A Remark on the Modularity of Abelian Varieties of GL₂-type over **Q**

Naoki Murabayashi

Department of Mathematical Sciences, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan E-mail: murabaya@sci.kj.yamagata-u.ac.jp

Communicated by D. Goss

Received May 10, 1999

/iew metadata, citation and similar papers at core.ac.uk

over the complex number held C implies that of A over Q. \bigcirc 2000 Academic Press Key Words: abelian variety; GL₂-type; modularity.

1. INTRODUCTION AND A RESULT

Let *A* be an abelian variety of "GL₂-type over **Q**." This means that *A* is an abelian variety defined over **Q** whose **Q**-algebra of endomorphisms of *A* defined over **Q**, denoted by End⁰_{**Q**}(*A*), is a number field *E* of degree equal to the dimension of *A*. From the results in [7], Ribet conjectured that any abelian variety of GL₂-type over **Q** is isogenous over **Q** to a **Q**-simple factor of the jacobian variety $J_1(N)$ of the modular curve $X_1(N)$ for some integer $N \ge 1$, where a **Q**-simple factor of $J_1(N)$ is a factor over **Q** which has no non-trivial abelian subvarieties defined over **Q**. This conjecture is called the modularity conjecture and is a generalization of the Taniyama–Shimura conjecture on elliptic curves defined over **Q**.

Shimura and Ribet gave the description of the **Q**-simple factors of $J_1(N)$ in terms of cuspforms of weight two. More precisely, let $f = \sum_{n=1}^{\infty} a_n q^n$ $(q = e^{2\pi i z})$ be a normalized new form of weight two on $\Gamma_1(M)$, where M is a positive divisor of N. The Hecke ring $\mathbf{T} = \mathbf{T}_M$ is the subring of $\operatorname{End}_{\mathbf{Q}}(J_1(M))$ generated over \mathbf{Z} by all Hecke operators T_n and all diamond automorphisms $\langle d \rangle$, where $\operatorname{End}_{\mathbf{Q}}(J_1(M))$ denotes the ring of endomorphisms of $J_1(M)$ defined over \mathbf{Q} and n (resp. d) runs over the set of positive integers (resp. $(\mathbf{Z}/M\mathbf{Z})^{\times}$). Consider the homomorphism of rings $\lambda_f: \mathbf{T} \to \mathbf{C}$ such that $T_n \mapsto a_n$ and $\langle d \rangle \mapsto \varepsilon(d)$, where ε is the Nebentypus

of f. Let \mathbf{I}_f be the kernel of λ_f and J_f be the abelian variety over \mathbf{Q} defined by $J_f = J_1(M)/\mathbf{I}_f J_1(M)$. Put $E_f = \mathbf{Q}(\{a_n \mid n \ge 1\})$. Then E_f is a number field and its degree is equal to the dimension of J_f . Moreover, the homomorphism of \mathbf{Q} -algebras $\theta: E_f \to \operatorname{End}_{\mathbf{Q}}^0(J_f)$ defined by $a_n \mapsto$ "the endomorphism of J_f induced by T_n " is an isomorphism. So J_f is a \mathbf{Q} -simple factor of $J_1(M)$, hence it is also a \mathbf{Q} -simple factor of $J_1(N)$ because of the canonical homomorphism from $J_1(M)$ to $J_1(N)$ is defined over \mathbf{Q} and has a finite kernel. Conversely, any \mathbf{Q} -simple factor of $J_1(N)$ is isogenous over \mathbf{Q} to J_f for some f as above.

We state some known results on the modularity conjecture. In the case of dimension one, Conrad *et al.* proved that any elliptic curves defined over \mathbf{Q} whose conductor is not divided by 3³ satisfy the modularity conjecture [1]. Recently a proof of the full Taniyama–Shimura conjecture was announced by Breuil, Conrad, Diamond and Taylor. In the case of higher dimension, Hasegawa *et al.* showed (by using the results of Taylor–Wiles– Diamond on the modularity on Galois representations) that for an abelian variety A of GL_2 -type over \mathbf{Q} without complex multiplication, if there exist an odd prime number p and a prime ideal of $End_{\mathbf{Q}}^0(A)$ lying over p which satisfy some conditions, then the modularity conjecture for A is true [2].

In [5] Pyle gave necessary and sufficent conditions for an abelian variety defined over $\overline{\mathbf{Q}}$ to be a $\overline{\mathbf{Q}}$ -simple factor of an abelian variety of GL_2 -type over \mathbf{Q} , where $\overline{\mathbf{Q}}$ denotes a fixed algebraic closure of \mathbf{Q} . So if the modularity conjecture is true, then we can get a characterization of abelian varieties which are modular over $\overline{\mathbf{Q}}$.

In this paper, we will prove the following theorem:

THEOREM. Let A be an abelian variety of GL_2 -type over \mathbf{Q} without complex multiplication. If there exists a non-zero homomorphism $\varphi: J_1(N) \to A$ defined over the complex number field \mathbf{C} for some integer $N \ge 1$, then A is isogenous over \mathbf{Q} to J_g for some normalized newform g of weight two on $\Gamma_1(M)$, where M is a suitable positive integer (which may be different from N).

Here we say that an abelian variety A defined over $\overline{\mathbf{Q}}$ has complex multiplication, if A is isogenous over $\overline{\mathbf{Q}}$ to a product $A_1 \times \cdots \times A_s$ with abelian varieties A_i defined over $\overline{\mathbf{Q}}$ such that $\operatorname{End}_{\overline{\mathbf{Q}}}^0(A_i)$ is isomorphic to a CM-field of degree $2 \cdot \dim(A_i)$ for each i. This is so if and only if $\operatorname{End}_{\overline{\mathbf{Q}}}^0(A)$ contains a commutative semi-simple algebra of rank $2 \cdot \dim(A)$ over \mathbf{Q} (see Section 5.1 in [9]). Shimura proved that if an abelian variety A of GL_2 -type over \mathbf{Q} has complex multiplication, then A is isogenous over $\overline{\mathbf{Q}}$ to a power of a CM elliptic curve (see Prop. 1.5 in [8]). So in this case, the structure of $\operatorname{End}_{\overline{\mathbf{Q}}}^0(A)$ is very simple. But the action of the absolute Galois group over \mathbf{Q} on $\operatorname{End}_{\overline{\mathbf{Q}}}^0(A)$ is not a maximal subfield of $\operatorname{End}_{\overline{\mathbf{Q}}}^0(A)$. Hence we exclude this case.

Finally, we remark that in the case where the dimension of A is one, this theorem is equivalent to the result of Mazur in [3] and some ideas of our proof can be seen in [3]. The essential new idea is to study the action of the absolute Galois group over \mathbf{Q} on the full endomorphism algebra (see Section 2).

2. THE GALOIS ACTION ON THE FULL ENDOMORPHISM ALGEBRA

Let A be as in the theorem and n be the dimension of A. Put $E := \operatorname{End}_{\mathbf{Q}}^{0}(A)$. For any subfield k of $\overline{\mathbf{Q}}$, we denote by $\operatorname{End}_{k}(A)$ the ring of endomorphisms of A defined over k and put $\operatorname{End}_{k}^{0}(A) := \mathbf{Q} \otimes_{\mathbf{Z}} \operatorname{End}_{k}(A)$. Pyle determines the structure of $\operatorname{End}_{\overline{\mathbf{Q}}}^{0}(A)$ as **Q**-algebra in [5]: The center is a totally real subfield $F \subseteq E$ and

$$\operatorname{End}_{\overline{\mathbf{O}}}^{0}(A) \cong \operatorname{M}_{m}(D),$$

where D is F or a division quaternion algebra over F; $\operatorname{End}_{\overline{\mathbf{Q}}}^{0}(A)$ contains E as a maximal subfield, i.e.,

$$[E:F] = \sqrt{\dim_F M_m(D)} = mt, t = \begin{cases} 1 & \text{if } D = F, \\ 2 & \text{if } otherwise. \end{cases}$$

We fix an isomorphism $i: \mathrm{M}_m(D) \to \mathrm{End}^0_{\bar{\mathbf{Q}}}(A)$ and denote by the same notation E the inverse image $i^{-1}(\mathrm{End}^0_{\mathbf{Q}}(A))$. The absolute Galois group $\mathrm{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ over \mathbf{Q} acts on $\mathrm{End}^0_{\bar{\mathbf{Q}}}(A)$ by the action on coefficients of endomorphisms. Hence for every element σ of $\mathrm{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$, there exists a unique isomorphism of F-algebras $\eta_{\sigma}: \mathrm{M}_m(D) \to \mathrm{M}_m(D)$ such that the following diagram commutes:

By the Noether-Skolem Theorem and the facts that $\eta_{\sigma}(x) = x$ for all $x \in E$ and *E* is a maximal subfield of $M_m(D)$, there exists a non-zero element $\alpha(\sigma)$ of *E* such that

$$\eta_{\sigma}(x) = \alpha(\sigma)^{-1} x \alpha(\sigma)$$
 for all $x \in \mathbf{M}_m(D)$,

where $\alpha(\sigma)$ is uniquely determined up to a multiple of non-zero elements of *F*. The following two propositions are shown in [5]:

PROPOSITION 2.1. The field *E* is generated over *F* by the $\alpha(\sigma)$ for all $\sigma \in \text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$.

PROPOSITION 2.2. The field E is an abelian Galois extension of F.

We define a homomorphism $\tilde{\alpha}$: $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to E^{\times}/F^{\times}$ by $\sigma \mapsto \alpha(\sigma)$ mod F^{\times} . We denote by K the fixed field of the kernel of $\tilde{\alpha}$. Then K is the smallest field such that $\operatorname{End}_{K}^{0}(A) = \operatorname{End}_{\overline{\mathbf{Q}}}^{0}(A)$. By the theory of simple algebras, we can take an E-basis $\{a_{\tau}\}_{\tau \in G_{1}}$ of $M_{m}(D)$, where $G_{1} :=$ $\operatorname{Gal}(E/F)$, such that $a_{e} = 1$ and every a_{τ} satisfies the following relations:

$$a_{\tau}x = \tau(x) a_{\tau}$$
 for all $x \in E$

(see Lemma (i), (ii) in [4, p. 251]). For every element τ of G_1 , we define a homomorphism β_{τ} : Gal($\overline{\mathbf{Q}}/\mathbf{Q}$) $\rightarrow E^{\times}$ by

$$\sigma \mapsto \frac{\tau(\alpha(\sigma))}{\alpha(\sigma)}$$

The following lemma can be easily proved:

LEMMA 2.3. For every element τ of G_1 , we have

 ${}^{\sigma}i(a_{\tau}) = i(\beta_{\tau}(\sigma)) \circ i(a_{\tau})$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$.

By this lemma, we can fully understand how $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ acts on $\operatorname{End}_{\overline{\mathbf{O}}}^{0}(A)$.

3. THE PROOF OF THE THEOREM

Let the notation be as in Section 2. We suppose that there exists a non-zero homomorphism $\varphi: J_1(N) \to A$ defined over **C** for some integer $N \ge 1$. Since $J_1(N)$ and A are defined over **Q**, φ is defined over $\overline{\mathbf{Q}}$. So we may assume that φ is defined over a subfield L of $\overline{\mathbf{Q}}$ such that L/\mathbf{Q} is a finite Galois extension and L contains K.

By considering the Weil restriction from L to \mathbf{Q} of φ , we get the homomorphism

$$\Phi: J_1(N) \to R_{L/\mathbf{O}}(A_{/L})$$

defined over \mathbf{Q} , where $R_{L/\mathbf{Q}}(A_{/L})$ is the Weil restriction from L to \mathbf{Q} of $A_{/L}$. So $R_{L/\mathbf{Q}}(A_{/L})$ is an abelian variety defined over \mathbf{Q} and it is isomorphic over L to $A^{[L:\mathbf{Q}]}$, where we write $A^r = A \times \cdots \times A$ (r terms). Since Φ is not a zero map, we can take a non-zero \mathbf{Q} -simple factor C of $\mathrm{Im}(\Phi)_{/\mathbf{Q}}$ and fix it. Then there exists a new form $f = \sum_{n=1}^{\infty} a_n q^n$ whose level divides N such that J_f is isogenous over \mathbf{Q} to C, that is expressed by $J_f \sim_{\mathbf{Q}} C$. We put $H := \mathbf{Q}(\{a_n \mid n \ge 1\})$. By the Shimura–Ribet theory explained in Section 1, we have the canonical isomorphism $\theta: H \to \mathrm{End}_{\mathbf{Q}}^{\mathbf{Q}}(J_f)$.

Put $M := \operatorname{Hom}_{\bar{\mathbf{Q}}}(A, J_f) \otimes_{\mathbf{Z}} \mathbf{Q}$, where $\operatorname{Hom}_{\bar{\mathbf{Q}}}(\bar{A}, J_f)$ denotes the additive group of homomorphisms from A to J_f defined over $\bar{\mathbf{Q}}$. Then $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ acts on M as well as the case of $\operatorname{End}_{\bar{\mathbf{Q}}}^0(A)$. Moreover, M has the structure of a left H- and right $\operatorname{M}_m(D)$ -module by considering a composition of homomorphisms. Then the action of $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ on M is H-linear.

LEMMA 3.1. We have $\dim_H M = [E:F] = mt$.

Proof. Let s be the dimension of C. Since $\operatorname{End}_{\overline{\mathbf{Q}}}^{0}(A) = \operatorname{End}_{K}^{0}(A) \cong \operatorname{M}_{m}(D)$, we have

$$A \sim_{K} B \times \cdots \times B$$
 (*m* terms),

where *B* is a $\overline{\mathbf{Q}}$ -simple abelian variety defined over *K* such that $\operatorname{End}_{\overline{\mathbf{Q}}}^{0}(B) = \operatorname{End}_{K}^{0}(B) \cong D$. Since *C* is a **Q**-factor of $R_{L/\mathbf{Q}}(A_{/L})$ and $R_{L/\mathbf{Q}}(A_{/L})$ is isomorphic over *L* to $A^{[L:\mathbf{Q}]}$, there exists a positive integer *r* such that $C \sim_{L} B^{r}$. By comparing the dimensions, we have $s = \frac{rm}{m}$. Since $J_{f}^{m} \sim_{L} A^{r}$, it follows that

$$M^{\oplus m} \cong \operatorname{Hom}_{\bar{\mathbf{Q}}}(A, J_f^m) \otimes_{\mathbf{Z}} \mathbf{Q} \cong \operatorname{Hom}_{\bar{\mathbf{Q}}}(A, A^r) \otimes_{\mathbf{Z}} \mathbf{Q}$$
$$\cong \operatorname{M}_m(D)^{\oplus r}$$

as Q-vector space. So we have

$$m \dim_{\mathbf{Q}} M = r \dim_{\mathbf{Q}} \mathbf{M}_{m}(D) = r [E:F]^{2} [F:\mathbf{Q}]$$
$$= r [E:\mathbf{Q}] [E:F]$$
$$= s m [E:F].$$

Hence we obtain $\dim_{\mathbf{Q}} M = s [E:F]$. Since $[H:\mathbf{Q}] = s$, we get the assertion.

Let ℓ be a prime number. We denote by $T_{\ell}(A)$ the Tate module of A and put $V_{\ell}(A) := T_{\ell}(A) \otimes_{\mathbf{Z}_{\ell}} \mathbf{Q}_{\ell}$. Now we consider the module $M \otimes_{\mathbf{M}_m(D)} V_{\ell}(A)$ on which $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ acts by diagonal and H acts by the action on M. We define a homomorphism

$$v: M \otimes_{\mathbf{M}_{\mathcal{H}}(D)} V_{\ell}(A) \to V_{\ell}(J_{f}), \qquad \eta \otimes x \mapsto \eta(x).$$

PROPOSITION 3.2. *v* is an isomorphism of (left) $H \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell} [\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})]$ modules, where $H \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell} [\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})]$ denotes the group algebra of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ over $H \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$.

Proof. It is clear that v is a homomorphism of $H \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell} [\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})]$ -modules. So we will prove that v is bijective. We consider

$$v^{\oplus m}: \qquad (M \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A))^{\oplus m} \longrightarrow V_{\ell}(J_{f})^{\oplus m}$$

$$\downarrow \parallel \qquad \qquad \downarrow \parallel \qquad \qquad \downarrow \parallel$$

$$(M^{\oplus m}) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A) \qquad \qquad V_{\ell}(J_{f}^{m}).$$

$$\downarrow \parallel$$

$$(\text{Harm} (A, I_{f}^{m}) \otimes_{\mathbf{Q}} \mathbf{Q}) \otimes_{\mathbf{Q}} = V_{\ell}(A)$$

$$(\operatorname{Hom}_{\bar{\mathbf{Q}}}(A, J_f^m) \otimes_{\mathbf{Z}} \mathbf{Q}) \otimes_{\mathbf{M}_m(D)} V_{\ell}(A)$$

Since $J_f^m \sim_L A^r$, there exists an isogeny $\psi: J_f^m \to A^r$ defined over L. Then,

$$\psi^* : \operatorname{Hom}_{\bar{\mathbf{Q}}}(A, J_f^m) \otimes_{\mathbf{Z}} \mathbf{Q} \to \operatorname{Hom}_{\bar{\mathbf{Q}}}(A, A^r) \otimes_{\mathbf{Z}} \mathbf{Q}, \qquad \eta \otimes a \mapsto \psi \circ \eta \otimes a,$$

is an isomorphism of right $M_m(D)$ -modules. So we have the commutative diagram:

$$\begin{array}{ccc} (\operatorname{Hom}_{\bar{\mathbf{Q}}}(A, J_{f}^{m}) \otimes_{\mathbf{Z}} \mathbf{Q}) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}\left(A\right) \xrightarrow{\psi^{\oplus m}} V_{\ell}\left(J_{f}^{m}\right) \\ & & & \downarrow^{\psi^{*} \otimes 1} \\ (\operatorname{Hom}_{\bar{\mathbf{Q}}}(A, A^{r}) \otimes_{\mathbf{Z}} \mathbf{Q}) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}\left(A\right) \xrightarrow{\psi^{\oplus m}} V_{\ell}\left(A^{r}\right), \end{array}$$

where $\nu^{\oplus m}$ is a \mathbf{Q}_{ℓ} -linear map defined by $\eta' \otimes x' \mapsto \eta'(x')$ ($\eta' \in \operatorname{Hom}_{\bar{\mathbf{Q}}}(A, A') \otimes_{\mathbf{Z}} \mathbf{Q}, x' \in V_{\ell}(A)$) and the vertical maps are isomorphisms of \mathbf{Q}_{ℓ} -vector spaces.

For $1 \leq i \leq r$, we put

$$q_i: A \to A^r = A \times \cdots \times A, x \mapsto (0, ..., 0, x_i, 0, ..., 0)$$

Then any element y of $V_{\ell}(A^r)$ can be written uniquely in the form $y = \sum_{i=1}^{r} q_i(x_i)$ ($x_i \in V_{\ell}(A)$). So we have

$$\widetilde{v^{\oplus m}}\left(\sum_{i=1}^r q_i \otimes x_i\right) = y.$$

Therefore, $v^{\oplus m}$ is surjective. So $v^{\oplus m}$ is bijective because of the equality of the dimensions over \mathbf{Q}_{ℓ} . Hence v is bijective.

Put $\overline{M} := \overline{H} \otimes_H M$. We give \overline{M} the structure of a $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ -module by the action on M. Next we will study how $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ acts on \overline{M} . Since M

is a left *H*- and right $M_m(D)$ -module, \overline{M} is a left \overline{H} - and right $M_m(D)$ module. In particular, $E (\subseteq M_m(D))$ acts \overline{H} -linearly on \overline{M} on the right. Since *E* is commutative, this action corresponds to a homomorphism of **Q**-algebras

$$j: E \to M_{mt}(\bar{H})$$

by taking a \overline{H} -basis of \overline{M} . E is generated over \mathbf{Q} by some single element a as a \mathbf{Q} -algebra. Since the minimal polynomial of j(a) divides the minimal polynomial of a over \mathbf{Q} , the minimal polynomial of j(a) has no multiple roots. So j(a) is diagonalizable. Therefore j is equivalent to a direct sum of mt isomorphisms of E into \overline{H} . Take an isomorphism ι which appears in this sum and hereafter we see E as a subfield of \overline{H} by ι . Then we can determine the other isomorphisms appearing in this sum:

LEMMA 3.3. *j* is equivalent to $\sum_{\tau \in G_1} \tau$.

Proof. We can take a element $\eta \ (\neq 0) \in \overline{M}$ such that $\eta \circ i(x) = x \eta$ for all $x \in E$. Then for any $x \in E$ and any $\tau \in G_1$, we have

$$(\eta \circ i(a_{\tau})) \circ i(x) = \eta \circ i(a_{\tau} x) = \eta \circ i(\tau(x) a_{\tau})$$
$$= (\eta \circ i(\tau(x))) \circ i(a_{\tau})$$
$$= \tau(x) \eta \circ i(a_{\tau}).$$
(3.3)

So the isomorphism $\tau: E \to E \subseteq \overline{H}$ appears in the direct sum. Since $|G_1| = mt$, we have $j \cong \sum_{\tau \in G_1} \tau$.

We put $\eta_{\tau} := \eta \circ i(a_{\tau})$ for any $\tau \in G_1$. Then $\{\eta_{\tau}\}_{\tau \in G_1}$ is a \overline{H} -basis of \overline{M} .

LEMMA 3.4. There exists a Dirichlet character

$$\chi: \operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q}) \to \bar{H}^{\times}$$

such that ${}^{\sigma}\eta = \chi(\sigma) \eta$ for all $\sigma \in \text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$.

Proof. For any $x \in E$, we have

$${}^{\sigma}\eta \circ i(x) = {}^{\sigma}\eta \circ {}^{\sigma}i(x) = {}^{\sigma}(\eta \circ i(x)) = {}^{\sigma}(x \eta) = x {}^{\sigma}\eta.$$

So ${}^{\sigma}\eta$ must be a scalar multiple of η . Hence the assertion holds.

LEMMA 3.5. For any $\tau \in G_1$, we have ${}^{\sigma}\eta_{\tau} = \chi(\sigma) \beta_{\tau}(\sigma) \eta_{\tau} \ (\forall \sigma \in \text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})).$

Proof. We have

$$\sigma \eta_{\tau} = \sigma (\eta \circ i(a_{\tau})) = \sigma \eta \circ \sigma i(a_{\tau}) = \chi(\sigma) \eta \circ i(\beta_{\tau}(\sigma)) \circ i(a_{\tau})$$
$$= \chi(\sigma) \beta_{\tau}(\sigma) \eta \circ i(a_{\tau})$$
$$= \chi(\sigma) \beta_{\tau}(\sigma) \eta_{\tau}.$$

Hence we get the assertion.

We denote by $\overline{H}(\chi^{-1})$ the (left) $\overline{H}[\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})]$ -module which is isomorphic to \overline{H} as \overline{H} -module and on which $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ acts by $\sigma x = \chi(\sigma)^{-1} x$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ and $x \in \overline{H}$. We define an isomorphism of \overline{H} -vector spaces

$$\rho: \overline{H}(\chi^{-1}) \otimes_{\overline{H}} \overline{M} \to \overline{H} \otimes_E \mathbf{M}_m(D), \qquad \sum_{\tau \in G_1} b_\tau \otimes \eta_\tau \mapsto \sum_{\tau \in G_1} b_\tau \otimes a_\tau.$$

PROPOSITION 3.6. ρ is a homomorphism of $\text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ -modules. *Proof.* For any $\sigma \in \text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$, we have

$$\begin{split} \rho \left({}^{\sigma} \left(\sum_{\tau \in G_{1}} b_{\tau} \otimes \eta_{\tau} \right) \right) &= \rho \left(\sum_{\tau \in G_{1}} \left(\chi(\sigma)^{-1} b_{\tau} \right) \otimes {}^{\sigma} \eta_{\tau} \right) \\ &= \rho \left(\sum_{\tau \in G_{1}} \left(\chi(\sigma)^{-1} b_{\tau} \right) \otimes \left(\chi(\sigma) \beta_{\tau}(\sigma) \eta_{\tau} \right) \right) \\ &= \rho \left(\sum_{\tau \in G_{1}} \left(b_{\tau} \beta_{\tau}(\sigma) \right) \otimes \eta_{\tau} \right) \\ &= \sum_{\tau \in G_{1}} \left(b_{\tau} \beta_{\tau}(\sigma) \right) \otimes a_{\tau} \\ &= \sum_{\tau \in G_{1}} b_{\tau} \otimes \left(\beta_{\tau}(\sigma) a_{\tau} \right) \\ &= \sum_{\tau \in G_{1}} b_{\tau} \otimes {}^{\sigma} a_{\tau} \text{ (because of } {}^{\sigma} i(a_{\tau}) = i(\beta_{\tau}(\sigma) a_{\tau})) \\ &= {}^{\sigma} \left(\sum_{\tau \in G_{1}} b_{\tau} \otimes a_{\tau} \right) \\ &= {}^{\sigma} \rho \left(\sum_{\tau \in G_{1}} b_{\tau} \otimes \eta_{\tau} \right). \end{split}$$

So we get the assertion.

PROPOSITION 3.7. ρ is a homomorphism of right $M_m(D)$ -modules.

Proof. For any $x \in E$, we have

$$\begin{split} \rho\left(\left(\sum_{\tau \in G_1} b_\tau \otimes \eta_\tau\right) \cdot x\right) &= \rho\left(\sum_{\tau \in G_1} b_\tau \otimes (\eta_\tau \circ i(x))\right) \\ &= \rho\left(\sum_{\tau \in G_1} (b_\tau \tau(x)) \otimes \eta_\tau\right) \\ &= \sum_{\tau \in G_1} (b_\tau \tau(x)) \otimes a_\tau \\ &= \sum_{\tau \in G_1} b_\tau \otimes (\tau(x) a_\tau) \\ &= \sum_{\tau \in G_1} b_\tau \otimes (a_\tau x) \\ &= \left(\sum_{\tau \in G_1} b_\tau \otimes a_\tau\right) \cdot x = \rho\left(\sum_{\tau \in G_1} b_\tau \otimes \eta_\tau\right) \cdot x. \end{split}$$

Now we remark that for any τ , $\tau' \in G_1$, there exists a unique $c(\tau, \tau') \in E^{\times}$ such that $a_{\tau}a_{\tau'} = c(\tau, \tau') a_{\tau\tau'}$. Then for any $\tau' \in G_1$, we have

$$\begin{split} \rho\left(\left(\sum_{\tau \in G_1} b_\tau \otimes \eta_\tau\right) \cdot a_{\tau'}\right) &= \rho\left(\sum_{\tau \in G_1} b_\tau \otimes (\eta_\tau \circ i(a_{\tau'}))\right) \\ &= \rho\left(\sum_{\tau \in G_1} b_\tau \otimes (\eta \circ i(a_\tau) \circ i(a_{\tau'}))\right) \\ &= \rho\left(\sum_{\tau \in G_1} b_\tau \otimes (\eta \circ i(c(\tau, \tau') a_{\tau\tau'}))\right) \\ &= \rho\left(\sum_{\tau \in G_1} b_\tau \otimes (c(\tau, \tau') \eta_{\tau\tau'})\right) \\ &= p\left(\sum_{\tau \in G_1} (b_\tau c(\tau, \tau')) \otimes \eta_{\tau\tau'}\right) \\ &= \sum_{\tau \in G_1} (b_\tau c(\tau, \tau')) \otimes a_{\tau\tau'} \\ &= \sum_{\tau \in G_1} b_\tau \otimes (c(\tau, \tau') a_{\tau\tau'}) \\ &= \sum_{\tau \in G_1} b_\tau \otimes (a_\tau a_{\tau'}) \\ &= \left(\sum_{\tau \in G_1} b_\tau \otimes a_\tau\right) \cdot a_{\tau'} = \rho\left(\sum_{\tau \in G_1} b_\tau \otimes \eta_\tau\right) \cdot a_{\tau'} \end{split}$$

Since $M_m(D) = \bigoplus_{\tau \in G_1} E a_{\tau}$, we obtain the assertion.

PROPOSITION 3.8. We have

$$\overline{H} \otimes_E V_{\ell}(A) \cong \overline{H}(\chi^{-1}) \otimes_H V_{\ell}(J_f)$$

as a (left) $\overline{H} \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$ [Gal($\overline{\mathbf{Q}}/\mathbf{Q}$)]-module.

Proof. By Proposition 3.2, $M \otimes_{\mathbf{M}_m(D)} V_{\ell}(A) \cong V_{\ell}(J_f)$. So we have

$$\begin{split} \bar{H} \otimes_{H} (M \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A)) &\cong \bar{H} \otimes_{H} V_{\ell}(J_{f}). \\ & \downarrow \| \\ (\bar{H} \otimes_{H} M) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A) \\ & \| \\ & \bar{M} \otimes_{\mathbf{M}} (D) V_{\ell}(A) \end{split}$$

By considering the tensor product with $\overline{H}(\chi^{-1})$ over \overline{H} , we get

$$\overline{H}(\chi^{-1}) \otimes_{\overline{H}} (\overline{M} \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A)) \cong \overline{H}(\chi^{-1}) \otimes_{\overline{H}} (\overline{H} \otimes_{H} V_{\ell}(J_{f})).$$

From Propositions 3.6 and 3.7, the left-hand side is isomorphic to

$$(\bar{H}(\chi^{-1}) \otimes_{\bar{H}} \bar{M}) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A) \cong (\bar{H} \otimes_{E} \mathbf{M}_{m}(D)) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A)$$
$$\cong \bar{H} \otimes_{E} (\mathbf{M}_{m}(D) \otimes_{\mathbf{M}_{m}(D)} V_{\ell}(A))$$
$$\cong \bar{H} \otimes_{E} V_{\ell}(A).$$

On the other hand, the right hand side is isomorphic to $\overline{H}(\chi^{-1}) \otimes_H V_{\ell}(J_f)$. Hence the assertion is proved.

Take any prime number p satisfying the conditions: (i) A has good reduction at p; (ii) $(p, \ell N_1) = 1$, where N_1 is the level of f; (iii) p does not divide the conductor of χ . Let $\sigma_p \in \text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ be a Frobenius element at p. Since $V_{\ell}(A)$ is free of rank 2 over $E \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$, we can consider the trace (resp. determinant) of σ_p acting on $V_{\ell}(A)$ over $E \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$. By Proposition 3.8, the trace (resp. determinant) of σ_p over $E \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$ is equal to $\chi(\sigma_p)^{-1} a_p$ (resp. $\chi(\sigma_p)^{-2} \varepsilon(p) p$), where $f = \sum_{n=1}^{\infty} a_n q^n$ and ε is the Nebentypus of f. By the theory of twists of modular forms ([6]), there is a unique newform $g = \sum_{n=1}^{\infty} b_n q^n$ such that $b_p = \chi^{-1}(\sigma_p) a_p$ for all p satisfying the above condition (iii). It is also known that the Nebentypus of g coincides with $\chi^{-2}\varepsilon$. Hence we see that the characteristic polynomial of σ_p acting on $V_{\ell}(A)$ over $E \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$ is equal to that of σ_p acting on $V_{\ell}(J_g)$ over $E \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$. By Isogeny Theorem, this shows that $A \sim_{\mathbf{Q}} J_g$. We have finished the proof of the theorem.

NAOKI MURABAYASHI

REFERENCES

- B. Conrad, F. Diamond, and R. Taylor, Modularity of certain potentially Barsotti–Tate Galois representations, J. Amer. Math. Soc. 12, No. 2 (1999), 521–567.
- Y. Hasegawa, K. Hashimoto, and F. Momose, Modularity conjecture for Q-curves and QM-curves, Int. J. Math., to appear.
- 3. B. Mazur, Number theory as gadfly, Amer. Math. Monthly 98 (1991), 593-610.
- R. S. Pierce, "Associative Algebras," Graduate Texts in Math. Vol. 88, Springer-Verlag, New York, 1982.
- 5. E. Pyle, "Abelian Varieties over \mathbf{Q} with Large Endomorphism Algebras and Their Simple Components over $\overline{\mathbf{Q}}$," dissertation, Univ. of California at Berkeley, 1995.
- K. A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, *Math. Ann.* 253 (1980), 43–62.
- K. A. Ribet, Abelian varieties over Q and modular forms, *in* "1992 Proceedings of KAIST Mathematics Workshop," pp. 53–79, Korea Advanced Institute of Science and Technology, Taejon, 1992.
- 8. G. Shimura, Class fields over real quadratic fields and Hecke operators, *Ann. Math. (2)* **95** (1972), 131–190.
- G. Shimura and Y. Taniyama, "Complex Multiplication of Abelian Varieties and Its Applications to Number Theory," Publications of the Math. Society of Japan, No. 6, Mathematical Society of Japan, Tokyo, 1961.