A Remark on the Modularity of Abelian Varieties of GL_{2}-type over \mathbf{Q}

Naoki Murabayashi
Department of Mathematical Sciences, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
E-mail: murabaya@sci.kj.yamagata-u.ac.jp
Communicated by D. Goss

Received May 10, 1999
iew metadata, citation and similar papers at core.ac.uk
over the complex number field C implies that of A over Q. © 2000 Academic Press Key Words: abelian variety; GL_{2}-type; modularity.

1. INTRODUCTION AND A RESULT

Let A be an abelian variety of "GL L_{2}-type over \mathbf{Q}." This means that A is an abelian variety defined over \mathbf{Q} whose \mathbf{Q}-algebra of endomorphisms of A defined over \mathbf{Q}, denoted by $\operatorname{End}_{\mathbf{Q}}^{0}(A)$, is a number field E of degree equal to the dimension of A. From the results in [7], Ribet conjectured that any abelian variety of GL_{2}-type over \mathbf{Q} is isogenous over \mathbf{Q} to a Q-simple factor of the jacobian variety $J_{1}(N)$ of the modular curve $X_{1}(N)$ for some integer $N \geqslant 1$, where a \mathbf{Q}-simple factor of $J_{1}(N)$ is a factor over \mathbf{Q} which has no non-trivial abelian subvarieties defined over \mathbf{Q}. This conjecture is called the modularity conjecture and is a generalization of the Taniyama-Shimura conjecture on elliptic curves defined over \mathbf{Q}.

Shimura and Ribet gave the description of the \mathbf{Q}-simple factors of $J_{1}(N)$ in terms of cuspforms of weight two. More precisely, let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ ($q=e^{2 \pi i z}$) be a normalized new form of weight two on $\Gamma_{1}(M)$, where M is a positive divisor of N. The Hecke ring $\mathbf{T}=\mathbf{T}_{M}$ is the subring of $\operatorname{End}_{\mathbf{Q}}\left(J_{1}(M)\right)$ generated over \mathbf{Z} by all Hecke operators T_{n} and all diamond automorphisms $\langle d\rangle$, where $\operatorname{End}_{\mathbf{Q}}\left(J_{1}(M)\right)$ denotes the ring of endomorphisms of $J_{1}(M)$ defined over \mathbf{Q} and n (resp. d) runs over the set of positive integers (resp. $\left.(\mathbf{Z} / M \mathbf{Z})^{\times}\right)$. Consider the homomorphism of rings $\lambda_{f}: \mathbf{T} \rightarrow \mathbf{C}$ such that $T_{n} \mapsto a_{n}$ and $\langle d\rangle \mapsto \varepsilon(d)$, where ε is the Nebentypus
of f. Let \mathbf{I}_{f} be the kernel of λ_{f} and J_{f} be the abelian variety over \mathbf{Q} defined by $J_{f}=J_{1}(M) / \mathbf{I}_{f} J_{1}(M)$. Put $E_{f}=\mathbf{Q}\left(\left\{a_{n} \mid n \geqslant 1\right\}\right)$. Then E_{f} is a number field and its degree is equal to the dimension of J_{f}. Moreover, the homomorphism of \mathbf{Q}-algebras $\theta: E_{f} \rightarrow \operatorname{End}_{\mathbf{Q}}^{0}\left(J_{f}\right)$ defined by $a_{n} \mapsto$ "the endomorphism of J_{f} induced by $T_{n} "$ is an isomorphism. So J_{f} is a \mathbf{Q}-simple factor of $J_{1}(M)$, hence it is also a Q-simple factor of $J_{1}(N)$ because of the canonical homomorphism from $J_{1}(M)$ to $J_{1}(N)$ is defined over \mathbf{Q} and has a finite kernel. Conversely, any \mathbf{Q}-simple factor of $J_{1}(N)$ is isogenous over Q to J_{f} for some f as above.

We state some known results on the modularity conjecture. In the case of dimension one, Conrad et al. proved that any elliptic curves defined over \mathbf{Q} whose conductor is not divided by 3^{3} satisfy the modularity conjecture [1]. Recently a proof of the full Taniyama-Shimura conjecture was announced by Breuil, Conrad, Diamond and Taylor. In the case of higher dimension, Hasegawa et al. showed (by using the results of Taylor-WilesDiamond on the modularity on Galois representations) that for an abelian variety A of GL_{2}-type over \mathbf{Q} without complex multiplication, if there exist an odd prime number p and a prime ideal of $\operatorname{End}_{\mathbf{Q}}^{0}(A)$ lying over p which satisfy some conditions, then the modularity conjecture for A is true [2].

In [5] Pyle gave necessary and sufficent conditions for an abelian variety defined over $\overline{\mathbf{Q}}$ to be a $\overline{\mathbf{Q}}$-simple factor of an abelian variety of GL_{2}-type over \mathbf{Q}, where $\overline{\mathbf{Q}}$ denotes a fixed algebraic closure of \mathbf{Q}. So if the modularity conjecture is true, then we can get a characterization of abelian varieties which are modular over $\overline{\mathbf{Q}}$.

In this paper, we will prove the following theorem:
Theorem. Let A be an abelian variety of $G L_{2}$-type over \mathbf{Q} without complex multiplication. If there exists a non-zero homomorphism $\varphi: J_{1}(N) \rightarrow A$ defined over the complex number field \mathbf{C} for some integer $N \geqslant 1$, then A is isogenous over \mathbf{Q} to J_{g} for some normalized newform g of weight two on $\Gamma_{1}(M)$, where M is a suitable positive integer (which may be different from N).

Here we say that an abelian variety A defined over $\overline{\mathbf{Q}}$ has complex multiplication, if A is isogenous over $\overline{\mathbf{Q}}$ to a product $A_{1} \times \cdots \times A_{s}$ with abelian varieties A_{i} defined over $\overline{\mathbf{Q}}$ such that $\operatorname{End}_{\overline{\mathbf{Q}}}^{0}\left(A_{i}\right)$ is isomorphic to a CMfield of degree $2 \cdot \operatorname{dim}\left(A_{i}\right)$ for each i. This is so if and only if $\operatorname{End}_{\mathbf{Q}}^{0}(A)$ contains a commutative semi-simple algebra of rank $2 \cdot \operatorname{dim}(A)$ over \mathbf{Q} (see Section 5.1 in [9]). Shimura proved that if an abelian variety A of GL_{2}-type over \mathbf{Q} has complex multiplication, then A is isogenous over $\overline{\mathbf{Q}}$ to a power of a CM elliptic curve (see Prop. 1.5 in [8]). So in this case, the structure of $\operatorname{End}_{\mathbf{Q}}^{0}(A)$ is very simple. But the action of the absolute Galois group over \mathbf{Q} on $\operatorname{End}_{\mathbf{Q}}^{0}(A)$ is more complicated, because $\operatorname{End}_{\mathbf{Q}}^{0}(A)$ is too big and therefore $\operatorname{End}_{\mathbf{Q}}^{0}(A)$ is not a maximal subfield of $\operatorname{End}_{\mathbf{Q}}^{0}(A)$. Hence we exclude this case.

Finally, we remark that in the case where the dimension of A is one, this theorem is equivalent to the result of Mazur in [3] and some ideas of our proof can be seen in [3]. The essential new idea is to study the action of the absolute Galois group over \mathbf{Q} on the full endomorphism algebra (see Section 2).

2. THE GALOIS ACTION ON THE FULL ENDOMORPHISM ALGEBRA

Let A be as in the theorem and n be the dimension of A. Put $E:=\operatorname{End}_{\mathbf{Q}}^{0}(A)$. For any subfield k of $\overline{\mathbf{Q}}$, we denote by $\operatorname{End}_{k}(A)$ the ring of endomorphisms of A defined over k and put $\operatorname{End}_{k}^{0}(A):=\mathbf{Q} \otimes_{\mathbf{Z}} \operatorname{End}_{k}(A)$. Pyle determines the structure of $\operatorname{End}_{\mathbf{Q}}^{0}(A)$ as \mathbf{Q}-algebra in [5]: The center is a totally real subfield $F \subseteq E$ and

$$
\operatorname{End}_{\mathbf{Q}}^{0}(A) \cong \mathrm{M}_{m}(D),
$$

where D is F or a division quaternion algebra over $F ; \operatorname{End}_{\mathbf{Q}}^{0}(A)$ contains E as a maximal subfield, i.e.,

$$
[E: F]=\sqrt{\operatorname{dim}_{F} \mathrm{M}_{m}(D)}=m t, t= \begin{cases}1 & \text { if } D=F, \\ 2 & \text { if otherwise. }\end{cases}
$$

We fix an isomorphism $i: \mathrm{M}_{m}(D) \rightarrow \operatorname{End}_{\mathbf{Q}}^{0}(A)$ and denote by the same notation E the inverse image $i^{-1}\left(\operatorname{End}_{\mathbf{Q}}^{0}(A)\right)$. The absolute Galois group $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ over \mathbf{Q} acts on $\operatorname{End}_{\mathbf{Q}}^{0}(A)$ by the action on coefficients of endomorphisms. Hence for every element σ of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, there exists a unique isomorphism of F-algebras $\eta_{\sigma}: \mathrm{M}_{m}(D) \rightarrow \mathrm{M}_{m}(D)$ such that the following diagram commutes:

By the Noether-Skolem Theorem and the facts that $\eta_{\sigma}(x)=x$ for all $x \in E$ and E is a maximal subfield of $\mathrm{M}_{m}(D)$, there exists a non-zero element $\alpha(\sigma)$ of E such that

$$
\eta_{\sigma}(x)=\alpha(\sigma)^{-1} x \alpha(\sigma) \quad \text { for all } \quad x \in \mathrm{M}_{m}(D),
$$

where $\alpha(\sigma)$ is uniquely determined up to a multiple of non-zero elements of F. The following two propositions are shown in [5]:

Proposition 2.1. The field E is generated over F by the $\alpha(\sigma)$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$.

Proposition 2.2. The field E is an abelian Galois extension of F.
We define a homomorphism $\tilde{\alpha}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow E^{\times} / F^{\times}$by $\sigma \mapsto \alpha(\sigma)$ $\bmod F^{\times}$. We denote by K the fixed field of the kernel of $\tilde{\alpha}$. Then K is the smallest field such that $\operatorname{End}_{K}^{0}(A)=\operatorname{End}_{\mathbf{Q}}^{0}(A)$. By the theory of simple algebras, we can take an E-basis $\left\{a_{\tau}\right\}_{\tau \in G_{1}}$ of $\mathrm{M}_{m}(D)$, where $G_{1}:=$ $\operatorname{Gal}(E / F)$, such that $a_{e}=1$ and every a_{τ} satisfies the following relations:

$$
a_{\tau} x=\tau(x) a_{\tau} \quad \text { for all } \quad x \in E
$$

(see Lemma (i), (ii) in [4, p. 251]). For every element τ of G_{1}, we define a homomorphism $\beta_{\tau}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow E^{\times}$by

$$
\sigma \mapsto \frac{\tau(\alpha(\sigma))}{\alpha(\sigma)} .
$$

The following lemma can be easily proved:

Lemma 2.3. For every element τ of G_{1}, we have

$$
{ }^{\sigma} i\left(a_{\tau}\right)=i\left(\beta_{\tau}(\sigma)\right) \circ i\left(a_{\tau}\right) \quad \text { for all } \quad \sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) .
$$

By this lemma, we can fully understand how $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ acts on $\operatorname{End}_{\mathbf{Q}}^{0}(A)$.

3. THE PROOF OF THE THEOREM

Let the notation be as in Section 2. We suppose that there exists a non-zero homomorphism $\varphi: J_{1}(N) \rightarrow A$ defined over \mathbf{C} for some integer $N \geqslant 1$. Since $J_{1}(N)$ and A are defined over \mathbf{Q}, φ is defined over $\overline{\mathbf{Q}}$. So we may assume that φ is defined over a subfield L of $\overline{\mathbf{Q}}$ such that L / \mathbf{Q} is a finite Galois extension and L contains K.

By considering the Weil restriction from L to \mathbf{Q} of φ, we get the homomorphism

$$
\Phi: J_{1}(N) \rightarrow R_{L / \mathbf{Q}}\left(A_{/ L}\right)
$$

defined over \mathbf{Q}, where $R_{L / \mathbf{Q}}\left(A_{/ L}\right)$ is the Weil restriction from L to \mathbf{Q} of $A_{/ L}$. So $R_{L / \mathbf{Q}}\left(A_{/ L}\right)$ is an abelian variety defined over \mathbf{Q} and it is isomorphic over L to $A^{[L: \mathbf{Q]}}$, where we write $A^{r}=A \times \cdots \times A(r$ terms $)$. Since Φ is not a zero map, we can take a non-zero \mathbf{Q}-simple factor C of $\operatorname{Im}(\Phi)_{/ \mathbf{Q}}$ and fix it. Then there exists a new form $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ whose level divides N such that J_{f} is isogenous over \mathbf{Q} to C, that is expressed by $J_{f} \sim_{\mathbf{Q}} C$. We put $H:=\mathbf{Q}\left(\left\{a_{n} \mid n \geqslant 1\right\}\right)$. By the Shimura-Ribet theory explained in Section 1, we have the canonical isomorphism $\theta: H \rightarrow \operatorname{End}_{\mathbf{Q}}^{0}\left(J_{f}\right)$.

Put $M:=\operatorname{Hom}_{\overline{\mathbf{Q}}}\left(A, J_{f}\right) \otimes_{\mathbf{Z}} \mathbf{Q}$, where $\operatorname{Hom}_{\overline{\mathbf{Q}}}\left(A, J_{f}\right)$ denotes the additive group of homomorphisms from A to J_{f} defined over $\overline{\mathbf{Q}}$. Then $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ acts on M as well as the case of $\operatorname{End}_{\mathbf{Q}}^{0}(A)$. Moreover, M has the structure of a left H - and right $\mathrm{M}_{m}(D)$-module by considering a composition of homomorphisms. Then the action of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ on M is H-linear.

Lemma 3.1. We have $\operatorname{dim}_{H} M=[E: F]=m t$.
Proof. Let s be the dimension of C. Since $\operatorname{End}_{\mathbf{Q}}^{0}(A)=\operatorname{End}_{K}^{0}(A) \cong$ $\mathrm{M}_{m}(D)$, we have

$$
A \sim_{K} B \times \cdots \times B \quad(m \text { terms })
$$

where B is a $\overline{\mathbf{Q}}$-simple abelian variety defined over K such that $\operatorname{End}_{\mathbf{Q}}^{0}(B)=$ $\operatorname{End}_{K}^{0}(B) \cong D$. Since C is a \mathbf{Q}-factor of $R_{L / \mathbf{Q}}\left(A_{/ L}\right)$ and $R_{L / \mathbf{Q}}\left(A_{/ L}\right)$ is isomorphic over L to $A^{[L: \mathbf{Q}]}$, there exists a positive integer r such that $C \sim_{L} B^{r}$. By comparing the dimensions, we have $s=\frac{r n}{m}$. Since $J_{f}^{m} \sim_{L} A^{r}$, it follows that

$$
\begin{aligned}
M^{\oplus m} & \cong \operatorname{Hom}_{\overline{\mathbf{Q}}}\left(A, J_{f}^{m}\right) \otimes_{\mathbf{Z}} \mathbf{Q} \cong \operatorname{Hom}_{\overline{\mathbf{Q}}}\left(A, A^{r}\right) \otimes_{\mathbf{Z}} \mathbf{Q} \\
& \cong \mathrm{M}_{m}(D)^{\oplus r}
\end{aligned}
$$

as \mathbf{Q}-vector space. So we have

$$
\begin{aligned}
m \operatorname{dim}_{\mathbf{Q}} M=r \operatorname{dim}_{\mathbf{Q}} \mathbf{M}_{m}(D) & =r[E: F]^{2}[F: \mathbf{Q}] \\
& =r[E: \mathbf{Q}][E: F] \\
& =\operatorname{sm}[E: F] .
\end{aligned}
$$

Hence we obtain $\operatorname{dim}_{\mathbf{Q}} M=s[E: F]$. Since $[H: \mathbf{Q}]=s$, we get the assertion.

Let ℓ be a prime number. We denote by $T_{\ell}(A)$ the Tate module of A and put $V_{\ell}(A):=T_{\ell}(A) \otimes_{\mathbf{Z}_{t}} \mathbf{Q}_{\ell}$. Now we consider the module $M \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A)$ on which $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ acts by diagonal and H acts by the action on M. We define a homomorphism

$$
v: M \otimes_{\mathrm{M}_{m}(D)} V_{\ell}(A) \rightarrow V_{\ell}\left(J_{f}\right), \quad \eta \otimes x \mapsto \eta(x) .
$$

Proposition 3.2. v is an isomorphism of (left $) H \otimes_{\mathbf{Q}} \mathbf{Q}_{\iota}[\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})]$ modules, where $H \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}[\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})]$ denotes the group algebra of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ over $H \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$.

Proof. It is clear that v is a homomorphism of $H \otimes_{\mathbf{Q}} \mathbf{Q}_{\epsilon}[\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})]$ modules. So we will prove that v is bijective. We consider

$$
\begin{array}{cc}
v^{\oplus m}: & \left(M \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A)\right)^{\oplus m} \longrightarrow V_{\ell}\left(J_{f}\right)^{\oplus m} \\
\imath \| & \imath \| \\
\left(M^{\oplus m}\right) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A) & V_{\ell}\left(J_{f}^{m}\right) . \\
\imath \| & \\
\left(\operatorname{Hom}_{\overline{\mathbf{Q}}}\left(A, J_{f}^{m}\right) \otimes_{\mathbf{Z}} \mathbf{Q}\right) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A) &
\end{array}
$$

Since $J_{f}^{m} \sim_{L} A^{r}$, there exists an isogeny $\psi: J_{f}^{m} \rightarrow A^{r}$ defined over L. Then,

$$
\psi^{*}: \operatorname{Hom}_{\overline{\mathbf{Q}}}\left(A, J_{f}^{m}\right) \otimes_{\mathbf{Z}} \mathbf{Q} \rightarrow \operatorname{Hom}_{\overline{\mathbf{Q}}}\left(A, A^{r}\right) \otimes_{\mathbf{Z}} \mathbf{Q}, \quad \eta \otimes a \mapsto \psi \circ \eta \otimes a,
$$

is an isomorphism of right $\mathrm{M}_{m}(D)$-modules. So we have the commutative diagram:

$$
\begin{gathered}
\left(\operatorname{Hom}_{\overline{\mathbf{Q}}}\left(A, J_{f}^{m}\right) \otimes_{\mathbf{Z}} \mathbf{Q}\right) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A) \xrightarrow{\psi^{*} \otimes 1} \mid \\
\downarrow \\
\left(\operatorname{Hom}_{\overline{\mathbf{Q}}}\left(A, A^{r}\right) \otimes_{\mathbf{Z}} \mathbf{Q}\right) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A) \xrightarrow[\widetilde{\oplus^{\oplus} m}]{ } V_{\ell}\left(J_{f}^{m}\right) \\
V_{\ell}\left(A^{r}\right),
\end{gathered}
$$

where $\widetilde{v^{\oplus m}}$ is a \mathbf{Q}_{ℓ}-linear map defined by $\eta^{\prime} \otimes x^{\prime} \mapsto \eta^{\prime}\left(x^{\prime}\right)\left(\eta^{\prime} \in \operatorname{Hom}_{\overline{\mathbf{Q}}}\left(A, A^{r}\right)\right.$ $\left.\otimes_{\mathbf{Z}} \mathbf{Q}, x^{\prime} \in V_{\ell}(A)\right)$ and the vertical maps are isomorphisms of \mathbf{Q}_{ℓ}-vector spaces.

For $1 \leqslant i \leqslant r$, we put

$$
q_{i}: A \rightarrow A^{r}=A \times \cdots \times A, x \mapsto(0, \ldots, 0, \underset{\hat{i}}{x}, 0, \ldots, 0) .
$$

Then any element y of $V_{\ell}\left(A^{r}\right)$ can be written uniquely in the form $y=\sum_{i=1}^{r} q_{i}\left(x_{i}\right)\left(x_{i} \in V_{\ell}(A)\right)$. So we have

$$
\widetilde{v^{\oplus m}}\left(\sum_{i=1}^{r} q_{i} \otimes x_{i}\right)=y
$$

Therefore, $\widetilde{v^{\oplus m}}$ is surjective. So $\widetilde{v^{\oplus m}}$ is bijective because of the equality of the dimensions over \mathbf{Q}_{ℓ}. Hence v is bijective.

Put $\bar{M}:=\bar{H} \otimes_{H} M$. We give \bar{M} the structure of a $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$-module by the action on M. Next we will study how $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ acts on \bar{M}. Since M
is a left H - and right $\mathrm{M}_{m}(D)$-module, \bar{M} is a left \bar{H} - and right $\mathrm{M}_{m}(D)$ module. In particular, $E\left(\subseteq \mathrm{M}_{m}(D)\right)$ acts \bar{H}-linearly on \bar{M} on the right. Since E is commutative, this action corresponds to a homomorphism of Q-algebras

$$
j: E \rightarrow \mathrm{M}_{m t}(\bar{H})
$$

by taking a \bar{H}-basis of $\bar{M} . E$ is generated over \mathbf{Q} by some single element a as a \mathbf{Q}-algebra. Since the minimal polynomial of $j(a)$ divides the minimal polynomial of a over \mathbf{Q}, the minimal polynomial of $j(a)$ has no multiple roots. So $j(a)$ is diagonalizable. Therefore j is equivalent to a direct sum of $m t$ isomorphisms of E into \bar{H}. Take an isomorphism l which appears in this sum and hereafter we see E as a subfield of \bar{H} by l. Then we can determine the other isomorphisms appearing in this sum:

Lemma 3.3. j is equivalent to $\sum_{\tau \in G_{1}} \tau$.
Proof. We can take a element $\eta(\neq 0) \in \bar{M}$ such that $\eta \circ i(x)=x \eta$ for all $x \in E$. Then for any $x \in E$ and any $\tau \in G_{1}$, we have

$$
\begin{align*}
\left(\eta \circ i\left(a_{\tau}\right)\right) \circ i(x)=\eta \circ i\left(a_{\tau} x\right) & =\eta \circ i\left(\tau(x) a_{\tau}\right) \\
& =(\eta \circ i(\tau(x))) \circ i\left(a_{\tau}\right) \\
& =\tau(x) \eta \circ i\left(a_{\tau}\right) . \tag{3.3}
\end{align*}
$$

So the isomorphism $\tau: E \rightarrow E \subseteq \bar{H}$ appears in the direct sum. Since $\left|G_{1}\right|=m t$, we have $j \cong \sum_{\tau \in G_{1}} \tau$.

We put $\eta_{\tau}:=\eta \circ i\left(a_{\tau}\right)$ for any $\tau \in G_{1}$. Then $\left\{\eta_{\tau}\right\}_{\tau \in G_{1}}$ is a \bar{H}-basis of \bar{M}.
Lemma 3.4. There exists a Dirichlet character

$$
\chi: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow \bar{H}^{\times}
$$

such that ${ }^{\sigma} \eta=\chi(\sigma) \eta$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$.
Proof. For any $x \in E$, we have

$$
{ }^{\sigma} \eta \circ i(x)={ }^{\sigma} \eta \circ{ }^{\sigma} i(x)={ }^{\sigma}(\eta \circ i(x))={ }^{\sigma}(x \eta)=x^{\sigma} \eta .
$$

So ${ }^{\sigma} \eta$ must be a scalar multiple of η. Hence the assertion holds.
Lemma 3.5. For any $\tau \in G_{1}$, we have ${ }^{\sigma} \eta_{\tau}=\chi(\sigma) \beta_{\tau}(\sigma) \eta_{\tau}(\forall \sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}))$.

Proof. We have

$$
\begin{aligned}
{ }^{\sigma} \eta_{\tau}={ }^{\sigma}\left(\eta \circ i\left(a_{\tau}\right)\right)={ }^{\sigma} \eta \circ{ }^{\sigma} i\left(a_{\tau}\right) & =\chi(\sigma) \eta \circ i\left(\beta_{\tau}(\sigma)\right) \circ i\left(a_{\tau}\right) \\
& =\chi(\sigma) \beta_{\tau}(\sigma) \eta \circ i\left(a_{\tau}\right) \\
& =\chi(\sigma) \beta_{\tau}(\sigma) \eta_{\tau}
\end{aligned}
$$

Hence we get the assertion. I
We denote by $\bar{H}\left(\chi^{-1}\right)$ the (left) $\bar{H}[\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})]$-module which is isomorphic to \bar{H} as \bar{H}-module and on which $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ acts by $\sigma x=\chi(\sigma)^{-1} x$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ and $x \in \bar{H}$. We define an isomorphism of \bar{H}-vector spaces

$$
\rho: \bar{H}\left(\chi^{-1}\right) \otimes_{\bar{H}} \bar{M} \rightarrow \bar{H} \otimes_{E} \mathrm{M}_{m}(D), \quad \sum_{\tau \in G_{1}} b_{\tau} \otimes \eta_{\tau} \mapsto \sum_{\tau \in G_{1}} b_{\tau} \otimes a_{\tau} .
$$

Proposition 3.6. $\quad \rho$ is a homomorphism of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$-modules.
Proof. For any $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, we have

$$
\begin{aligned}
\rho\left({ }^{\sigma}\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes \eta_{\tau}\right)\right) & =\rho\left(\sum_{\tau \in G_{1}}\left(\chi(\sigma)^{-1} b_{\tau}\right) \otimes{ }^{\sigma} \eta_{\tau}\right) \\
& =\rho\left(\sum_{\tau \in G_{1}}\left(\chi(\sigma)^{-1} b_{\tau}\right) \otimes\left(\chi(\sigma) \beta_{\tau}(\sigma) \eta_{\tau}\right)\right) \\
& =\rho\left(\sum_{\tau \in G_{1}}\left(b_{\tau} \beta_{\tau}(\sigma)\right) \otimes \eta_{\tau}\right) \\
& =\sum_{\tau \in G_{1}}\left(b_{\tau} \beta_{\tau}(\sigma)\right) \otimes a_{\tau} \\
& =\sum_{\tau \in G_{1}} b_{\tau} \otimes\left(\beta_{\tau}(\sigma) a_{\tau}\right) \\
& =\sum_{\tau \in G_{1}} b_{\tau} \otimes{ }^{\sigma} a_{\tau}\left(\text { because of }{ }^{\sigma} i\left(a_{\tau}\right)=i\left(\beta_{\tau}(\sigma) a_{\tau}\right)\right) \\
& ={ }^{\sigma}\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes a_{\tau}\right) \\
& ={ }^{\sigma} \rho\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes \eta_{\tau}\right)
\end{aligned}
$$

So we get the assertion.
Proposition 3.7. $\quad \rho$ is a homomorphism of right $\mathrm{M}_{m}(D)$-modules.

Proof. For any $x \in E$, we have

$$
\begin{aligned}
\rho\left(\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes \eta_{\tau}\right) \cdot x\right) & =\rho\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes\left(\eta_{\tau} \circ i(x)\right)\right) \\
& =\rho\left(\sum_{\tau \in G_{1}}\left(b_{\tau} \tau(x)\right) \otimes \eta_{\tau}\right) \\
& =\sum_{\tau \in G_{1}}\left(b_{\tau} \tau(x)\right) \otimes a_{\tau} \\
& =\sum_{\tau \in G_{1}} b_{\tau} \otimes\left(\tau(x) a_{\tau}\right) \\
& =\sum_{\tau \in G_{1}} b_{\tau} \otimes\left(a_{\tau} x\right) \\
& =\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes a_{\tau}\right) \cdot x=\rho\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes \eta_{\tau}\right) \cdot x .
\end{aligned}
$$

Now we remark that for any $\tau, \tau^{\prime} \in G_{1}$, there exists a unique $c\left(\tau, \tau^{\prime}\right) \in E^{\times}$ such that $a_{\tau} a_{\tau^{\prime}}=c\left(\tau, \tau^{\prime}\right) a_{\tau \tau^{\prime}}$. Then for any $\tau^{\prime} \in G_{1}$, we have

$$
\begin{aligned}
\rho\left(\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes \eta_{\tau}\right) \cdot a_{\tau^{\prime}}\right) & =\rho\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes\left(\eta_{\tau} \circ i\left(a_{\tau^{\prime}}\right)\right)\right) \\
& =\rho\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes\left(\eta \circ i\left(a_{\tau}\right) \circ i\left(a_{\tau^{\prime}}\right)\right)\right) \\
& =\rho\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes\left(\eta \circ i\left(c\left(\tau, \tau^{\prime}\right) a_{\tau \tau^{\prime}}\right)\right)\right) \\
& =\rho\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes\left(c\left(\tau, \tau^{\prime}\right) \eta_{\tau \tau^{\prime}}\right)\right) \\
& =\rho\left(\sum_{\tau \in G_{1}}\left(b_{\tau} c\left(\tau, \tau^{\prime}\right)\right) \otimes \eta_{\tau \tau^{\prime}}\right) \\
& =\sum_{\tau \in G_{1}}\left(b_{\tau} c\left(\tau, \tau^{\prime}\right)\right) \otimes a_{\tau \tau^{\prime}} \\
& =\sum_{\tau \in G_{1}} b_{\tau} \otimes\left(c\left(\tau, \tau^{\prime}\right) a_{\tau \tau^{\prime}}\right) \\
& =\sum_{\tau \in G_{1}} b_{\tau} \otimes\left(a_{\tau} a_{\tau^{\prime}}\right) \\
& =\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes a_{\tau}\right) \cdot a_{\tau^{\prime}}=\rho\left(\sum_{\tau \in G_{1}} b_{\tau} \otimes \eta_{\tau}\right) \cdot a_{\tau^{\prime}}
\end{aligned}
$$

Since $\mathrm{M}_{m}(D)=\oplus_{\tau \in G_{1}} E a_{\tau}$, we obtain the assertion.

Proposition 3.8. We have

$$
\bar{H} \otimes_{E} V_{\ell}(A) \cong \bar{H}\left(\chi^{-1}\right) \otimes_{H} V_{\ell}\left(J_{f}\right)
$$

as a (left) $\bar{H} \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}[\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})]-m o d u l e$.
Proof. By Proposition 3.2, $M \otimes_{\mathrm{M}_{m}(D)} V_{\ell}(A) \cong V_{\ell}\left(J_{f}\right)$. So we have

$$
\begin{aligned}
& \bar{H} \otimes_{H}\left(M \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A)\right) \cong \bar{H} \otimes_{H} V_{\ell}\left(J_{f}\right) . \\
& \quad 2 \| \\
& \left(\bar{H} \otimes_{H} M\right) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A)
\end{aligned}
$$

$$
\|
$$

$$
\bar{M} \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A)
$$

By considering the tensor product with $\bar{H}\left(\chi^{-1}\right)$ over \bar{H}, we get

$$
\bar{H}\left(\chi^{-1}\right) \otimes_{\bar{H}}\left(\bar{M} \otimes_{\mathrm{M}_{m}(D)} V_{\ell}(A)\right) \cong \bar{H}\left(\chi^{-1}\right) \otimes_{\bar{H}}\left(\bar{H} \otimes_{H} V_{\ell}\left(J_{f}\right)\right) .
$$

From Propositions 3.6 and 3.7, the left-hand side is isomorphic to

$$
\begin{aligned}
\left(\bar{H}\left(\chi^{-1}\right) \otimes_{\bar{H}} \bar{M}\right) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A) & \cong\left(\bar{H} \otimes_{E} \mathrm{M}_{m}(D)\right) \otimes_{\mathrm{M}_{m}(D)} V_{\ell}(A) \\
& \cong \bar{H} \otimes_{E}\left(\mathrm{M}_{m}(D) \otimes_{\mathrm{M}_{m}(D)} V_{\ell}(A)\right) \\
& \cong \bar{H} \otimes_{E} V_{\ell}(A) .
\end{aligned}
$$

On the other hand, the right hand side is isomorphic to $\bar{H}\left(\chi^{-1}\right) \otimes_{H} V_{\ell}\left(J_{f}\right)$. Hence the assertion is proved.

Take any prime number p satisfying the conditions: (i) A has good reduction at p; (ii) $\left(p, \ell N_{1}\right)=1$, where N_{1} is the level of f; (iii) p does not divide the conductor of χ. Let $\sigma_{p} \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ be a Frobenius element at p. Since $V_{\ell}(A)$ is free of rank 2 over $E \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$, we can consider the trace (resp. determinant) of σ_{p} acting on $V_{\ell}(A)$ over $E \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$. By Proposition 3.8, the trace (resp. determinant) of σ_{p} over $E \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$ is equal to $\chi\left(\sigma_{p}\right)^{-1} a_{p}$ (resp. $\chi\left(\sigma_{p}\right)^{-2} \varepsilon(p) p$), where $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ and ε is the Nebentypus of f. By the theory of twists of modular forms ([6]), there is a unique newform $g=\sum_{n=1}^{\infty} b_{n} q^{n}$ such that $b_{p}=\chi^{-1}\left(\sigma_{p}\right) a_{p}$ for all p satisfying the above condition (iii). It is also known that the Nebentypus of g coincides with $\chi^{-2} \varepsilon$. Hence we see that the characteristic polynomial of σ_{p} acting on $V_{\ell}(A)$ over $E \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$ is equal to that of σ_{p} acting on $V_{\ell}\left(J_{g}\right)$ over $E \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$. By Isogeny Theorem, this shows that $A \sim_{\mathbf{Q}} J_{g}$. We have finished the proof of the theorem.

REFERENCES

1. B. Conrad, F. Diamond, and R. Taylor, Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc. 12, No. 2 (1999), 521-567.
2. Y. Hasegawa, K. Hashimoto, and F. Momose, Modularity conjecture for Q-curves and QM-curves, Int. J. Math., to appear.
3. B. Mazur, Number theory as gadfly, Amer. Math. Monthly 98 (1991), 593-610.
4. R. S. Pierce, "Associative Algebras," Graduate Texts in Math. Vol. 88, Springer-Verlag, New York, 1982.
5. E. Pyle, "Abelian Varieties over \mathbf{Q} with Large Endomorphism Algebras and Their Simple Components over $\overline{\mathbf{Q}}$," dissertation, Univ. of California at Berkeley, 1995.
6. K. A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), 43-62.
7. K. A. Ribet, Abelian varieties over \mathbf{Q} and modular forms, in "1992 Proceedings of KAIST Mathematics Workshop," pp. 53-79, Korea Advanced Institute of Science and Technology, Taejon, 1992.
8. G. Shimura, Class fields over real quadratic fields and Hecke operators, Ann. Math. (2) 95 (1972), 131-190.
9. G. Shimura and Y. Taniyama, "Complex Multiplication of Abelian Varieties and Its Applications to Number Theory," Publications of the Math. Society of Japan, No. 6, Mathematical Society of Japan, Tokyo, 1961.
