Abstracts

A NOVEL APPROACH TO ADJUST FOR THE IMPACT ON SURVIVAL RESULTING FROM PATIENT CROSS-OVER FROM CONTROL TO EXPERIMENTAL TREATMENT IN CLINICAL TRIALS

Ishak KJ1, Deniz B2, Drayson M1, Morgan G1, Augustson BM1, Child JAJ2, Begum G1, Dunn JA2, Shearer A2, Caro JJ1

1United BioSource Corporation, Montreal, QC, Canada; 2United BioSource Corporation, Concord, MA, USA; 3University of Pittsburgh and Pittsburgh Poison Control Center, Birmingham, Birmingham, UK; 4The Royal Marsden NHS Foundation Trust & The Institute of Cancer Research, Surrey, UK; 5Sir Charles Gardiner Hospital, Nedlands, Australia; 6University of Leeds, Leeds, UK; 7Warwick Medical School, Coventry, UK; 8Celgene UK & Ireland, Windsor, UK

OBJECTIVE: Clinical trials are often the best source of efficacy data for economic evaluations of medical interventions. However, their reliability can be compromised when patients cross-over from control to experimental treatment. In two trials evaluating lenalidomide (Len) plus high-dose dexamethasone (Dex) vs Dex alone (MM-009/010) in patients with multiple myeloma (MM), 47% of patients in the Dex alone group were switched to Len + Dex at disease progression or following study unblinding. Given the significant efficacy benefits of Len + Dex over Dex alone, the trial data will overestimate the survival with Dex alone biasing the results. METHODS: External data from the UK Medical Research Council (MRC) MM-IV, V, VI, and VIII trials enrolled between 1980 and 1997 were used to derive an equation reflecting survival without lenalidomide, including prognostic variables to enable adjustment for differences between the MRC and MM-009/010 trials. Applying the MRC equation to the MM-009/010 Dex patient characteristics yielded expected median survival time without cross-over to Len +/- Dex. This was used to calibrate the economic model for the Dex alone group by correcting the scale parameter of the underlying Weibull survival equation, estimated from MM-009/010, assuming the shape parameter remained the same.

RESULTS: Of 873 MRC patients, 826 died. Exponential survival fit the data, with age, MM performance status, M-protein level, LCR, PSI, and BMI included as predictive variables. The model predicted survival of 14.9 months (95% CI: 12.3–18.0) (compared to 31 months for control). The application of the calibration factor yielded survival estimates of 13.0 months (95% CI: 10.4–15.6) in the MM-009/010 trial. Using the calibrated survival function, the incremental survival of 2.8 life-years and 1.9 QAL Ys gained per patient treated with Len + Dex over Dex alone was estimated. RESULTS: There were 175 exposures to acetaminophen; 72% were females and 28% were males in the study population. There was no significant difference between the mean age of females (31.2 ± 14.0) and males (30.9 ± 12.3) in years. The mean dose of acetaminophen taken was 18.7 ± 20.4 grams and no significant difference in the amount ingested between males and females. The majority of the callers seeking information on acetaminophen ingestion were health care professionals (68%). The mean time between the exposure and the call made to the RPCC was 11.27 ± 18.54 hours. Fifty percent of the patients received acetylcysteine therapy, 27.4% received decontamination (e.g., activated charcoal), and 22.3% received other interventions for the treatment of acetaminophen poisoning. Females (72.4%) were more likely (p < 0.001) to take intentional overdoses than males (27.6%). The most common acetaminophen exposure site was patient’s own residence (96%). The majority of the exposures were acute (86.9%) rather than chronic poisoning.

CONCLUSION: The main reason for acetaminophen exposure was intentional and females were more likely to ingest intentionally than males. Contacting the RPCC for advice generally occurred beyond the time for optimal acetylcysteine effectiveness. The majority of the exposures were due to acute poisoning.

SYSTEMIC DISORDERS/CONDITIONS—Cost Studies

PROJECTED COST OF CARDIOMETABOLIC RISK FACTORS IN COMMERCIALLY INSURED NORMAL AND OVERWEIGHT PRIMARY CARE PATIENTS

Ghate S1, Said Q2, Huse DI, Ben-Joseph R4, Brixner DI

1University of Utah, Salt Lake City, UT, USA; 2University of Arkansas for Medical Sciences, Little Rock, AR, USA; 3Thomson Medstat, Cambridge, MA, USA; 4Sanofi-Aventis, Bridgewater, NJ, USA; 5The University of Utah College of Pharmacy, Salt Lake City, UT, USA

OBJECTIVE: To determine the economic impact of increased prevalence of cardiometabolic risk (CMR) factors including high blood pressure (BP), loss of glycemic control (DB), high triglycerides (TG) and decreased high density lipoproteins (HDL) in commercially insured overweight patients [Body Mass Index (BMI) > 27 kg/m2] compared to normal weight (18.5 ≤ BMI ≤ 27 kg/m2). METHODS: Patients 18–65 years old were identified from an electronic medical record database (EMR) with CMR factors designated by prescription orders or ICD-9 codes and grouped into normal or overweight categories. Similar patients with CMR factors were identified in Medstat MarketScan® administrative claims database. Using a multivariate two-part regression model, costs from this database were estimated for CMR factors. Probabilities of being normal or overweight from the EMR database were applied to the estimated costs to obtain per patient total annual medical costs for CMR factors stratified by normal and overweight groups. RESULTS: A total of 75,578 patients with CMR factors were identified in the EMR. Normal [18,213 (24%)] versus overweight patients [57,365 (76%)] were distributed as follows: BP, 29% vs. 71%; DB, 19% vs. 81%; TG, 25% vs. 75%; HDL, 37% vs. 63%; any 2 CMR factors, 13% vs. 87%; any 3 CMR factors, 9% vs. 91%; and all 4 CMR factors, 6% vs. 94%. Estimated costs from the claims database were: high BP, $1630; DB, $1748; high TG’s, $638; low HDL, $1474; and $267, $2801, $3191 for 2, 3, and 4 CMR factors, respectively. Applying the probability of normal or overweight and the estimated costs to the distribution of CMR factors resulted in an
increased projected annual cost of $998 per overweight person with CMR factors. CONCLUSION: CMR factors are more prevalent and lead to significantly greater costs in an overweight population. Weight loss interventions of overweight patients may potentially decrease CMR factors and their associated costs.

PSY13

THE HEALTH CARE COST EFFECTS OF DIABETES AMONG OBESE AND MORBIDLY OBESE ADULTS IN THE UNITED STATES

Cawley J¹, Rizzo JA², Haas K³

¹Cornell University, Ithaca, NY, USA, ²Stony Brook University, Stony Brook, NY, USA, ³Ethicon Endo-Surgery, Cincinnati, OH, USA

OBJECTIVE: To determine the extent to which diabetes among obese and morbidly obese subjects affects health care costs, and to determine whether obesity and morbid obesity remain predictors of health care costs after controlling for diabetes.

METHODS: Data from the Medical Expenditure Panel Survey (MEPS) for 2000–2004 are examined. Multivariate models are estimated to predict the probability of incurring any health care costs and health care costs incurred. These models include obesity and morbid obesity, diabetes, age, education, occupation category and race. Models are estimated separately by gender.

Relative to healthy weight individuals, out-of-pocket costs for obese and morbidly obese subjects who are diabetic.

The aggregate out-of-pocket costs of obesity total $9.7 billion, of $1051 for males. The cost increases are even greater among obese and morbidly obese individuals will lead to very substantial cost savings this population and to reduce diabetes among obese and morbidly obese adults in the United States.

PSY14

ECONOMIC EVALUATION OF LENALIDOMIDE USE FOR MULTIPLE MYELOMA IN SCOTLAND IN PATIENTS WHO HAVE RECEIVED ONE PRIOR THERAPY

Deniz B¹, Ishak Kj², Shearer A¹, Dale P³, Caro J¹

¹United BioSource Corporation, Concord, MA, USA, ²United BioSource Corporation, Montreal, QC, Canada, ³Celgene Corporation, Windsor, UK

OBJECTIVE: Lenalidomide in combination with high-dose dexamethasone (Len + Dex), yields improved time to progression (TTP) and survival compared to high-dose dexamethasone alone (Dex). This study aimed to estimate long-term health and cost consequences of Len + Dex versus Dex in Scottish patients with multiple myeloma (MM) who have received one prior therapy.

METHODS: A discrete event simulation of a patient’s course following initiation of Len + Dex or Dex was developed. The model uses patient’s response (complete, partial, stable disease or progressive disease) and estimates corresponding TTP and subsequent survival based on Weibull functions derived from pooled data from two Phase III randomized clinical trials and long-term outcomes of UK Medical Research Council MM trials. Adverse events and disease management costs are included. Utility by response level was obtained from literature. Patients remain on treatment until relapse. Disease management costs reflect clinical practice in Scotland. Costs and health outcomes are discounted at 3.5% per annum. In the base case, events and costs are considered over two years reflecting trial follow-up (survival is modeled until death). 1000 patients are simulated per analysis. Univariate sensitivity analyses are performed around key model parameters.

RESULTS: The modeled median TTP is conservative with Len + Dex at 13.5 months compared with 4.7 months with Dex. This translates to QALY gains: 3.19 vs 1.39. Totals costs with Len + Dex were £56,153 compared to £3819 with Dex, leading to an incremental cost-effectiveness ratio of £28,980 per QALY. Sensitivity analyses showed that outcomes remain consistent through broad changes in key parameters. CONCLUSION: Lenalidomide delivers significant improvements in quality-adjusted survival in a life-limiting orphan disease and yields an estimated incremental cost per QALY which falls within a cost-effective range.

PSY15

COST-EFFECTIVENESS OF ERYTHROPOIESIS STIMULATING AGENT THERAPY BY HEMOGLOBIN TARGETS IN CHRONIC KIDNEY DISEASE

An JJ, Hay JW²

¹University of Southern California, Los Angeles, CA, USA

OBJECTIVE: To evaluate the cost-effectiveness of Erythropoiesis Stimulating Agent (ESA) therapy by hemoglobin (Hb) targets (Hb <10, 10–11, 11–12, 12–13, and >13 g/dL) in Chronic Kidney Disease (CKD) considering the complication of cardiovascular diseases (CVD).

METHODS: Two lifetime decision analyses models for hemodialysis and pre-dialysis patients using backward induction method were developed using parameter values from published literatures and 2006 United States Renal Data System. Direct costs (anemia medication (erythropoietin or darbepoetin), hemodialysis and CVD treatment) and indirect costs (patient and caregiver time cost) were measured in 2006 US Dollars. Effectiveness was measured as quality-adjusted life years (QALYs). All costs and QALYs were discounted at 3% and cost-effectiveness was measured as incremental cost per QALY gained (ICER). Uncertainty was evaluated using one way sensitivity analyses and threshold analyses.

RESULTS: For hemodialysis patients who initiated treatment at age 45, higher hemoglobin targets yielded favorable ICERs ($20,050, $90,387, $67,199 and $112,216 for Hb 10–11 compared to Hb<10, Hb 11–12 compared to Hb 10–11, Hb 12–13 compared to Hb 11–12, and Hb >13 compared to Hb 12–13, respectively). For pre-dialysis patients, Hb 11–12 and Hb 12–13 were dominant strategies compared to Hb 10–11 and Hb 11–12, and ICER for Hb 12–13 compared to Hb >13 was $2404. The results were more favorable for older patients and darbepoetin treatment. Results were robust to sensitivity analyses in pre-dialysis model, but sensitive to the CVD proportion of UK Medical Research Council MM trials. Adverse events and disease management costs are included. Utility by response level was obtained from literature. Patients remain on treatment until relapse. Disease management costs reflect clinical practice in Scotland. Costs and health outcomes are discounted at 3.5% per annum. In the base case, events and costs are considered over two years reflecting trial follow-up (survival is modeled until death). 1000 patients are simulated per analysis. Univariate sensitivity analyses are performed around key model parameters.

CONCLUSION: Anemia treatment with ESA therapy was cost effective even in Hb>13 for hemodialysis patients using a threshold of ICER $120,000 compared to Hb 12–13. For pre-dialysis patients, treatment to Hb 12–13 was the most cost effective. These results showed that higher treatment targets compared to current national guidelines (maintaining Hb 11–12, not exceeding 13) are associated with favorable cost-effectiveness ratios. This is consistent with Medicare’s revised payment policies for ESA treatment.