P (k+  1) ( P ( k -  1)) can always be found 
among those adjacent to B, provided the latter problem has a solution [8]. Neverthe- 
less, we establish that an optimal base B' for P(kl, k2 + 1) (P(kl, k2 -  1)), can be ob- 
tained from an optimal base B for P(kl, k2) with no more information than in the 
quasi-greedy algorithm, making reference only to the structure of B. Moreover, we 
show that for the non-adjacent parameter states where kl and k2 both differ by 1 
unit, but in opposite directions, it is possible to generate B' from B with the same 
effort as in the case of adjacent parameter states. 

We now provide more formal definitions and notations, leading to a precise state- 
ment of our results. 

2. Notation and background 

Relative to a matroid M, with a weight function w(e) defined on elements e, we 
define the weight of a set B by w(B)= ~,eeB w(e). 

Then we define the problem: 

P(k): Find a base B to 
Minimize w(B) 
subject to IBNS[ = k 

for an arbitrary specified set S. 
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(The problem P(k) evidently has a feasible solution only if the rank of S is at least 
k.) 

Similarly, we define 

P(kl, k2): Find a base B to 
Minimize w(B) 
subject to IBf3Sll =kl and IBNSEI = k  2 

for arbitrary disjoint sets $1 and $2. 

We call an ordered pair (e,e') a B exchange if e~B,  e'c~B, and B + e ' - e  is a base. 
The fundamental results for solving P(k) are given by Theorems 1 and 2 of [8], ex- 
pressed in terms of matroids as follows. 

Theorem 1 (Primal Theorem). Assume B is feasible for  P(k). Then B is optimal i f  
and only if." 

(1) There is no B exchange (e,e') such that w(e')<w(e) and either e , e ' eS  or 
e,e '¢  S; and 

I ! g 

(2) There are no two distinct B exchanges (el, el) and (e2, e2) such that w(el)+ 
w(e~) < w(el) + w(e2), and el, e~ ~ S, e~, e2 ~ S. 

Theorem 2 (Dual Theorem). Assume B is optimal for  P(k). Then the base B'= 
B + e ' - e  is optimal for  P(k+ 1) ( P ( k -  1)) i f  and only i f  (e,e') is a least weight B 
exchange such that e ¢ S and e' ~ S (e ~ S and e" ¢ S). 

By implication, if there is no exchange of the specified type in Theorem 2, then 
the problem P(k+ 1) (or P ( k -  1)) has no feasible solution. It may be noted that the 
solution generated by Theorem 2 for P(k + 1) assures that all elements of S that are 
in B are also contained in B'. Thus, when solving a succession of problems P(k), 
P(k + 1), P(k + 2), etc., each element added to B stays in B thereafter, and each ele- 
ment dropped from B stays out thereafter. (Similar remarks apply, in reverse, for 
solving the succession of problems P(k), P ( k - 1 ) ,  P (k -2 ) ,  etc.) In developing 
theorems for P(k l, k2) we will see that similar easily specified monotonicity proper- 
ties are generated. 

Another simple consequence of the results of [8] is that the optimum objective 
value Zk for P(k) becomes increasingly bad (larger) moving in either direction away 
form the solution to the unconstrained problem P. In general, for any k, the Z k 
values satisfy the convexity property Zk + 2 -- Z k  + 1 ~ Z k  + 1 -- Z k "  (The papers by 
Gabow [5] and Gabow and Tarjan [6] exploit such properties to provide worst case 
bounds for the quasi-greedy algorithm in special matroid settings.) The convexity 
property, like the monotonicity property for P(k), follows as a special case of 
analogous properties for the problem P(kl, k2). The most general form of these 
properties and their implications are characterized in [7]. 
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3. Results for the 2-quasi-greedy algorithm 

We will first state the theorems that provide a method (actually, a collection of 
methods) for solving P(kl, k2), and reserve proofs until a subsequent section. To 
facilitate the statement of our results, we use the following conventions: 

(CI) So denotes the set complement of $1 + $2 (hence S 0, $I and $2 partition the 
elements of M). 

(C2) Elements will be given the same subscripts as the sets they belong to. For 
! 

example, e0, e~ e So, el, el e $1, etc. 
(C3) When reference is made to a base B, elements without a prime (') mark 

denote elements in B, and those with a prime mark denote those not in B. For exam- 
ple, e~B,  e '~B,  and by (C2), eiESiNB, e :ES i -B .  

(C4) A B exchange (el, ej) will be called a least weight exchange o f  its type if 
w(ej) - w(ei) <- w(gj) - w(gi) for all gi~ SLOB, gj ~ S j -  B. 

We begin by stating a primal theorem that may be viewed as an analog of 
Theorem 1. 

Theorem 3 (Primal Theorem). Assume B is feasible for  P(kl, k2) (and the nota- 
tional conventions (C1)-(C3) apply; hence, ei~SiNB, e : e S i - B ) .  Then B is op- 
timal i f  and only i f  none o f  the following conditions hold: 

(1) There is a B exchange o f  the form (ei, e:) for  some i=0,  1,2, such that 
w(e:)< w(ei). 

(2) There are two B exchanges of the form (ei, e j), (ej, e:) for some i, j (i =/:j) such 
that w(e:) + w(ej) < w(ei) + w(ej). 

(3) There are three B exchanges of the form (eo, e:)(ei, ej)(ej, e~) for some i, j, 
j :/: i, and i, j :/: 0 such that w(e~) + w(e:) + w(ej) < W(eo) + w(ei) + w(ej). 

Moreover, i f  condition (1) cannot be met, B+ {ei', ej} - {el, ej} is a base for  every 
two B exchanges satisfying (2); and i f  conditions (1) and (2) cannot be met, then 
B + {e~, e/', ej } - {e0, ei, ej } is a base for  every three B exchanges satisfying (3). 

The complexity of the conditions stated in the primal theorem does not make it 
highly appealing as a computational tool. More appealing are the conditions of the 
dual theorem, stated next. 

Theorem 4 (Dual Theorem). Assume B is optimal for  P(kl, k2) and assume (eo, e~), 
(fo, f~), and (fl, f2) are least weight B-exchanges o f  their respective types. (Possibly 
eo=fo or e~=f~.) Then, 

i f  

B+e~-eo  is optimal for  P(kl,k2+ 1) 

w(e ) - w(eo) <- wtf: ) + wrY;) - w(f l ) - wffo) 
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and otherwise 

B +f~ + f ( - f l  - f o  is optimal for P(ks,/<2 + 1). 

(If  neither o f  the indicated candidates for an optimal P(kl, k2 + 1) solution exists, 
then P(k 1,/<2 + 1) has no feasible solution.) 

Theorem 4 has several interesting features. Note first that B +f~ + f ~ - f l - f 0  is 
implied to be a base by the assertion that it is optimal for P(ks, k2 + 1), although no 
check is required to that effect. (Normally, the fact that (f0, fl') and (fs,f~) are 
both B exchanges does not imply that they can be carried out sequentially to yield 
a new base.) Also, it should be noted that the evaluation for selecting the three least 
weight B exchanges of their types involves looking only at a subject of the total B 
exchanges. In a graph theory setting, this corresponds to evaluating a subset of 
'nonbasic edges'. The labeling procedure given in [8] for expediting such an evalua- 
tion for the problem P(k) is applicable in the present context as well. However, the 
evaluation is also automatically restricted in solving the sequence of problems 
P(ks, k2), P(k~, k2 + 1), P(ks, k2 + 2),...,  by noting that each element of $2 added to 
B remains in B thereafter, and each element of So dropped from B remains out of 
B thereafter. (The labeling scheme can be organized to further capitalize on this and 
other structural features of successive problems.) 

The alternate statement of Theorem 4 that specifies an optimal solution to 
P(ks, k2 -1 )  simply occurs by reversing the roles of the primed and unprimed 
elements (replacing (e0, e~) by (e2, e~), etc.). Thus, the theorem may be viewed as a 
result for generating optimal solutions for adjacent parameter states, where exactly 
one of ks or/<2 differs by 1 unit from its current value. 

In this view, Theorem 4 offers a variety of algorithmic possibilities for solving the 
problem P(ks, k2). For example, one can first solve the unconstrained problem 
(ignoring the cardinality constraints) by the greedy algorithm. Then ks and k2 can 
alternately be held fixed while the other is moved toward its desired value by 
Theorem 4. One can choose to alternate more or less frequently. 

Another approach is to solve P(ks) (or P(k2)) by the quasi-greedy algorithm, (i.e. 
using Theorem 2), and then apply Theorem 4 to solve P(ks,/<2). It may in fact be 
noted that the quasi-greedy algorithm is a special case of the more general 2-Quasi- 
Greedy Algorithm. In particular, Theorem 2 is the special case of Theorem 4 where 
S~ is the empty set and kl = 0. 

But it is possible to solve P(ks,/<2) in an accelerated fashion if the desired ks and 
k2 values lie respectively below and above their current values (or vice versa). This 
results from the following theorem for jumping over adjacent parameter states. 

Theorem 5. Assume B is optimal for  P(kl, k2) and assume (el, e~), (fl, fo), (fo, J2) 
are least weight B exchanges o f  their respective types. Then 

B + e~ - el is optimal for  P(kl - 1, k2 + 1) 
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if 

w(e~)-  w(el)< w(f~)+ w ( f ~ ) -  w ( f l ) -  W(fo) 

and otherwise 

B +f~ +f~ - f l  - f o  is optimal for  P(kl - 1, k 2 ÷ 1). 

The striking resemblance of Theorem 5 to Theorem 4 derives from the fact that 
it is actually an alternative statement of the same fundamental result, as we show 
subsequently. Observations concerning elements that stay permanently in or out of 
B when solving a succession of problems follow the same lines as those made earlier. 

4. Justification of the method 

In this section we provide a series of results that establish the theorems of Section 
3. We begin with two results that were used in the derivation of  the original quasi- 
greedy algorithm. The first has been known for many years (see, e.g., [17]), and is 
easily proved from fundamental principles. 

Lemma 1. Let  B and B'  be distinct bases. Then for  each e e B - B '  there is an 
e ' e  B ' - B  such that (e, e') is a B exchange and (e', e) is a B'  exchange. 

Lemma 2. I f  B, B '  are bases and E = B -  B" E" = B ' -  B, then the elements o f  E may 
be put  in one-one correspondence with those o f  E'  so that each pair (e, e') defined 
by this correspondence is a B exchange. 

Two proofs of  Lemma 2, each giving a different method of  constructing the in- 
dicated correspondence, are given in [9]. (The correspondence may not be unique.) 
The next two lemmas generalize results of  [8] to handle broader concerns of the pre- 
sent context. 

Lemma 3. Given a set B, E C B ,  E ' N B = O ,  f e B ,  f 'c~B. I f  both B - E + E '  and 
B -  f + f '  are bases and B - E +  E ' -  f + f '  is not a base, then: 

(1) There is an element e e E such that B + E ' -  ( E -  e + f )  and B + f '  - e are both 
bases, and also 

(2) There is an element e" e E '  such that B + ( E ' -  e" + f ' )  - E and B + e ' -  f are both 
bases. 

Proof.  If  e i t h e r f o r f '  is contained in either E or E', the problem is trivial, so assume 
the contrary. S ince f e  ( B - E  + E ' )  - ( B - f + f ' ) ,  by Lemma 1 there exists an element 
e in ( B - f + f ' ) - ( B - E + E ' )  such that B - E + E ' - f + e = B + E ' - ( E - e + f )  is a 
base and B - f + f ' - e + f = B + f ' - e  is a base. Since e cannot b e f '  (or B - E + E ' -  
f + f "  would be a base), e e E. 
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Likewise, since f ' e ( B - f + f ' ) - ( B - E + E ' )  there must be an element e ' e  
( B - E + E ' ) - ( B - f + f ' )  such that B - f + f ' + e ' - f ' = B + e ' - f  and B - E + E ' -  
e' + f '  = B + ( E ' -  e' + f ' )  - E are bases. Since e' cannot b e f i t  must belong to E'. This 
completes the proof. 

A useful special case of the foregoing is expressed in the following. 

Corollary 1. Given a set B, e e B, e' ~ B, f e B, f '  ¢ B. I f  B -  e + e' and B - f + f '  are 

both bases, but B + e' + f '  - e -  f is not a base, then B + e ' -  f and  B + f ' - e  are both 

bases. 

The next result is closely related to Lemma 3. 

L e m m a  4. Let  B be a base, E c B, E '  N B = O, f e B ,  f '  ¢ B. l f  no t  both B + E ' -  E and 

B + f ' - f  are bases, but  B ' =  B - E + E ' - f + f "  is a base, then 
(1) There is an element e e E such that B + E ' -  ( E -  e + f )  and  B + f ' -  e are both 

bases, and also 

(2) There is an element e' e E" such that B + ( E ' -  e' + f ' )  - E and  B + e ' -  f are both 

bases. 

P r o o f .  Again, if either f or f '  is contained in either E or E',  the problem is trivial, 
so assume the contrary. Since f ' e B ' - B ,  by Lemma 1 there exists an element 
e e B - B '  such that B + f ' - e  and ( B - E + E ' - f + f ' ) - f ' + e = B - ( E - e + f ) + E "  
are both bases. The fact that not both B - f  +f"  and B - E + E '  are bases implies 
e e E, given e :gf. 

Similarly, since f e  B - B ' ,  there exists an element e ' e  B ' - B  such that B - f +  e' 

and (B - E + E ' -  f + f ' )  = B - E + ( E ' -  e" + f ' )  are bases. Since e '  cannot be f ' ,  e' e E', 
completing the proof. 

Lemma 4, like Lemma 3, has a useful special case. 

Corollary 2. Given a base B, e e B, e' e~ B, f e  B, f '  ¢i B. I f  (e, e ')  and (f, f ' )  are not  

both B exchanges, but  B + e' + f ' -  e - f is a base, then both (e, f ' )  and (f, e') are B 

exchanges. 

We are now ready to establish our main results. We do this by proving Theorem 
4, and then observe how the remaining results follow by analogous arguments. 

P r o o f  o f  Theorem 4. Let E = B -  B', E '  = B ' -  B. By Lemma 2, E and E'  may be put 
into a correspondence to yield a set Z of exchanges. Delete from Z the smaller 
weight collection (1) or (2) below. Choose (1) if  the weights are the same. 

(1) The least weight exchange in Z of the form (e0,e~). 
(2) The least weight exchange in Z of the form (f0, fl') and the least weight ex- 

change of the form (fl, f2). 
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In either case, the remaining set of exchanges Z'  leaves the total number of 
elements in each of So, S1, and $2 constant. Any exchange in Z' of the form (ei, e~) 
cannot be improving, i.e., cannot yield w(e~)< w(ei), or B would not have been op- 
timal. Similarly, if there is a pair of exchanges in Z'  of the form (ei, ej), (ej, e~) for 
which w(e, ) + w(ej) < w(ei) + w(ej), then B + e~ + e j -  e i - ej cannot be a base. Ex- 
changes (el, ej) in Z '  that can not thus be paired with an (ej, e[) exchange must be 

¢ I 

part of a set of three exchanges of the form (ei, ej), (ej, e'g), (ek, ei) .  Assume w(e i ) + 
w(ej) + w(e~)< w(ei) + w(ej) + w(ek ). This implies that B - e i - e j - e k  + e~ + ej + e'~ is 
not a base. It also implies that B - e i - e j  + ej + e'k must be a base, since if not Cor- 
ollary 1 would imply that both (el, e'k) and (ej, ej) would be B exchanges. But (ej, ej) 
cannot be improving nor can the pair of exchanges (e i, e~), (e, ,  e~). 

Thus, Lemma 2 implies that at least one of the following cases is true: 
(C 1) B ' -  ei - ej + ej + ej and B - ek + e~ are both bases, 
(C2) B - e i - e j + e ; + e ' g  and B - e k + e j  are both bases. Since neither (ek, e~) nor 

the combination of (e i, ej) and (ej, e;) may be improving, case (C2) must be true. 
Since (ej, e'k) is a B exchange by assumption, (e~, ej) and (ej, e'g) may not together be 
improving. Thus (el, e~) cannot be a B exchange. Corollary 2 thus implies that both 

t t ! ! t (ei, ek) and (ej, ei) are B exchanges in addition to (ek, ej).  Pair (ei, ek) with (ek, ei), 
! 

(ej, e~) with (el, ej), and (ek, ej) with (ej, ek) to obtain three sets of paired exchanges 
none of which may yield an improvement, contradicting our assumption that 
w(e~) + w(ej) + w(e'k) < w(ei) + w(ej) + W(ek). Thus none of Z'  may be improving. 

Whenever (1) is true, B - f 0 - f l  + f l  +f2 is a base, since if it were not, then Cor- 
ollary 1 would imply that (f0,f2) and ( f l , f ; )  are both B exchanges. Since ( f l , f ; )  
cannot be improving, this would imply that (f0, f2) weights no more than (f0,f2) 
and (fl,f~') together. A similar argument implies that if (2) is true, then B - f o -  
f l  + f l  +f2 is a base. 

Assume all exchanges in Z '  together increase the objective function. If (1) is 
true, then B - e 0  + e~ must be an improvement over B'; if (2) is true, B - f 0 - f l  + 
f~ +f~ is an improvement over B'. In either case the optimality of B'  is contra- 
dicted. Thus all exchanges in Z '  together leave the weight constant and w(B')= 
w ( B - f o - f l  +f~+f~) or w(B-e0+e~) ,  whichever is smaller. This completes the 
proof. 

Theorem 5 may be derived from the preceding proof simply by exchanging the 
roles of So and S~. The primal result, Theorem 3, follows by noting that the argu- 
ments which insured the weight of all B exchanges in Z '  are nonnegative are counter- 
ed exactly by means of the stipulations of Theorem 3. The assertions about the ex- 
changes that yield bases also follow from arguments analogous to those of the proof 
of Theorem 4 (employing Lemmas 3 and 4). 
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5. Conclusion 

We have focussed in this paper on the fundamental results for a method that 
solves a 'two-parameter' generalization of the quasi-greedy algorithm. Our purpose 
has not been to identify the most efficient implementations or order bounds for 
specific settings, although the basic efficiency of the method is evident. The ability 
to solve adjacent problems solely by reference to simple exchanges available to the 
present base is the feature that makes such efficiency possible. At every step it is 
necessary to evaluate only a subset of available exchanges. In a vector space setting, 
for example, the method requires at most the amount of work to evaluate adjacent 
extreme points - analogous to the type of effort in applying the simplex method. 
But in contrast to the simplex method, the 2-quasi-greedy method applies a discrete 
(non-continuous) problem and includes 'non-adjacent moves', involving two ex- 
changes to be performed in a block. 

The question of the degree of further generalization naturally arises. The sequel 
[7] extends the present development to a broader problem class, and characterizes 
the structural features that establish the limits of  generality. 
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