
Journal of Number Theory 82, 288�298 (2000)

A Remark on the Modularity of Abelian Varieties of
GL2-type over Q

Naoki Murabayashi

Department of Mathematical Sciences, Faculty of Science, Yamagata University,
Yamagata, 990-8560, Japan

E-mail: murabaya�sci.kj.yamagata-u.ac.jp

Communicated by D. Goss

Received May 10, 1999

Let A be an abelian variety of GL2 -type over the rational number field Q,
without complex multiplication. In this paper, we will show that a modularity of A
over the complex number field C implies that of A over Q. � 2000 Academic Press
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1. INTRODUCTION AND A RESULT

Let A be an abelian variety of ``GL2 -type over Q.'' This means that A is
an abelian variety defined over Q whose Q-algebra of endomorphisms of
A defined over Q, denoted by End0

Q (A), is a number field E of degree
equal to the dimension of A. From the results in [7], Ribet conjectured
that any abelian variety of GL2 -type over Q is isogenous over Q to a
Q-simple factor of the jacobian variety J1 (N ) of the modular curve X1 (N )
for some integer N�1, where a Q-simple factor of J1 (N ) is a factor over
Q which has no non-trivial abelian subvarieties defined over Q. This con-
jecture is called the modularity conjecture and is a generalization of the
Taniyama�Shimura conjecture on elliptic curves defined over Q.

Shimura and Ribet gave the description of the Q-simple factors of J1 (N )
in terms of cuspforms of weight two. More precisely, let f =��

n=1 an qn

(q=e2?iz) be a normalized new form of weight two on 11 (M ), where M is
a positive divisor of N. The Hecke ring T=TM is the subring of
EndQ (J1 (M)) generated over Z by all Hecke operators Tn and all
diamond automorphisms (d ) , where EndQ (J1 (M )) denotes the ring of
endomorphisms of J1 (M ) defined over Q and n (resp. d) runs over the set
of positive integers (resp. (Z�MZ)_). Consider the homomorphism of rings
*f : T � C such that Tn [ an and (d ) [ =(d ), where = is the Nebentypus
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of f. Let If be the kernel of *f and Jf be the abelian variety over Q defined
by Jf=J1 (M)�If J1 (M ). Put Ef=Q([an | n�1]). Then Ef is a number field
and its degree is equal to the dimension of Jf . Moreover, the
homomorphism of Q-algebras % : Ef � End0

Q (Jf) defined by an [ ``the
endomorphism of Jf induced by Tn'' is an isomorphism. So Jf is a Q-simple
factor of J1 (M ), hence it is also a Q-simple factor of J1 (N ) because of the
canonical homomorphism from J1 (M ) to J1 (N ) is defined over Q and has
a finite kernel. Conversely, any Q-simple factor of J1 (N ) is isogenous over
Q to Jf for some f as above.

We state some known results on the modularity conjecture. In the case
of dimension one, Conrad et al. proved that any elliptic curves defined over
Q whose conductor is not divided by 33 satisfy the modularity conjecture
[1]. Recently a proof of the full Taniyama�Shimura conjecture was
announced by Breuil, Conrad, Diamond and Taylor. In the case of higher
dimension, Hasegawa et al. showed (by using the results of Taylor�Wiles�
Diamond on the modularity on Galois representations) that for an abelian
variety A of GL2 -type over Q without complex multiplication, if there exist
an odd prime number p and a prime ideal of End0

Q (A) lying over p which
satisfy some conditions, then the modularity conjecture for A is true [2].

In [5] Pyle gave necessary and sufficent conditions for an abelian
variety defined over Q� to be a Q� -simple factor of an abelian variety of
GL2 -type over Q, where Q� denotes a fixed algebraic closure of Q. So if the
modularity conjecture is true, then we can get a characterization of abelian
varieties which are modular over Q� .

In this paper, we will prove the following theorem:

Theorem. Let A be an abelian variety of GL2-type over Q without complex
multiplication. If there exists a non-zero homomorphism .: J1 (N ) � A defined
over the complex number field C for some integer N�1, then A is isogenous
over Q to Jg for some normalized newform g of weight two on 11(M), where
M is a suitable positive integer (which may be different from N).

Here we say that an abelian variety A defined over Q� has complex multi-
plication, if A is isogenous over Q� to a product A1 _ } } } _As with abelian
varieties Ai defined over Q� such that End0

Q� (Ai) is isomorphic to a CM-
field of degree 2 } dim(Ai) for each i. This is so if and only if End0

Q� (A) con-
tains a commutative semi-simple algebra of rank 2 } dim(A) over Q (see
Section 5.1 in [9]). Shimura proved that if an abelian variety A of GL2-type
over Q has complex multiplication, then A is isogenous over Q� to a power
of a CM elliptic curve (see Prop. 1.5 in [8]). So in this case, the structure
of End0

Q� (A) is very simple. But the action of the absolute Galois group
over Q on End0

Q� (A) is more complicated, because End0
Q� (A) is too big and

therefore End0
Q (A) is not a maximal subfield of End0

Q� (A). Hence we
exclude this case.
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Finally, we remark that in the case where the dimension of A is one, this
theorem is equivalent to the result of Mazur in [3] and some ideas of our
proof can be seen in [3]. The essential new idea is to study the action of
the absolute Galois group over Q on the full endomorphism algebra (see
Section 2).

2. THE GALOIS ACTION ON THE FULL
ENDOMORPHISM ALGEBRA

Let A be as in the theorem and n be the dimension of A. Put
E :=End0

Q (A). For any subfield k of Q� , we denote by Endk (A) the ring of
endomorphisms of A defined over k and put End0

k (A) :=Q�Z Endk (A).
Pyle determines the structure of End0

Q� (A) as Q-algebra in [5]: The center
is a totally real subfield F�E and

End0
Q� (A)$Mm (D) ,

where D is F or a division quaternion algebra over F; End0
Q� (A) contains

E as a maximal subfield, i.e.,

[E : F]=- dimF Mm (D)=mt , t={1 if D=F,
2 if otherwise.

We fix an isomorphism i : Mm (D) � End0
Q� (A) and denote by the same

notation E the inverse image i&1 (End0
Q (A)). The absolute Galois group

Gal(Q� �Q) over Q acts on End0
Q� (A) by the action on coefficients of

endomorphisms. Hence for every element _ of Gal(Q� �Q), there exists a
unique isomorphism of F-algebras '_ : Mm (D) � Mm (D) such that the
following diagram commutes:

&| &|

@wwwww�. _.

End0
Q� (A) ww� End0

Q� (A)

i i

Mm (D) '_
Mm (D)

By the Noether�Skolem Theorem and the facts that '_ (x)=x for all x # E
and E is a maximal subfield of Mm (D), there exists a non-zero element
: (_) of E such that

'_ (x)=:(_)&1 x:(_) for all x # Mm (D),
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where : (_) is uniquely determined up to a multiple of non-zero elements
of F. The following two propositions are shown in [5]:

Proposition 2.1. The field E is generated over F by the : (_) for all
_ # Gal(Q� �Q).

Proposition 2.2. The field E is an abelian Galois extension of F.

We define a homomorphism :~ : Gal(Q� �Q) � E_�F _ by _ [ : (_)
mod F _. We denote by K the fixed field of the kernel of :~ . Then K is the
smallest field such that End0

K (A)=End0
Q� (A). By the theory of simple

algebras, we can take an E-basis [a{]{ # G1
of Mm (D), where G1 :=

Gal(E�F ), such that ae=1 and every a{ satisfies the following relations:

a{x={(x) a{ for all x # E

(see Lemma (i), (ii) in [4, p. 251]). For every element { of G1 , we define
a homomorphism ;{ : Gal(Q� �Q) � E_ by

_ [
{(:(_))

:(_)
.

The following lemma can be easily proved:

Lemma 2.3. For every element { of G1 , we have

_i(a{)=i(;{ (_)) b i(a{) for all _ # Gal(Q� �Q).

By this lemma, we can fully understand how Gal(Q� �Q) acts on
End0

Q� (A).

3. THE PROOF OF THE THEOREM

Let the notation be as in Section 2. We suppose that there exists a
non-zero homomorphism . : J1 (N) � A defined over C for some integer
N�1. Since J1 (N) and A are defined over Q, . is defined over Q� . So we
may assume that . is defined over a subfield L of Q� such that L�Q is a
finite Galois extension and L contains K.

By considering the Weil restriction from L to Q of ., we get the
homomorphism

8 : J1 (N ) � RL�Q (A�L)
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defined over Q, where RL�Q (A�L) is the Weil restriction from L to Q of A�L .
So RL�Q (A�L) is an abelian variety defined over Q and it is isomorphic over
L to A[L : Q], where we write Ar=A_ } } } _A (r terms). Since 8 is not a
zero map, we can take a non-zero Q-simple factor C of Im(8)�Q and fix it.
Then there exists a new form f =��

n=1 an qn whose level divides N such
that Jf is isogenous over Q to C, that is expressed by Jf tQ C. We put
H :=Q([an | n�1]). By the Shimura�Ribet theory explained in Section 1,
we have the canonical isomorphism % : H � End0

Q (Jf).
Put M :=HomQ� (A, Jf)�Z Q, where HomQ� (A, Jf) denotes the additive

group of homomorphisms from A to Jf defined over Q� . Then Gal(Q� �Q)
acts on M as well as the case of End0

Q� (A). Moreover, M has the structure
of a left H- and right Mm (D)-module by considering a composition of
homomorphisms. Then the action of Gal(Q� �Q) on M is H-linear.

Lemma 3.1. We have dimH M=[E : F]=mt.

Proof. Let s be the dimension of C. Since End0
Q� (A)=End0

K (A)$
Mm (D), we have

AtK B_ } } } _B (m terms),

where B is a Q� -simple abelian variety defined over K such that End0
Q� (B)=

End0
K (B)$D. Since C is a Q-factor of RL�Q(A�L) and RL�Q (A�L) is isomorphic

over L to A[L : Q], there exists a positive integer r such that CtL Br. By
comparing the dimensions, we have s= rn

m . Since J m
f tL Ar, it follows that

M �m$HomQ� (A, J m
f )�Z Q$HomQ� (A, Ar)�Z Q

$Mm (D) �r

as Q-vector space. So we have

m dimQ M=r dimQ Mm (D)=r [E : F]2 [F : Q]

=r [E : Q] [E : F]

=s m [E : F].

Hence we obtain dimQ M=s [E : F]. Since [H : Q]=s, we get the asser-
tion. K

Let l be a prime number. We denote by Tl (A) the Tate module of
A and put Vl (A) :=Tl (A)�Zl

Ql . Now we consider the module
M�Mm(D) Vl (A) on which Gal(Q� �Q) acts by diagonal and H acts by the
action on M. We define a homomorphism

& : M�Mm(D) Vl (A) � Vl (Jf), '�x [ '(x).

292 NAOKI MURABAYASHI



Proposition 3.2. & is an isomorphism of (left) H�Q Ql [Gal(Q� �Q)]-
modules, where H�Q Ql [Gal(Q� �Q)] denotes the group algebra of Gal(Q� �Q)
over H�Q Ql .

Proof. It is clear that & is a homomorphism of H�Q Ql [Gal(Q� �Q)]-
modules. So we will prove that & is bijective. We consider

&�m : (M�Mm(D) Vl (A))�m Vl (Jf)
�m

"& "&

(M�m)�Mm(D) Vl (A) Vl (J m
f ).

"&

(HomQ� (A, J m
f )�Z Q)�Mm(D) Vl (A)

Since J m
f tL Ar, there exists an isogeny � : J m

f � Ar defined over L. Then,

�* : HomQ� (A, J m
f )�Z Q � HomQ� (A, Ar)�Z Q, '�a [ � b '�a,

is an isomorphism of right Mm (D)-modules. So we have the commutative
diagram:

t
&�m

(HomQ� (A, J m
f )�Z Q)�Mm(D) Vl (A) ww�&�m

Vl (J m
f )

�*�1 �

(HomQ� (A, Ar)�ZQ)�Mm(D) Vl (A) ww� Vl (Ar),

where &�m
t

is a Ql -linear map defined by '$�x$ [ '$(x$) ( '$ # HomQ� (A, Ar)
�Z Q, x$ # Vl (A)) and the vertical maps are isomorphisms of Ql -vector
spaces.

For 1�i�r, we put

qi : A � Ar=A_ } } } _A , x [ (0, ..., 0, x
i�
, 0, ..., 0) .

Then any element y of Vl (Ar) can be written uniquely in the form
y=�r

i=1 q i (x i) ( xi # Vl (A)). So we have

&�m
t

\ :
r

i=1

qi �xi+= y.

Therefore, &�m
t

is surjective. So &�m
t

is bijective because of the equality of
the dimensions over Ql . Hence & is bijective. K

Put M� :=H� �H M. We give M� the structure of a Gal(Q� �Q)-module by
the action on M. Next we will study how Gal(Q� �Q) acts on M� . Since M
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is a left H- and right Mm (D)-module, M� is a left H� - and right Mm (D)-
module. In particular, E (�Mm (D)) acts H� -linearly on M� on the right.
Since E is commutative, this action corresponds to a homomorphism of
Q-algebras

j : E � Mmt (H� )

by taking a H� -basis of M� . E is generated over Q by some single element
a as a Q-algebra. Since the minimal polynomial of j(a) divides the minimal
polynomial of a over Q, the minimal polynomial of j(a) has no multiple
roots. So j(a) is diagonalizable. Therefore j is equivalent to a direct sum of
mt isomorphisms of E into H� . Take an isomorphism @ which appears in this
sum and hereafter we see E as a subfield of H� by @. Then we can determine
the other isomorphisms appearing in this sum:

Lemma 3.3. j is equivalent to �{ # G1
{.

Proof. We can take a element ' ({0) # M� such that ' b i(x)=x ' for
all x # E. Then for any x # E and any { # G1 , we have

(' b i(a{)) b i(x)=' b i(a{ x)=' b i({(x) a{)

=(' b i({(x))) b i(a{)

={(x) ' b i(a{). (3.3)

So the isomorphism { : E � E�H� appears in the direct sum. Since
|G1 |=mt, we have j$�{ # G1

{. K

We put '{ :=' b i(a{) for any { # G1 . Then ['{]{ # G1
is a H� -basis of M� .

Lemma 3.4. There exists a Dirichlet character

/ : Gal(Q� �Q) � H� _

such that _'=/(_) ' for all _ # Gal(Q� �Q).

Proof. For any x # E, we have

_' b i(x)=_' b _i(x)=_ (' b i(x))=_ (x ')=x _'.

So _' must be a scalar multiple of '. Hence the assertion holds. K

Lemma 3.5. For any { # G1 , we have _'{=/(_) ;{ (_) '{ (\_ # Gal(Q� �Q)).
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Proof. We have

_'{= _ (' b i(a{))=_' b _i(a{)=/(_) ' b i(;{ (_)) b i(a{)

=/(_) ;{ (_) ' b i(a{)

=/(_) ;{ (_) '{ .

Hence we get the assertion. K

We denote by H� (/&1) the (left) H� [Gal(Q� �Q)]-module which is
isomorphic to H� as H� -module and on which Gal(Q� �Q) acts by
_ x=/(_)&1 x for all _ # Gal(Q� �Q) and x # H� . We define an isomorphism
of H� -vector spaces

\ : H� (/&1)�H� M� � H� �E Mm (D), :
{ # G1

b{ �'{ [ :
{ # G1

b{ �a{ .

Proposition 3.6. \ is a homomorphism of Gal(Q� �Q)-modules.

Proof. For any _ # Gal(Q� �Q), we have

\ \
_

\ :
{ # G1

b{ �'{++=\ \ :
{ # G1

(/(_)&1 b{)� _'{+
=\ \ :

{ # G1

(/(_)&1b{)� (/(_) ;{ (_) '{)+
=\ \ :

{ # G1

(b{;{ (_))�'{+
= :

{ # G1

(b{;{ (_))�a{

= :
{ # G1

b{ � (;{ (_) a{)

= :
{ # G1

b{ � _a{ (because of _i(a{)=i(;{ (_) a{))

=
_

\ :
{ # G1

b{ �a{+
= _\ \ :

{ # G1

b{ �'{+ .

So we get the assertion.

Proposition 3.7. \ is a homomorphism of right Mm (D)-modules.
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Proof. For any x # E, we have

\ \\ :
{ # G1

b{ �'{+ } x+=\ \ :
{ # G1

b{ � ('{ b i(x))+
=\ \ :

{ # G1

(b{{(x))�'{+
= :

{ # G1

(b{{(x))�a{

= :
{ # G1

b{ � ({(x) a{)

= :
{ # G1

b{ � (a{x)

=\ :
{ # G1

b{ �a{+ } x=\ \ :
{ # G1

b{ �'{+ } x.

Now we remark that for any {, {$ # G1 , there exists a unique c({, {$) # E _

such that a{a{$=c({, {$) a{{$ . Then for any {$ # G1 , we have

\ \\ :
{ # G1

b{ �'{+ } a{$+=\ \ :
{ # G1

b{ � ('{ b i(a{$))+
=\ \ :

{ # G1

b{ � (' b i(a{) b i(a{$))+
=\ \ :

{ # G1

b{ � (' b i( c({, {$) a{{$))+
=\ \ :

{ # G1

b{ � ( c({, {$) '{{$)+
=\ \ :

{ # G1

(b{ c({, {$))�'{{$+
= :

{ # G1

(b{c({, {$))�a{{$

= :
{ # G1

b{ � ( c({, {$) a{{$)

= :
{ # G1

b{ � (a{a{$)

=\ :
{ # G1

b{ �a{+ } a{$=\ \ :
{ # G1

b{ �'{+ } a{$ .

Since Mm (D)=�{ # G1
E a{ , we obtain the assertion. K
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Proposition 3.8. We have

H� �E Vl (A)$H� (/&1)�H Vl (Jf)

as a (left) H� �Q Ql [Gal(Q� �Q)]-module.

Proof. By Proposition 3.2, M�Mm(D) Vl (A)$Vl (Jf). So we have

H� �H (M�Mm(D) Vl (A))$H� �H Vl (Jf).

"&

(H� �H M )�Mm(D) Vl (A)

&

M� �Mm(D) Vl (A)

By considering the tensor product with H� (/&1) over H� , we get

H� (/&1)�H� (M� �Mm(D) Vl (A))$H� (/&1)�H� (H� �H Vl (Jf)).

From Propositions 3.6 and 3.7, the left-hand side is isomorphic to

( H� (/&1)�H� M� )�Mm(D) Vl (A)$( H� �E Mm (D))�Mm(D) Vl (A)

$H� �E (Mm (D)�Mm(D) Vl (A))

$H� �E Vl (A).

On the other hand, the right hand side is isomorphic to H� (/&1)�H Vl (Jf).
Hence the assertion is proved. K

Take any prime number p satisfying the conditions: (i) A has good
reduction at p; (ii) ( p, lN1)=1, where N1 is the level of f; (iii) p does not
divide the conductor of /. Let _p # Gal(Q� �Q) be a Frobenius element at p.
Since Vl (A) is free of rank 2 over E�Q Ql , we can consider the trace
(resp. determinant) of _p acting on Vl (A) over E�Q Ql . By Proposition
3.8, the trace (resp. determinant) of _p over E�Q Ql is equal to /(_p)&1 ap

(resp. /(_p)&2 =( p) p ), where f =��
n=1 anqn and = is the Nebentypus of f.

By the theory of twists of modular forms ([6]), there is a unique newform
g=��

n=1 bnqn such that bp=/&1 (_p) ap for all p satisfying the above con-
dition (iii). It is also known that the Nebentypus of g coincides with /&2=.
Hence we see that the characteristic polynomial of _p acting on Vl (A) over
E�Q Ql is equal to that of _p acting on Vl (Jg) over E�Q Ql . By Isogeny
Theorem, this shows that AtQ Jg . We have finished the proof of the
theorem.
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