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a b s t r a c t

We study nonlinear regression models whose both response and predictors are measured
with errors anddistorted as single-indexmodels of someobservable confounding variables,
and propose a multicovariate-adjusted procedure. We first examine the relationship
between the observed primary variables (observed response and observed predictors) and
the confounding variables by appropriately estimating the single index. We then develop a
semiparametric profile nonlinear least square estimation procedure for the parameters of
interest after we calibrate the error-prone response and predictors. Asymptotic properties
of the proposed estimators are established. To avoid estimating the asymptotic covariance
matrix that contains the infinite-dimensional nuisance distorting functions and the single
index, and to improve the accuracy of the proposed estimation, we also propose an
empirical likelihood-based statistic, which is shown to be asymptotically chi-squared. A
simulation study is conducted to evaluate the performance of the proposed methods and
a real dataset is analyzed as an illustration.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Consider the covariate-adjusted model
Y = f (X,β)+ ε,

Ỹ = φ(θ τU)Y ,
X̃ = ψ(θ τU)X,

(1)

where Y is the unobservable response,X = (X1, X2, . . . , Xp)
τ is a unobservable continuous predictor vector (the superscript

τ denotes the transpose operator throughout this paper), f (·, ·) is a known continuous nonlinear function, β is an unknown
q × 1 parameter vector on a compact parameter space B ⊂ Rq, Ỹ and X̃ are the observed response and predictors, θ is
an unknown index vector, U is a confounding variable, and ψ(·) is a p × p diagonal matrix diag (ψ1(·), . . . , ψp(·)), where
φ(·) and ψr(·) are unknown continuous distorting functions. The diagonal form of ψ(·) indicates that the confounding
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variables distort each component of the unobserved predictors X in a multiplicative fashion. The confounding variable U is
independent of (X, Y ). Note that both Y and X are unobservable. These are essentially measurement error models.

There is substantial literature on nonlinear models with measurement errors. See [3] for a comprehensive survey, in
which they systematically summarized the results for the cases when the components ofX aremeasuredwith errors. In this
paper, we study another class of measurement errors models, in which both the response and predictors are distorted by
confounding variables. This occurrence is not uncommon in biomedical research and health-related studies. For instance,
in a study of the relationship between the fibrinogen and serum transferrin levels among hemodialysis patients, Kaysen
et al. [10] realized that the body mass index (BMI) generally has an influence on the fibrinogen and serum transferrin
levels andmay contaminate these variables. Thus, they suggested a calibration approach in which the response variable and
predictors were simply divided by the confounding variable BMI. This implies a multiplicative fashion of the relationship
between the unobserved primary variables and the confounding variable. Nevertheless, the exact relationship between the
confounding variable and primary variables of interest is hardly known in practice, and the method of simply dividing the
confounding variable itself to the variables of interest to estimate the original response Y and predictors X may cause non-
negligible bias and lead to an inconsistent estimator of the parameter β. As a remedy, Şentürk and Müller [19] suggested
that the confounding variable BMI affects the primary variables through flexible multiplicative unknown functions and
studied a linear covariate-adjusted model with emphasis on regression. Şentürk and Müller [20] further studied that linear
covariate-adjusted model with a one-dimensional confounding variable in a setting in which the observed Ỹ and X̃ are
related through a varying coefficient model, using the binning method. Nguyen and Şentürk [14] then studied Şentürk
and Müller’s model with multi-dimensional confounding variables in the same setting as Şentürk and Müller [20] for the
connection of Ỹ and X̃. The authors modeled their distortion functions by single-indexmodels and used a hybrid backfitting
algorithm to simultaneously estimate the unknown single-index and varying coefficient functions. The final estimator of
themajor parameter is a weighted-average of the estimated coefficient functions. However, they did not provide theoretical
justification for their approach. More recently, Cui et al. [4] studied nonlinear models with a one-dimensional confounding
variable. They used the traditional nonparametric regression to obtain estimators of the distortion functions, say φ̂(·) and
ψ̂(·). Then they calibrated X and Y by ψ̂−1X̃ and Ỹ/φ̂, respectively, and engaged estimation by using these calibrated
quantities. Zhang et al. [27] further examined this direct-plug-in method to the semiparametric models incorporating
dimension reduction techniques. It is worth mentioning that the direct plug-in method can be easily adopted in linear,
nonlinear, generalized linear, and semi-parametric models, while the transformation technique used by Şentürk andMüller
[20,21] is designed for linear or generalized linear covariate-adjusted models.

In this paperwe further investigate nonlinear covariate-adjustedmodels and allow the confounding variables to bemulti-
dimensional. We estimate the single-index θ using the recently developed estimating function method (EFM) by Cui et al.
[5] because this method is more efficient than its competitors in the literature, is easy to implement, and is not sensitive to
initial values.We then derive profile nonlinear least squares estimators ofβ, establish asymptotic normality for the proposed
estimators and correct a technical error in Lemma A.1 of [4], which plays a critical role in the proofs of their main theoretical
results. As the asymptotic covariancematrix of the estimators ofβ contains several unknown components in a very complex
structure, it may not be convenient for statistical inference-based on the normal approximation in practice. We therefore
also propose an empirical likelihood based statistic, which is shown to be asymptotically chi-squared distributed and can
be conveniently used to construct confidence regions.

The paper is organized as follows. In Section 2, we describe the estimation procedure for the single index θ and the
parameter β, present the asymptotic results, develop an empirical log-likelihood ratio statistic for the parameter β, and
show that the ratio statistic has an asymptotic chi-squared distribution. In Section 3, we report the results of a simulation
study and an analysis of a diabetes study. All of the technical proofs of the asymptotic results are given in Appendix A.

2. Methodology and large sample properties

2.1. Estimating the single index θ

The parameter space of θ is assumed, without loss of generality, to be Θ = {θ = (θ1, θ2, . . . , θd)
τ

: ∥θ∥ = 1, θ1 >
0, θ ∈ Rd

}. By re-parametrization, the parameter space Θ can be written as, after eliminating θ1, a (d − 1)-dimensional
space {((1−

d
l=2 θ

2
l )

1/2, θ2, . . . , θd)
τ

:
d

l=2 θ
2
l < 1}. The surface of the unit ball in Rd with ∥θ∥ = 1 is transformed to the

interior of the unit ball in Rd−1 (
d

l=2 θ
2
l < 1). A variety of estimation methods for single-index models have been proposed

in the literature. See [12,26,24,28,2] for more details.
Recall that U is independent of (Y ,X). The conditional mean and variance of (Ỹ , X̃) given U can be expressed as follows:

E(Ỹ |U) = φ(θ τU)EY , Var(Ỹ |U) = Var(Y )φ2(θ τU), (2)

E(X̃r |U) = ψr(θ
τU)EXr , Var(X̃r |U) = Var(Xr)ψ

2
r (θ

τU), (3)

for r = 1, . . . , p. (2) and (3) indicate that the conditional mean and variance contain the single-index θ and the unknown
distorting functions φ(·) and ψr(·), respectively.
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Suppose that {(X̃i, Ỹi,Ui), i = 1, . . . , n} is the i.i.d. random sample from (X̃, Ỹ ,U). For any fixed θ , we use local linear
regression to estimate φ(·), ψr(·), and φ′(·), ψ ′

r(·). Let h denote the bandwidth, K(·) be the kernel function satisfying the
conditions given in Appendix A, and Kh(·) = h−1K(·/h). For each t in a neighborhood of θ τu, we approximate φ(θ τu) and
ψr(θ

τu) as follows. φa(θ
τu) := γ0 + γ1(θ

τu − t), and ψar(θ
τu) := γ0r + γ1r(θ

τu − t). The estimators φ̂(t), φ̂′(t), and
ψ̂r(t), ψ̂ ′

r(t) are obtained by solving the following p + 1 locally estimating functions with respect to (γ0,γ1) and (γr0, γr1) for
r = 1, . . . , p,

n
i=1

Kh(θ
τUi − t)[φ2

a (θ
τUi)]

−1(Ỹi −
¯̃Yφa(θ

τUi)) = 0,

n
i=1

Kh(θ
τUi − t)(θ τUi − t)[φ2

a (θ
τUi)]

−1(Ỹi −
¯̃Yφa(θ

τUi)) = 0,
(4)


n

i=1

Kh(θ
τUi − t)[ψ2

ar(θ
τUi)]

−1(X̃ri −
¯̃X rψar(θ

τUi)) = 0,

n
i=1

Kh(θ
τUi − t)(θ τUi − t)[ψ2

ar(θ
τUi)]

−1(X̃ri −
¯̃X rψar(θ

τUi)) = 0,
(5)

where ¯̃Y =
1
n

n
i=1 Ỹi and

¯̃X r =
1
n

n
i=1 X̃ri. They are the estimators of the unknown quantities EY and EXr , respectively. As

Şentürk and Müller [19,20] suggested, for response Y and predictors X, the distorting functions satisfy

Eφ(θ τU) = 1, Eψ(θ τU) = Ip, (6)

where Ip is an p × p identical matrix. The identifiability condition (6) ensures that the distorting effect vanishes at the
population level, namely, EY = EỸ and EX = EX̃. Thus, we can estimate the unknown quantities EY and EXr by the sample
mean of {Ỹi, X̃1i, . . . , X̃pi}

n
i=1. Having estimated (γ0, γ1), (γr0, γr1) at t as (γ̂0, γ̂1), (γ̂r0, γ̂r1) through Eqs. (4) and (5), the local

linear estimators of φ(t), φ′(t), ψr(t), and ψ ′
r(t) are φ̂(t) = γ̂0, φ̂′(t) = γ̂1, ψ̂r(t) = γ̂r0, and φ̂′

r(t) = γ̂r1, respectively.
We now proceed to estimation of θ ∈ Θ . If φ(·) and ψr(·) were known, we can formulate quasi-likelihood estimating

equations from (2) and (3) for a single index θ as follows.
n

i=1


∂ψr(θ

τUi)

∂θ (1)


[ψ2

r (θ
τUi)]

−1(X̃ri −
¯̃X rψr(θ

τUi)) = 0, for r = 1, . . . , p, (7)

n
i=1


∂φ(θ τUi)

∂θ (1)


[φ2(θ τUi)]

−1(Ỹi −
¯̃Yφ(θ τUi)) = 0. (8)

By substitutingψr , φ and the derivatives by their estimators obtained from (4) and (5), and a direct calculation, we have the
estimating equations for θ as follows.

8̂r(θ
(1))

△
=

¯̃X r

n
i=1

Jτ ψ̂ ′

r(θ
τUi)(Ui − ŝ(θ τUi))[ψ̂

2
r (θ

τUi)]
−1(X̃ri −

¯̃X r ψ̂r(θ
τUi))

= 0, for r = 1, . . . , p, (9)

8̂p+1(θ
(1))

△
=

¯̃Y
n

i=1

Jτ φ̂′(θ τUi)(Ui − ŝ(θ τUi))[φ̂
2(θ τUi)]

−1(Ỹi −
¯̃Y φ̂(θ τUi)) = 0, (10)

in which J = ∂θ/∂θ (1) is the Jacobian matrix of size d × (d − 1); that is,

J =


−θ (1)τ/


1 − ∥θ (1)∥2

Id−1


, (11)

and ŝ(t) is the local linear estimator of s(t) = E(U|θ τU = t) = (s1(t), . . . , sd(t))τ , defined as ŝ(t) =
n

i=1 bi(t)Ui/n
i=1 bi(t),where bi(t) = Kh(θ

τUi − t)[Sn,2(t)− (θ τUi − t)Sn,1(t)], and Sn,j =
n

i=1 Kh(θ
τUi − t)(θ τUi − t)j, j = 1, 2. The

estimation procedure for θ through (4), (5) and (9), (10) is called the estimating function method (EFM) by Cui et al. [5]. It is
worth pointing out that the population versions of (9) and (10), 8r(θ

(1)) and 8p+1(θ
(1)) [See (A.7) and (A.8) in Appendix A],

satisfy the second Bartlett identity; that is, for any θ and r = 1, . . . , p + 1,

E8r(θ
(1))8r

τ (θ (1)) = −E

∂8r(θ

(1))

∂θ (1)


. (12)

This feature ensures that the proposed estimators of θ are possibly semiparametrically efficient. See [5] for a detailed
discussion.
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Based on the conclusion drawn by Cui et al. [5], each equation of (9) and (10) can derive a root-n consistent estimator
of θ (1). Thus, we obtain p + 1 root-n consistent estimators of θ (1). Denote by θ̂ (1)[r] the solution of the r-th equation
8̂r(θ̂

(1)
[r]) = 0. We then define the resulting estimator of θ (1) as

θ̂ (1) =
1

p + 1

p+1
r=1

θ̂ (1)[r]. (13)

Finally, we apply the equation θ1 =

1 − ∥θ (1)∥2 to estimate θ1 by

θ̂1 =


1 − ∥θ̂ (1)∥2, (14)

and the final estimator of θ is θ̂ = (θ̂1, θ̂
(1))τ .

2.2. Estimation of β

From the identifiability condition given in (6) and Assumption (A5), we know

E


Ỹ
EY

 θ τU


= φ(θ τU), E


X̃r

EXr

 θ τU


= ψr(θ
τU).

The local linear estimators of φ(·) and ψr(·) are then obtained by substituting θ with θ̂ . That is,

φ̂b(t) =

n
i=1

ri(t, θ̂ )Ỹi

n
i=1

ri(t, θ̂ )
¯̃Y
, ψ̂br(t) =

n
i=1

ri(t, θ̂ )X̃ri

n
i=1

ri(t, θ̂ )
¯̃X r

, r = 1, . . . , p, (15)

where ri(t, θ̂ ) = Lh1(θ̂
τUi − t)[Qn,2(t, θ̂ ) − (θ̂ τUi − t)Qn,1(t, θ̂ )], Qn,j(t, θ̂ ) =

n
i=1 Lh1(θ̂

τUi − t)(θ̂ τUi − t)j for j = 1, 2,
Lh1(·) = h−1

1 L(·/h1), with the kernel function L(·) satisfying the conditions in Appendix A, and h1 being a bandwidth. Thus,
the ‘‘synthesis’’ data {Ŷi, X̂1i, . . . , X̂pi}

n
i=1, after substituting the unobservable response and predictors {Yi, Xi1, . . . , Xip}

n
i=1,

can be obtained as

Ŷi =
Ỹi

φ̂b(θ̂ τUi)
, X̂ri =

X̃ri

ψ̂br(θ̂ τUi)
, (16)

for r = 1, . . . , p and i = 1, . . . , n.
The nonlinear least squares estimators β̂ are defined as the solution of the q equations

n
i=1

(Ŷi − f (X̂i,β))
∂ f (X̂i,β)

∂βk
= 0, for k = 1, . . . , q, (17)

where ∂ f (·,β)/∂βk is the partial derivative of f with respect to βk. When (17) has no closed-form solution, one may
iteratively solve these equations.

2.3. Large sample properties of the estimators

We now present the asymptotic normality of the estimators θ̂ = (θ̂1, θ̂
(1))τ and β̂. We introduce the following notation:

A⊗2
= AAτ for any matrix or vector A, and Ŭ = U − E(U|θ τU). Without loss of generality, we assume that θ̂ (1) belongs to

a
√
n-neighborhood of θ (1), i.e., θ̂ (1) ∈ {θ (1)

′

: ∥θ (1)
′

− θ (1)∥ ≤ C0n−1/2
} for some positive constant C0. This assumption is

feasible because we can find such an
√
n initial estimator of θ̂ (1) by using existing methods for single-index models. See for

example [5,9,8,7,17]. We have the following asymptotic results.

Theorem 1. Assume that Conditions (A1)–(A3), (A4)(i), and (A5)–(A6) in Appendix A are satisfied. Then
√
n(θ̂ − θ)

L
−→

Nd(0, J6θ Jτ ), where J is given in (11) and

6θ =
1

(p + 1)2
E


p

s=1

p
t=1

(EXsEXt)Γ
−1
s Jτ Ŭ⊗2JΓ −1

t
ψ ′

s(θ
τU)ψ ′

t (θ
τU)

ψs(θ τU)ψt(θ τU)
Cov(Xs, Xt)



+
1

(p + 1)2
E


p

s=1

(EYEXs)(Γ
−1
s Jτ Ŭ⊗2JΓ −1

p+1 + Γ −1
p+1J

τ Ŭ⊗2JΓ −1
s )

×
ψ ′

s(θ
τU)φ′(θ τU)

ψs(θ τU)φ(θ τU)
Cov(Xs, Y )


+

1
(p + 1)2

Var(Y )Γ −1
p+1,
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with

Γr = (EXr)
2E

ψ ′

r(θ
τU)

ψr(θ τU)

2

Jτ Ŭ⊗2J for 1 ≤ r ≤ p, and Γp+1 = (EY )2E

φ′(θ τU)
φ(θ τU)

2

Jτ Ŭ⊗2J. (18)

Theorem 2. Assume that Conditions (A1)–(A3), (A4)(ii), and (A7)–(A10) hold. When ∥θ̂ − θ∥ = OP(n−1/2), we have (i) β̂

converge in probability to the true value β, and (ii)
√
n(β̂ − β)

L
−→ Nq(0,6). Here 6 = 3−1�3−1. The (s, t)th entry of 3 and

� equals 3(s, t) = E ∂ f (X,β)
∂βs

∂ f (X,β)
∂βt

and �(s, t) = σ 23(s, t)+ ϒ(s, t), respectively, where

ϒ(s, t) = Var


Ỹ − Y
EY


E

Y
∂ f (X,β)
∂βs


E

Y
∂ f (X,β)
∂βt



+

p
r=1

p
l=1

Cov


X̃r − Xr

EXr
,
X̃l − Xl

EXl


E

Xr
∂ f (X,β)
∂Xr

∂ f (X,β)
∂βs


E

Xl
∂ f (X,β)
∂Xl

∂ f (X,β)
∂βt



−

p
r=1

Cov


X̃r − Xr

EXr
,
Ỹ − Y
EY


E

Xr
∂ f (X,β)
∂Xr

∂ f (X,β)
∂βs


× E


Y
∂ f (X,β)
∂βt


+ E


Xr
∂ f (X,β)
∂Xr

∂ f (X,β)
∂βt


E

Y
∂ f (X,β)
∂βs


.

Remark 1. In the asymptotic variance 6 = σ 23−1
+ 3−1ϒ3−1, we can observe that the first term σ 23−1 is the usual

asymptotic covariance matrix of the nonlinear least squares estimator when the data are observed without distortion,
i.e., φ(·) = 1 and ψr(·) = 1. 3−1ϒ3−1 is an extra term due to the distortion in the covariate.

Remark 2. For the linear covariate-adjusted model with a one-dimensional confounding variable proposed by Şentürk and
Müller [20], i.e., f (X,β) = β0 +

p
r=1 βrXr and θ ≡ 1, we estimate the unobserved Yi and {X1i, . . . , Xpi}

n
i=1 by Ŷi = Ỹi/φ̂(Ui)

and X̂ri = X̃ri/ψ̂r(Ui), where φ̂(·) and ψ̂r(·) are the local linear estimators of φ̂(·) and ψ̂r(·):

φ̂(u) =

n
i=1
vi(u)Ỹi

n
i=1
vi(u)

¯̃Y
, ψ̂r(u) =

n
i=1
vi(u)X̃ri

n
i=1
vi(u)

¯̃X r

, for r = 1, . . . , p,

where vi(u) = Lh1(Ui − u)[Qn,2(u)− (Ui − u)Qn,1(u)] with Qn,j(u) =
n

i=1 Lh1(Ui − u)(Ui − u)j for j = 1, 2.

The estimating Eq. (17) for the linear covariate-adjusted model can be simplified as:

Gk
n(β) =

n
i=1


Ŷi −

p
r=0

X̂riβr


X̂ki = 0, for k = 0, . . . , p, (19)

in which X̂0i = X0i = 1 for i = 1, . . . , n. Thus, the estimating Eq. (19) reduces to a classical linear regression. Denote the
solution of the estimating Eq. (19) by β̂LS.

Corollary 1. Under the conditions of Theorem 2, we have
√
n(β̂LS − β)

L
−→ Np+1(0,6LS), where 6LS = σ 23−1

LS + ϒLS with
the (s, t)th elements of 3LS and ϒLS being 3LS(s, t) = EXsXt , and

ϒLS(s, t) =


EY 2

(EY )2
Var(φ(U))+

EXsXt

EXsEXt
Cov(ψs(U), ψt(U))

−
EXsY
EYEXs

Cov(φ(U), ψs(U))−
EXtY
EYEXt

Cov(φ(U), ψt(U))


βsβt ,

for 0 ≤ s ≤ t ≤ p, X0 = 1 and ψ0(·) ≡ 1.

Corollary 1 indicates that the asymptotic variance of
√
n(β̂LS,r − βr) equals to σ 2

r = σ 2(3−1
LS )(r, r) + ϒLS(r, r) for

0 ≤ r ≤ p. Note that the asymptotic variance of β̂LS proposed by Şentürk and Müller [20] can be expressed as:

σ̆ 2
r = σ 2(3−1

LS )(r, r)+ σ 2(3−1
LS )(r, r)Var(φ(U))+ β2

r
EX2

r

(EXr)2
Var(φ(U)− ψr(U)),

for 0 ≤ k ≤ p with X0 = 1, ψ0(·) ≡ 1.
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We now compare the asymptotic variance σ 2
r with σ̆ 2

r . Write 3LS = (3LS,0,3LS,1, . . . ,3LS,p)with3LS,k being a (p + 1)-
dimensional column vector. er is a (p + 1)-vector with 1 in the (r + 1)th position and 0 elsewhere for r = 0 ∼ p.

Corollary 2. σ 2
r ≤ σ̆ 2

r if and only if β lies in the set {βτDrβ ≤ 0, 0 ≤ r ≤ p}, where

Dr = β2
r


3LS −

(3LS,r3
τ
LS,0 +3LS,03

τ
LS,r)

EXr

Cov(φ(U), ψr(U))
Var(φ(U))

−
EX2

r

(EXr)2
3LS,03

τ
LS,0

+ 2
EX2

r

(EXr)2

Cov(φ(U), ψr(U))
Var(φ(U))

3LS,03
τ
LS,0


+ σ 2

{ereτr − 3−1
LS (r, r)3LS,03

τ
LS,0},

and the matrices Dr ’s are symmetric with at least one negative eigenvalue.

Remark 3. When f (X,β) inmodel (1) is linear as studied by Nguyen and Şentürk [14], i.e., f (X,β) = β0 +
p

r=1 Xrβr , using

the arguments similar to Theorem 2 and Corollary 1, we have
√
n(β̂LS − β)

L
−→ Np+1(0,6′

LS),where 6′

LS = σ 23−1
LS + ϒ′

LS.
ϒ′

LS is the same as ϒLS except U is replaced by θ τU in each element of ϒLS.

Its proof is similar to the proofs of Theorem 2 and Corollary 1 and thus is omitted.

2.4. Inference based on empirical likelihood

Based on the covariancematrix given in Theorem2, onemay estimate each of its unknownelements and give a confidence
region for β; i.e., Iα,NOR = {β′

: n(β̂ − β′)τ 6̂
−1
(β̂ − β′) ≤ cα},where 6̂ is a plug-in estimator of 6. Although we can easily

confirm that the estimator 6̂ is consistent under mild assumptions, its finite-sample behavior is certainly affected by the
need to plug in several estimated terms. Furthermore, the confidence region derived by this procedure is based on a normal
approximation, which may not be precise in small samples. As an alternative, the empirical likelihood (EL) principle [18,15]
is preferable due to its attractive features: improvement of the confidence region, increased accuracy of coverage because
of using auxiliary information, easy implementation, avoidance of estimating variances, and studentizing automatically.
Therefore in this section, we study inference based on the EL principle.

We introduce an auxiliary random vectorϖn,i(β
′) = (ϖ 1

n,i(β
′), . . . ,ϖ

q
n,i(β

′))τ with

ϖ s
n,i(β

′) = (Yi − f (Xi,β
′))
∂ f (Xi,β

′)

∂β′

s
.

Note that Eϖn,i(β
′) = 0 for β′

= β. Then an empirical log-likelihood ratio function is defined as ln(β′) = −2max
{
n

i=1 log(npi) : pi ≥ 0,
n

i=1 pi = 1,
n

i=1 piϖn,i(β
′) = 0}. Because the response and predictors are distorted and

unobservable, this empirical log-likelihood ratio function cannot be used directly. Instead, we plug {Ŷi, X̂i1, . . . , X̂ip}
n
i=1 into

ln(β′) and an adjusted EL ratio function can be obtained as

l̂n(β′) = −2max


n

i=1

log(npi) : pi ≥ 0,
n

i=1

pi = 1,
n

i=1

piϖ̂n,i(β
′) = 0


, (20)

where ϖ̂ s
n,i(β

′) = (Ŷi − f (X̂i,β
′))∂ f (X̂i,β

′)/∂β′

s for s = 1, . . . , q.
By the Lagrange multiplier method, l̂n(β′) can be represented as

l̂n(β′) = 2
n

i=1

log{1 + λτ ϖ̂n,i(β
′)},

where λ is determined by

1
n

n
i=1

ϖ̂n,i(β
′)

1 + λτ ϖ̂n,i(β
′)

= 0.

Theorem 3. Suppose that Conditions (A1)–(A10) hold. Then l̂n(β) converges to a chi-squared distribution with p degrees of
freedom.

Based on Theorem 3, a confidence region of β can be given as Iα,EL = {β′
: l̂n(β′) ≤ cα},where cα denotes the α quantile of

the chi-squared distribution. It is worth mentioning that our EL-based statistic has a standard chi-squared distribution and
is free of the infinite-dimensional nuisance parameters φ(·) and ψr(·). For their plug-in estimators, neither bias correction
is needed as done by Zhu and Xue [28] for single-index models. This property makes this statistic easy to implement and is
computationally efficient.
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Table 1
Simulation study. The estimated mean and associated standard error for case 1.

β1 β2 θ1 θ2 θ3

n = 300 Bias 0.0048 0.0249 0.0269 0.0317 −0.0361
SE 0.0308 0.0668 0.0968 0.0746 0.0588

n = 400 Bias 0.0050 0.0227 0.0192 0.0297 −0.0283
SE 0.0247 0.0554 0.0869 0.0695 0.0575

n = 500 Bias 0.0039 0.0149 0.0208 0.0282 −0.0260
SE 0.0241 0.0533 0.0761 0.0646 0.0534

n = 600 Bias 0.0040 0.0132 0.0154 0.0280 −0.0223
SE 0.0206 0.0431 0.0695 0.0657 0.0520

Table 2
Simulation study. The estimated mean and associated standard error for case 2.

β1 β2 θ1 θ2 θ3 θ4 θ5 θ6

n = 300 Bias −0.0017 −0.0016 −0.0099 0.0194 0.0088 −0.0045 −0.0015 −0.0271
SE 0.0264 0.0220 0.0939 0.0711 0.0679 0.0564 0.0522 0.0480

n = 400 Bias 0.0008 −0.0007 −0.0014 0.0126 0.0062 0.0064 −0.0029 −0.0264
SE 0.0219 0.0186 0.0767 0.0637 0.0582 0.0528 0.0520 0.0473

n = 500 Bias −0.0001 −0.0009 −0.0055 0.0124 0.0071 0.0021 −0.0059 −0.0177
SE 0.0203 0.0176 0.0691 0.0573 0.0552 0.0501 0.0470 0.0424

n = 600 Bias 0.0040 −0.0004 −0.0011 0.0134 0.0023 0.0039 −0.0082 −0.0126
SE 0.0175 0.0160 0.0664 0.0531 0.0480 0.0477 0.0424 0.0389

3. Numerical studies

In this section, we conduct a simulation study to assess the performance of the proposed method and report a real data
analysis. We choose Epanechnikov kernel function L(t) = K(t) = 0.75(1− t2)+ and use the leave-one-out cross-validation
to select the optimal bandwidths. To estimate θ , the fixed point iterative algorithm proposed by Cui et al. [5] is adopted as it
is easy to implement and not sensitive to the initial value of θ . Having the estimators of θ , we calibrate the distorted Y and
X by (16), and then obtain the estimated values β̂ based on (17).

3.1. A simulation study

We generated 500 datasets consisting of n = 300, 400, 500, and 600 observations, respectively, from the model:

Y = sin(β1X1)+ (2 + X2)
β2 + ε, (21)

where β1 = 1, β2 = 0.5. The model error ε follows N(0, 0.52) and the predictors (X1, X2)
τ follow N2(µX,6X) with

µX = (2, 2)τ and

6X =


1 0.1
0.1 0.25


.

The distorting functions are φ(θ τU) = (2+ θ τU)2/CY ,ψ1(θ
τU) = (1.5+ θ τU)/CX1 , andψ2(θ

τU) = (1+ (θ τU)2)/CX2 . The
constants CY , CX1 , and CX2 in the distorting functions are chosen to ensure identifiability (6). In this simulation example, we
took the initial value θinitial = (1, 1, . . . , 1)τ/

√
d and stop the iterations when max1≤i≤d |θnew,i − θold,i| ≤ 0.001.

Case1. The single-index θ was chosen as (2, 3, 4)/
√
29, and U follows N3(µU ,6U)with µU = (4, 5, 6)τ , and

6U =

 1 0.4 −0.2
0.4 1 0.3

−0.2 0.3 1


.

The constants (CY , CX1 , CX2) equal (116.3869, 10.2277, 78.4761). We truncated θ τU into the interval [0.1576
12.2557] to satisfy Condition (A2); i.e., the distorting functions φ(θ τU), ψ1(θ

τU), and ψ2(θ
τU) are nonzero in this

interval.
Case2. The single-index θ was chosen as (1, 2, 3, 4, 5, 6)/

√
91, U follows N6(µU ,6U) with µU = (3, 3, 3, 3, 3, 3)τ , and

6U = (σij)with σij = 0.5|i−j|. The constants (CY , CX1 , CX2) equal (76.1915, 8.1042, 46.7747). We truncated θ τU into
the interval [0.4323 12.7761] to satisfy Condition (A2).

The bias and the associated standard errors are reported in Tables 1 and 2. It is seen that the estimated values of (β1,β2) are
close to the true value (1, 0.5), and the estimated values of the single-index θ̂ are also close to the true value θ as the sample
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Table 3
Simulation study. The coverage probabilities of the confidence regions for (β1, β2)

τ with
nominal level 95%.

Method n = 300 n = 400 n = 500 n = 600

Case 1

Empirical likelihood (%) 91.2 93.4 94.2 94.6
Normal approximation (%) 85.8 89.8 92.2 93.9

Case 2

Empirical likelihood (%) 92.0 93.1 94.0 94.5
Normal approximation (%) 90.7 90.1 93.5 94.2

size n increases. The coverage probabilities are presented in Table 3, from which we can see that the coverage probabilities
based on the EL approach are uniformly closer to the nominal level than those based on the normal approximation approach.

We also conducted one simulation run with a sample size of 400 to give the confidence region of (β1,β2), based on
both the normal approximation and the EL-based approach, and delineate them in Figs. B.1 and B.2. The area based on
the EL approach is smaller than the one based on normal approximation. This indicates that the EL approach has a better
numerical performance and is superior to the normal approximation one.

3.2. An empirical example

We applied our method to study the Pima Indian diabetes data for an illustration. This dataset has been analyzed by
Nguyen and Şentürk [14]. They investigated the relationship between plasma glucose concentration (GLU) and diastolic
blood pressure using a linear regression model, and suggested that body mass index and triceps skin-fold thickness are
confounding variables. We investigated the relationship between GLU and 2-h serum insulin (SER), which is of particular
interest as the normal utilization of glucose can be ruined by abnormal insulin action with high levels of insulin, especially
for the patients with diabetes mellitus Type 2. Hans et al. [6] found that there is a significant correlation between glucose
concentrations and BMI. Carmina et al. [1] once noticed that SER is significantly correlated with BMI. More recently,
Mohamed et al. [13] found that SER is also correlated with triceps skin-fold thickness (SFT). We therefore feel that the
BMI and SFT of the body configurationmay affect the response, GLU, and the predictor, SER, and therefore treat BMI and SFT
as confounding variables in this data analysis.

We removed 14 outliers that includemeasurements of GLU or SER being zeros and SERmeasurements being smaller than
30 or larger than 600, which is not possible in practice. We therefore had 380 observations for the data analysis. We chose
the initial value θinitial = (1/

√
5, 2/

√
5) and stopped iterations if max1≤i≤d |θnew,i − θold,i| ≤ 0.005. The final estimator is

θ̂ = (0.7579, 0.6524). Thus, the confounding single-index variable in this dataset is estimated as 0.7579SFT+0.6524BMI.
Based on this estimated single-index covariate, the estimates of the distorting function φ(·) and ψ(·) can be obtained
through (15). To see whether the confounding variable has an impact on the response GLU as well as the predictor SER,
we presented the patterns of φ̂(u) and ψ̂(u) in Fig. B.4. Two plots indicate that φ(u) andψ(u) are not linear, suggesting the
distortion effect of the single index θ1SFT + θ2BMI on GLU and SER.

We used the estimated single-index 0.7579SFT + 0.6524BMI and estimation procedure (16) to obtain estimated values
of GLU and SER. These intermediate estimated values are displayed in Fig. B.3, in which we depict the local linear smoothing
curve (thin solid line) and the 95% pointwise confidence band. As an illustrative purpose, we also fitted a linear regression
for this dataset and display the straight line in Fig. B.3, which is not encapsulated in the band. In what follows, we used the
following nonlinearmodel for this data analysis, which is commonly used to depict the pattern in pharmacokineticmodeling
glucose concentration [11]:

GLU = f (SER,β) = (β1 + β2SER)/(β3 + SER). (22)

In the same line as in Section 3.1,weobtain the estimated values of (β1,β2,β3) as (β̂1, β̂2, β̂3) = (4441.10, 182.02, 96.19)τ .
The corresponding 95% asymptotic and EL-based confidence intervals(CIs) of the parameters (β1,β2,β3) are (−2180,
11063), (161.57, 202.47), (20.15, 172.25), and (4000.6, 4908.7), (178.01,186.19), (91.44, 101.03), respectively. The marginal
EL-based confidence interval is calculated using (20) by treating the estimated values of the remaining parameters as the
true values. The estimated values indicate that the GLUwill be stable around 182, with large SER values. It is worth pointing
out that the CIs based on the normal approximation method are substantially wider than those based on the empirical
likelihood method. The CI of β1 based on the normal approximation method contains 0, while its EL-based CI excludes 0.
This leads to two controversial conclusions. Recalling the performance of the twomethods in the simulation experiment, we
prefer the conclusion based on the EL procedure. The fitted nonlinear curve along with 95% pointwise confidence intervals,
is displayed in Fig. B.5, which properly captures the nonlinear pattern of the GLU.

To assess howwell this model captures the curve, we used the test of Stute et al. [23] to check whether the model (22) is
adequate or not. The associated value of the test statistic is 0.0497 with a p-value of 0.9790. This indicates that model (22)
is appropriate to fit this dataset. We also fitted model (22) for the original data. The estimated values of (β1,β2,β3) equal
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(−7.3082× 104, 1.3108× 103, 436.30)τ , which indicates that when the SER becomes large, the GLU will be stable, around
1.3108 × 103. This is not true in practice. Furthermore, the mean of residual square error based on the naive methods
is 6.9356 × 103, while the mean of the residual square error based on the proposed method remarkably decreases to
521. Therefore, the confounding variables do have a substantial impact on the improvement of model fitting. To make
a comparison, we refit the model using the data after removing zero GLU and SER. The resulting estimated values of
(β1,β2,β3) are (9970.20, 192.31, 152.83)τ , and the EL-based confidence intervals (CIs) of these parameters are (9385,
10584), (187.42, 197.33), (147.48, 185.30). The mean of the residual square error in this context increases to 534.66. So the
extremely large or small SER measurements make the EL-based intervals wider. For instance, the interval length of β3 is 37,
which is three times longer than that obtained after removal of 18 unusual observations.

Appendix A

In this appendix, we present the conditions and give the proofs of the main results. The necessary lemmas for the
following proofs are given in Appendix B.

A.1. Conditions

The following are the regularity conditions for our asymptotic results.

(A1) The density function fθτU(θ τu) of the random variable θ τU is bounded away from 0 and satisfies the Lipschitz
condition of order 1 on�θ = {θ τu : u ∈ U}, and U is a compact support set of U .

(A2) φ(·),ψr(·), s(·) = E(U|θ τU = ·) have three bounded and continuous derivatives. Moreover, φ(θ τu) andψr(θ
τu) are

nonzero on�θ .
(A3) The kernel functions K(·) and L(·) are symmetric about zero and have bounded derivatives. Furthermore, L(·) satisfies

a Lipschitz condition on R1, and


∞

−∞
u2K(u)du ≠ 0,


∞

−∞
|u|jK(u)du < ∞,


∞

−∞
u2L(u)du ≠ 0,


∞

−∞
|u|jL(u)du < ∞,

for j = 1, 2, . . ..
(A4) As n → ∞, the bandwidths h and h1 satisfy:

(i) h → 0, nh4
→ ∞, and nh6

→ 0.
(ii) h1 → 0, (log n)

2

nh21
→ 0, nh4

1 → 0, and nh2
1 → ∞.

(A5) EY and E (Xr), r = 1, . . . , p are bounded away from 0.
(A6) Γr (r = 1, . . . , p + 1) defined in (18) are positive definite.
(A7) For l1, l2, l3, l4 = 0, 1, 2, l1 + l2 + l3 + l4 ≤ 3, 1 ≤ s1, s2 ≤ p and 1 ≤ t1, t2 ≤ q, the partial derivatives

∂ l1+l2+l3+l4 f (X,β′)

∂ l1β′

t1∂
l2β′

t2∂
l3Xs1∂

l4Xs2

exist, and ∂ l1+l2+l3+l4 f (X,β′)

∂ l1β′

t1∂
l2β′

t2∂
l3Xs1∂

l4Xs2

 ≤ C, when l3 + l4 ≥ 1,

for some positive constant C and

E


sup
β′

 ∂ l1+l2+l3+l4 f (X,β′)

∂ l1β′

t1∂
l2β′

t2∂
l3Xs1∂

l4Xs2



< ∞, when 1 ≤ l1 + l2 ≤ 2, and l3 + l4 = 0.

(A8) Eε = 0 and Eε4 < ∞, and the covariance matrix of X is positive and finite.
(A9) 3 defined in Theorem 2 is a positive definite matrix with finite elements.

(A10) E[f (X,β′)− f (X,β)]2 admits one unique minimum at β′
= β.

Condition (A1) ensures the density function fθτU(·) is positive, which implies that the denominators involved in the
nonparametric estimators are bounded away from 0. Condition (A2) is a mild smoothness condition on the involved
functions. The absolute values of φ(θ τu) and ψr(θ

τu) are above zero on the set �θ , which ensures that the denominators
involved in the estimating equation of the EFM approach are not equal to zero. Condition (A3) is commonly imposed
in nonparametric regression literature. The Gaussian kernel and quadratic kernel satisfy this condition. Condition (A4) is
required for asymptotic normality of the estimators θ̂ and β̂. Condition (A5) is necessary in the study of covariate-adjusted
models, see [20,4,27]. Condition (A6) is generally true. Conditions (A7)–(A10) are essential for the asymptotic results of
nonlinear least square estimators. See more details in [25].

Throughout the appendix, Zn = OP(an)means that a−1
n Zn is bounded in probability.When the variances of themean-zero

random variables Zn are finite, we can easily show that Zn = OP(

E(Z2

n )). This fact will often be used later.
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A.2. Proof of Theorem 1

We complete the proof in three steps.
Step 1. We have that

8̂r(θ
(1))−

¯̃X r

n
i=1


∂ψ̂r(θ

τUi)

∂θ (1)


[ψ̂2

r (θ
τUi)]

−1(X̃ri −
¯̃X r ψ̂r(θ

τUi)) = oP(
√
n). (A.1)

8̂p+1(θ
(1))−

¯̃Y
n

i=1


∂φ̂(θ τUi)

∂θ (1)


[φ̂2(θ τUi)]

−1(Ỹi −
¯̃Y φ̂(θ τUi)) = oP(

√
n). (A.2)

The proofs of (A.1) and (A.2) are similar to the proof of (2.6) in [5]. We omit the details.
Step 2. We prove the following statements.

∂8̂r(θ
(1))

∂θ (1)
+

n
i=1


∂ψ̂r(θ

τUi)

∂θ (1)


[ψ̂2

r (θ
τUi)]

−1(
¯̃X r)

2


∂ψ̂r(θ

τUi)

∂θ (1)

τ
= oP(n). (A.3)

∂8̂p+1(θ
(1))

∂θ (1)
+

n
i=1


∂φ̂(θ τUi)

∂θ (1)


[φ̂2(θ τUi)]

−1(
¯̃Y )2


∂φ̂(θ τUi)

∂θ (1)

τ
= oP(n). (A.4)

We only prove (A.4). A direct use of Proposition 1(iii) in [5] and the assumption on the bandwidth (A4)(i) yield

∂8̂r(θ
(1))

∂θ (1)
+ (EXr)

2
n

i=1


ψ ′

r(θ
τUi)

ψr(θ τUi)

2

Jτ Ŭ⊗2
i J = oP(n), (A.5)

∂8̂p+1(θ
(1))

∂θ (1)
+ (EY )2

n
i=1


φ′(θ τUi)

φ(θ τUi)

2

Jτ Ŭ⊗2
i J = oP(n). (A.6)

Furthermore, (A.5) and (A.6) imply that

∂8̂r(θ
(1))

∂θ (1)
−
∂8r(θ

(1))

∂θ (1)
= oP(

√
n), and

∂8̂p+1(θ
(1))

∂θ (1)
−
∂8p+1(θ

(1))

∂θ (1)
= oP(

√
n),

where

8r(θ
(1)) = EXr

n
i=1

Jτψ ′

r(θ
τUi)Ŭi[ψ

2
r (θ

τUi)]
−1

{X̃ri − EXrψr(θ
τUi)}, (A.7)

8p+1(θ
(1)) = EY

n
i=1

Jτφ′(θ τUi)Ŭi[φ
2(θ τUi)]

−1
{Ỹi − EYφ(θ τUi)}. (A.8)

Similar to the derivation of (A.27) in [5], we find that the proof of ∂8̂p+1(θ
(1))

∂θ (1)
−

∂8p+1(θ
(1))

∂θ (1)
= oP(

√
n) or ∂8̂r (θ)

∂θ (1)
−

∂8r (θ
(1))

∂θ (1)
=

oP(
√
n) is equivalent to proving that 8̂p+1(θ

(1)) − 8p+1(θ
(1)) = oP(

√
n) or 8̂r(θ

(1)) − 8r(θ
(1)) = oP(

√
n). The desired

result can be proved by following the proof of (2.7) in [5].
Step 3. From expressions (A.2) and (A.4), we have

√
n(θ̂ (1)[p + 1] − θ (1)) =


∂8̂p+1(θ

(1))

∂θ (1)

−1
√
n8p+1(θ

(1))+ oP(1),

√
n(θ̂ (1)[r] − θ (1)) =


∂8̂r(θ

(1))

∂θ (1)

−1
√
n8r(θ

(1))+ oP(1).

Then

√
n(θ̂ (1) − θ (1)) =

1
p + 1

p+1
j=1


1
n
∂8̂j(θ

(1))

∂θ (1)

−1
1

√
n
8j(θ

(1))+ oP(1)

=
1

√
n

n
i=1

1
p + 1


p

r=1

EXrΓ
−1
r Jτ Ŭi

ψ ′
r(θ

τUi)

ψ2
r (θ

τUi)
[X̃ri − EXrψr(θ

τUi)]

+ EYΓ −1
p+1J

τ Ŭi
φ′(θ τUi)

φ2(θ τUi)
[Ỹi − EYφ(θ τUi)]


+ oP(1).
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Thus,
√
n(θ̂ (1)− θ (1)) converges to Nd−1(0,6θ ) in distribution by a direct calculation. Accordingly the asymptotic normality

of θ̂ = (θ̂1, θ̂
(1))τ follows from these arguments along with the Delta-method. We therefore complete the proof of

Theorem 1.

A.3. Proof of Theorem 2

We omit the proof of statement (i), as it is similar to the proof of Theorem 1 in [4] and Lemma 1 in [25].
We now prove the statement of (ii) in the following. By the mean-value theorem toGn(β), we have, for β∗ lying between

β and β̂,

0 =
1
n
Gn(β̂) =

1
n
Gn(β)+

1
n
∂Gn(β

∗)

∂β
(β̂ − β).

Then

√
n(β̂ − β) =


1
n
∂Gn(β

∗)

∂β

−1
1

√
n
Gn(β),

with the (s, t) element of matrix 1
n
∂Gn(β

∗)

∂β
:

1
n
∂Gn(β

∗)

∂β
(s, t) = −

1
n

n
i=1

∂ f (X̂i,β
∗)

∂βs

∂ f (X̂i,β
∗)

∂βt
+

1
n

n
i=1

(Ŷi − f (X̂i,β
∗))
∂2f (X̂i,β

∗)

∂βs∂βt
.

Similarly as the proof of Lemma B.3, we find that the second term on the right-hand side is oP(1); that is,
1
n

n
i=1

(Ŷi − f (X̂i,β
∗))
∂2f (X̂i,β

∗)

∂βs∂βk

2

= oP(1).

Now we consider the first term −
1
n

n
i=1

∂ f (X̂i,β
∗)

∂βs

∂ f (X̂i,β
∗)

∂βk
. Similarly to the proof of Lemma B.3, we also can obtain that

−
1
n

n
i=1

∂ f (X̂i,β
∗)

∂βs

∂ f (X̂i,β
∗)

∂βk

P
−→ −E

∂ f (X,β)
∂βs

∂ f (X,β)
∂βk

.

Thus, 1
n
∂Gn(β

∗)

∂β
(s, t)

P
−→ E ∂ f (X,β)

∂βs

∂ f (X,β)
∂βk

. Using Lemma B.3, we have

√
n(β̂ − β) =


1
n
∂Gn(β

∗)

∂β

−1
1

√
n
Gn(β) = 3−1 1

√
n
Fn(β)+ oP(1)

L
−→ Nq(0,6).

A.4. Proof of Corollary 1

Write X(n) = (X (n)0 , X (n)1 , . . . , X (n)p )τ with X (n)0 = (1, 1, . . . , 1)τ and X (n)s = (Xs1, . . . , Xsn)
τ for 1 ≤ s ≤ p, Y = (Y1, . . . ,

Yn)
τ and X̂(n) and Ŷ the estimators of unobservable X(n) and Y , i.e., X̂(n) = (X̂ (n)0 , X̂ (n)1 , . . . , X̂ (n)p ) with X̂ (n)0 = (1, 1, . . . , 1)τ

and X̂ (n)s = (X̂s1, . . . , X̂sn)
τ , Ŷ = (Ŷ1, . . . , Ŷn)

τ . Thus, the estimator β̂LS is the LS one, that is, β̂LS = {X(n)τX(n)}−1X(n)τ Ŷ . We
represent β̂LS as {X(n)τX(n) + ∆X(n)}

−1
{X(n)τY + ∆(X(n),Y )}, where ∆(X(n),Y ) = X(n)τ (Ŷ − Y ) + (X̂(n) − X(n))τY + (X̂(n) −

X(n))τ (Ŷ − Y ) and∆X(n) = X(n)τ (X̂(n) − X(n))+ (X̂(n) − X(n))τX(n) + (X̂(n) − X(n))τ (X̂(n) − X(n)).
With a similar analysis to the proof of Lemma B.1, we can show that supu∈U |φ̂l(u) − φl(u)| = OP(

log n
nh1
)1/2 and

supu∈U |ψ̂lr(u)− ψr(u)| = OP(
log n
nh1
)1/2. Thus, by Condition (A8), we obtain that

∆(X(n),Y ) = X(n)τ (Ŷ − Y )+ (X̂(n) − X(n))τY + OP


log n
nh1


,

∆X(n) = X(n)τ (X̂(n) − X(n))+ (X̂(n) − X(n))τX(n) + OP


log n
nh1


,

{X(n)τX(n) +∆X(n)}
−1

− {X(n)τX(n)}−1
= −{X(n)τX(n)}−1∆X(n){X

(n)τX(n)}−1
+ OP


log n
nh1


.
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As a consequence, we have
1
n
X(n)τX(n)


√
n(β̂LS − β) =


1

√
n
X(n)τ ε −

1
√
n
X(n)τ (X̂(n) − X(n))β −

1
√
n
(X̂(n) − X(n))τX(n)β

+
1

√
n
X(n)τ (Ŷ − Y )+

1
√
n
(X̂(n) − X(n))τY


+ OP


1
n
X(n)τ ε


+ OP


log2 n
nh2

1


.

Using Lemma B.2, we know that the s-th element of 1
√
nX

(n)τ (X̂(n) − X(n))β has the following asymptotic expression:
1

√
n
X(n)τ (X̂(n) − X(n))β


s
=

p
r=1

1
√
n

n
i=1

(X̃ri − Xri)
E(XrXs)

EXr
βr + oP(1).

Similarly,
1

√
n
(X̂(n) − X(n))τX(n)β


s
=

p
r=0

1
√
n

n
i=1

(X̃si − Xsi)
E(XrXs)

EXs
βr + oP(1),

and 
1

√
n
X(n)τ (Ŷ − Y )


s
=

1
√
n

n
i=1

(Ỹi − Yi)
E(YXs)

EY
+ oP(1).

Furthermore, 1
√
n (X̂n − Xn)

τY =
1

√
n (X̂n − Xn)

τXnβ +
1

√
n (X̂n − Xn)

τ ε. With a similar analysis to Lemma B.2, we can obtain

that 1
√
n (X̂n − Xn)

τ ε = oP(1). Noting that EXτY = EXτXβ, we then have
1

√
n
(X̂(n) − X(n))τY


s
=

1
√
n

n
i=1

(X̃si − Xsi)
E(YXs)

EXs
+ oP(1).

Note that X0i = 1 for i = 1, . . . , n. Thus,
1
n
X(n)τX(n)


√
n(β̂LS − β) =

1
√
n
{X(n)τ ε − X(n)τ (X̂(n) − X(n))β + X(n)τ (Ŷ − Y )} + oP(1)

=



1
√
n

n
i=1


εiX0i + (Ỹi − Yi)

E(YX0)

EY
−

p
r=1

(X̃ri − Xri)
E(XrX0)

EXr
βr


1

√
n

n
i=1


εiX1i + (Ỹi − Yi)

E(YX1)

EY
−

p
r=1

(X̃ri − Xri)
E(XrX1)

EXr
βr


...

1
√
n

n
i=1


εiXpi + (Ỹi − Yi)

E(YXp)

EY
−

p
r=1

(X̃ri − Xri)
E(XrXp)

EXr
βr




+ oP(1).

Recall that 3LS(s, t) = EXsXt for 0 ≤ s, t ≤ p (X0 = 1). Thus, 1
nX

(n)τX(n) a.s.
−→ 3LS. It is easy to show

√
n(β̂LS − β)

L
−→

Np+1(0,6LS), where6LS = 3−1
LS �LS3

−1
LS with�LS = σ 23LS+�′

LS. Note that Y =
p

r=0 Xrβr+ε. Therefore,�
′

LS = 3LSϒLS3LS.
Setting X0 = 1 and ψ0(·) ≡ 1, we complete the proof of Corollary 1.

A.5. Proof of Corollary 2

Recall that 3LS = (3LS,0,3LS,1, . . . ,3LS,p). Thus, we have the following expressions:

EY 2
= βτ3LSβ + σ 2, EY = 3τLS,0β = βτ3LS,0 (A.9)

EYXr = 3τLS,rβ = βτ3LS,r , EYXrEY = βτ3LS,03
τ
LS,rβ = βτ3LS,r3

τ
LS,0β. (A.10)

It is seen that σ 2
r ≤ σ̆ 2

r if and only if ϒLS(r, r) ≤ σ 23−1
LS (r, r)Var(φ(U))+ β2

r
EX2

r
(EXr )2

Var(φ(U)−ψr(U)). This is equivalent to
the following inequality:

EY 2β2
r −

2EXrYEY
EXr

Cov(φ(U), ψr(U))
Var(φ(U))

β2
r

≤


σ 23−1

LS (r, r)+ β2
r

EX2
r

(EXr)2
− 2β2

r
EX2

r

(EXr)2

Cov(φ(U), ψr(U))
Var(φ(U))


(EY )2.
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Plugging (A.9) and (A.10) into this inequality, we have

βτ {3LSβ
2
r + σ 2ereτr }β − βτ


(3LS,r3

τ
LS,0 +3LS,03

τ
LS,r)

EXr

Cov(φ(U), ψr(U))
Var(φ(U))

β2
r


β

≤ βτ

σ 23−1

LS (r, r)+ β2
r

EX2
r

(EXr)2
− 2β2

r
EX2

r

(EXr)2

Cov(φ(U), ψr(U))
Var(φ(U))


3LS,03

τ
LS,0β.

Then σ 2
r ≤ σ̆ 2

r if and only if βτDrβ ≤ 0.
Next, we prove the second assertion of Corollary 2.

• If βr = 0, then Dr = σ 2ereτr − σ 23−1
LS (r, r)3LS,03

τ
LS,0. For any symmetric q × q matrix A, the maximum eigenvalue and

minimum eigenvalue of A have the following inequality: λmin(A) ≤ A(s, s) ≤ λmax(A) with 1 ≤ s ≤ q. Note that er is a
(p + 1)-vector with 1 in the (r + 1)th position and 0 elsewhere for r = 0 ∼ p. Then,

λmin(Dr) ≤ Dr(1, 1) = σ 2(ereτr )(1, 1)− σ 23−1
LS (r, r)(3LS,03

τ
LS,0)(1, 1)

= σ 2(I(r = 0)− 3−1
LS (r, r)).

When r = 0, we have 3−1
LS (0, 0) = 1/{1 − (EX)M−1

X (EX)
τ
}, where MX = E(XXτ ), which is a positive matrix

by Assumption (A8). Since 3−1
LS (0, 0) is the asymptotic variance of β̂0 for the linear regression model f (X,β) =

β0 +
p

r=1 βrXr . By the assumptions of Corollary 1, 3LS is a positive definite matrix. Thus, 3−1
LS (0, 0) ≥ λmin(3

−1
LS ) =

1/λmax(3LS) > 0; i.e., 3−1
LS (0, 0) is a positive constant. Then

λmin(D0) ≤ −
σ 2(EX)M−1

X (EX)
τ

1 − (EX)M−1
X (EX)τ

≤ 0.

When 1 ≤ r ≤ p, we know λmin(Dr) ≤ −σ 23−1
LS (r, r) ≤ 0 due to the fact that 3−1

LS (r, r) ≥ λmin(3
−1
LS ) = 1/λmax(3LS) >

0.
• If βr ≠ 0, then we have

λmin(Dr)

β2
r

≤ 1 +
σ 2I(r = 0)

β2
r

− 2
Cov(φ(U), ψr(U))

Var(φ(U))
I(r ≠ 0)−

σ 23−1
LS (r, r)

β2
r

−
EX2

r

(EXr)2
+ 2

EX2
r

(EXr)2

Cov(φ(U), ψr(U))
Var(φ(U))

I(r ≠ 0).

When r = 0, Xr = 1 and EX2
r = (EXr)

2. Then

λmin(D0)

β2
r

≤
σ 2

β2
0

−
σ 23−1

LS (0, 0)

β2
0

= −
σ 2(EX)M−1

X (EX)
τ

β2
0(1 − (EX)M−1

X (EX)τ )
≤ 0.

When 1 ≤ r ≤ p, we have

λmin(Dr)

β2
r

≤ 1 − 2
Cov(φ(U), ψr(U))

Var(φ(U))
−
σ 23−1

LS (r, r)

β2
r

−
EX2

r

(EXr)2
+ 2

EX2
r

(EXr)2

Cov(φ(U), ψr(U))
Var(φ(U))

= −
σ 23−1

LS (r, r)

β2
r

+
Var(Xr)

(EXr)2


Eφ(U)ψr(U)− Eφ(U)2 − 1

Var(φ(U))


.

We find that if the distorting functions satisfy Eφ(U)ψr(U) ≤ 1 + Eφ(U)2, then λmin(Dr) ≤ 0, which entails the region
of β confined by the conditions of Corollary 2 is not empty, and thus we complete the proof of Corollary 2.

A.6. Proof of Theorem 3

For 1 ≤ s ≤ q, decompose ϖ̂n,i(β)s into the following terms:

ϖ̂ s
n,i(β) = (Yi − f (Xi,β))

∂ f (Xi,β)

∂βs
+ Es

n,i1 + Es
n,i2 + Es

n,i3 + Es
n,i4 + Es

n,i5,

where

Es
n,i1 = (Ŷi − Yi)

∂ f (Xi,β)

∂βs
,

Es
n,i2 = (Yi − f (Xi,β))


∂ f (X̂i,β)

∂βs
−
∂ f (Xi,β)

∂βs


,
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Es
n,i3 = (f (Xi,β)− f (X̂i,β))

∂ f (Xi,β)

∂βs
,

Es
n,i4 = (Ŷi − Yi)


∂ f (X̂i,β)

∂βs
−
∂ f (Xi,β)

∂βs


,

Es
n,i5 = (f (Xi,β)− f (X̂i,β))


∂ f (X̂i,β)

∂βs
−
∂ f (Xi,β)

∂βs


.

To prove Theorem 3, we need to show that
max
1≤i≤n

|ϖ̂ s
n,i(β)| = oP(n1/2).

First, we consider the argumentmax1≤i≤n |(Yi − f (Xi,β))
∂ f (Xi,β)
∂βs

|. For any sequence of i.i.d. random variables {Vi, 1 ≤ i ≤ n}

and EV 2
≤ ∞, we have max1≤i≤n

|Vi|√
n → 0, a.s. Together with Conditions (A7) and (A8), we have

max
1≤i≤n

(Yi − f (Xi,β))
∂ f (Xi,β)

∂βs

 = oP(n1/2).

Next, for Es
n,i1, directly using Lemma B.1 and Condition (A2), we have

|Es
n,i1| =

|φ(θ τUi)− φ̂b(θ̂
τUi, θ̂ )|

|φ̂b(θ̂ τUi, θ̂ )|

Yi
∂ f (Xi,β)

∂βs

 ≤ C1OP


log n
nh1

 Yi
∂ f (Xi,β)

∂βs


for some positive constant C1. Conditions (A7) and (A8) entail that E|Y ∂ f (X,β)

∂βs
|
2 < ∞. Thus, it is easily seen that if Condition

(A4)(ii) holds we have max1≤i≤n |Es
n,i1| = oP(n1/2).

Similar to the proof of Lemma B.3, we apply Taylor expansion to ∂ f (X̂i,β)
∂βs

−
∂ f (Xi,β)
∂βs

with respect to Xi. Using Lemma B.1
again, we obtain max1≤i≤n |Es

n,ij| = oP(n1/2) for j = 2, 3, 4, 5. Next, following the same argument for (2.14) as [16] and
Lemma B.2 entails λ = OP(n1/2). Thus, max1≤i≤n |λτ ϖ̂ s

n,i(β)| = oP(1).
Note that log(1 + t) .

= t −
1
2 t

2 for sufficiently small t , we have

l̂(β) = 2
n

i=1


λτ ϖ̂ s

n,i(β)−
1
2
{λτ ϖ̂ s

n,i(β)}
2


+ oP(1). (A.11)

Due to the fact that λ satisfies the following equation,

1
n

n
i=1

ϖ̂n,i(β)

1 + λτ ϖ̂n,i(β)
= 0.

Furthermore,

0 =
1
n

n
i=1

ϖ̂n,i(β)

1 + λτ ϖ̂n,i(β)

=
1
n

n
i=1

ϖ̂n,i(β)−
1
n

n
i=1

ϖ̂n,i(β)ϖ̂n,i(β)
τλ+

1
n

n
i=1

ϖ̂n,i(β){λ
τ ϖ̂ s

n,i(β)}
2

1 + λτ ϖ̂n,i(β)
. (A.12)

This equation and max1≤i≤n |λτ ϖ̂ s
n,i(β)| = oP(1) entail that

λ =


1
n

n
i=1

ϖ̂n,i(β)ϖ̂n,i(β)
τ

−1
1
n

n
i=1

ϖ̂n,i(β)+ oP(n−1/2). (A.13)

Plugging the asymptotic expression (A.13) to (A.11), we have

l̂(β) = n


1
n

n
i=1

ϖ̂n,i(β)

τ 
1
n

n
i=1

ϖ̂n,i(β)ϖ̂n,i(β)
τ

−1 
1
n

n
i=1

ϖ̂n,i(β)


+ oP(1).

Applying Lemma B.2 to Es
n,ij for j = 1, . . . , 5, and similarly to the proof of Theorem 2, we obtain that

l̂(β) = n


1
n

n
i=1

κn,i(β)

τ 
1
n

n
i=1

κn,i(β)κn,i(β)
τ

−1 
1
n

n
i=1

κn,i(β)


+ oP(1),

where κn,i(β)’s are i.i.d. q-dimensional random vectors with zero mean. Theorem 3 follows from the central limit theorem
and the Slutsky theorem.
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Fig. B.1. Simulation study. Confidence regions for case 1. The solid and dash-dotted lines correspond to the empirical likelihood and normal approximation
methods, respectively. The plus denotes the true value.

-
-

Fig. B.2. Simulation study. Confidence regions for case 2. The solid and dash-dotted lines correspond to the empirical likelihood and normal approximation
methods, respectively. The plus denotes the true value.

Appendix B. Technical lemmas

The technical lemmas are used in the proofs of Theorems 1–3 in the paper.

Lemma B.1. Suppose that Conditions (A1)–(A5) hold. Let Bn = {(θ ′, u), (θ ′, u) ∈ Θ × U, ∥θ ′
− θ∥ ≤ cn−1/2

} for a constant
c > 0. Then

sup
(θ ′,u‘)∈Bn

|φ̂b(θ
′τu)− φ(θ τu)| = OP


log n
nh1

1/2

, (B.1)

sup
(θ ′,u)∈Bn

|ψ̂br(θ
′τu)− ψr(θ

τu)| = OP


log n
nh1

1/2

, r = 1, . . . , p. (B.2)
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Fig. B.3. The scatterplot of adjusted GLU against adjusted SER (points), and the local linear estimators (thin solid line) along with the 95% pointwise
confidence intervals (dotted lines) and a linear fitting (straight line).

Fig. B.4. The local linear estimators of original GLU (the left panel) and original SER (the right panel) against the estimated single-index
0.7579SFT + 0.6524BMI and the 95% pointwise confidence intervals (dotted lines).

Proof. We only prove (B.1), and can complete the proof of (B.2) in a similar way.
Because E(Ỹ |θ τU) = (EY )φ(θ τU), we write the following model

Ỹi = EYφ(θ τUi)+ ηi, for i = 1 . . . , n, (B.3)

where {η1, . . . , ηn} are i.i.d. random variables with zeromean and finite variance σ 2
1 and independent of {U1, . . . ,Un}. From

expression (10), if we denote that Cni(t, θ ′) =
ri(t,θ ′)n
i=1 ri(t,θ ′)

, then we have
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Fig. B.5. The estimated curve of adjusted SER against adjusted GLU and the associated 95% pointwise confidence intervals (dotted lines).

|φ̂b(θ
′τu)− φ(θ τu)| =

1
¯̃Y

 n
i=1

Cni(t, θ ′)Ỹi −
¯̃Yφ(θ τu)


≤

1
¯̃Y

 n
i=1

Cni(t, θ ′)Ỹi − (EY )φ(θ ′τu)

+ EY
¯̃Y

|φ(θ ′τu)− φ(θ τu)| +
1
¯̃Y
|
¯̃Y − EY ∥ φ(θ τu)|.

Note that ¯̃Y − EY = OP(n−1/2), ¯̃Y = OP(1) and sup(θ,u)∈Bn |φ(θ ′τu)− φ(θ τu)| = O(n−1/2). It suffices to prove

sup
(θ ′,u)∈Bn

 n
i=1

Cni(t, θ ′)Ỹi − (EY )φ(θ ′τu)

 = OP


log n
nh1

1/2

. (B.4)

Applying this to (B.3), similarly to Lemma 4 of [24], we have

E

 n
i=1

Cni(t, θ ′)Ỹi − (EY )φ(θ ′τu)


2

≤ cE

 n
i=1

Cni(t, θ ′)φ(θ ′τUi)− φ(θ ′τu)


2

+ cE
n

i=1

C2
ni(t, θ

′)σ 2
1 + O


1
n


. (B.5)

Directly using Lemmas A.2 and A.3 of [24], we obtain that

E

 n
i=1

Cni(t, θ ′)Ỹi − (EY )φ(θ ′τu)


2

≤ ch4
1 + c

1
nh1

. (B.6)

Given aM > 0, by Chebyshev’s inequality, we have

P

 n
i=1

Cni(t, θ ′)Ỹi − (EY )φ(θ ′τu)

 > M
2


log n
nh1

1/2


≤
4(nh1)

M2(log n)
E

 n
i=1

Cni(t, θ ′)Ỹi − (EY )φ(θ ′τu)


2

≤ cM−2(nh5
1 + (log n)−1).

We choose anM large enough so that cM−2(nh5
1 + (log n)−1) ≤

1
2 . Using Lemma A.1 of [24], we obtain

P


sup

(θ ′,u)∈Bn

 n
i=1

Cni(t, θ ′)Ỹi − (EY )φ(θ ′τu)

 > M
2


log n
nh1

1/2


≤ cn2paM−2pE

 sup
(θ ′,u)∈Bn

2 exp

 −M2 log n/(128nh1)
n

i=1
(Cni(t, θ ′)Ỹi − (EY )φ(θ ′τu))2

 ∧ 1

 .
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(B.5) and (B.6) imply that
n

i=1(Cni(t, θ ′)Ỹi − (EY )φ(θ ′τu))2 = OP(h4
1 +

1
nh1
). It follows that

P


sup

(θ ′,u)∈Bn

 n
i=1

Cni(t, θ ′)Ỹi − (EY )φ(θ ′τu)

 > M
2


log n
nh1

1/2


≤ cn2paM−2p exp

(−M2 log n)
128(nh5

1 + 1)


→ 0, for large enoughM.

As a result,

sup
(θ ′,u)∈Bn

 n
i=1

Cni(t, θ ′)Ỹi − (EY )φ(θ ′τu)

 = OP


log n
nh1

1/2


and

sup
(θ ′,u)∈Bn

|φ̂b(θ
′τu, θ ′)− φ(θ τu)| = OP


log n
nh1

1/2

.

We complete the proof of Lemma B.1. �

Lemma B.2. Suppose that Conditions (A1)–(A5) hold. Let T (x) be a continuous function satisfying ET 2(X) < ∞. Then, we have
the following asymptotic representation, for r = 1, . . . , p,

1
n

n
i=1

(Ŷi − Yi)T (Xi) =
1
n

n
i=1

(Ỹi − Yi)
E(YT (X))

EY
+ oP(n−1/2), (B.7)

1
n

n
i=1

(X̂ri − Xri)T (Xi) =
1
n

n
i=1

(X̃ri − Xri)
E(XrT (X))

EXr
+ oP(n−1/2). (B.8)

Remark 4. The results in LemmaB.2 are different fromwhat [4] obtained in their LemmaA.1,where they had two redundant
terms: 1

2n

n
i=1(Yi − EY )E(YT (X))/EY , 1

2n

n
i=1(Xri − EXr)E(XrT (X))/EXr , because they erroneously used a result for the

U-statistic. Note that Cov((Ỹ − Y )(Y − EY )) = 0, and Cov((X̃r − Xr)(Xr − EXr)) = 0. All their results based on their Lemma
A.1 need to be modified accordingly and the asymptotic covariance of their estimators β̂ should be smaller in the sense of
the semi-positive definite.

Proof. We only prove (B.7). The proof of (B.8) is similar. Decompose 1
n

n
i=1(Yi − Ŷi)T (Xi) as

1
n

n
i=1

YiT (Xi)

φ(θ τUi)
[φ(θ τUi)− φ̂b(θ

τUi)] +
1
n

n
i=1

YiT (Xi)

φ(θ τUi)
[φ̂b(θ

τUi)− φ̂b(θ̂
τUi)]

+
1
n

n
i=1

YiT (Xi)φ(θ
τUi)

(φ(θ τUi)− φ̂b(θ
τUi))(φ̂b(θ

τUi)− φ̂b(θ̂
τUi))

φ(θ τUi)φ̂b(θ̂ τUi)

=: In1 + In2 + In3.

We will evaluate In1, In2, and In3 in the following three steps.
Step 1. We prove that

In1 =
1
n

n
i=1

(Ỹi − Yi)
E(YT (X))

EY
+ oP(n−1/2). (B.9)

Note that

In1 =
1
n

n
i=1

YiT (Xi)−
1
n

n
i=1

YiT (Xi)

φ(θ τUi)
φ̂b(θ

τUi).

From expression (10), it is easily seen that

1
n

n
i=1

YiT (Xi)

φ(θ τUi)
φ̂b(θ

τUi) =
1
n

n
i=1

YiT (Xi)

φ(θ τUi)


n

j=1
Lh1(θ

τUj − θ τUi)Ỹj

Qn0(θ τUi, θ)
¯̃Y
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−
1
n

n
i=1

YiT (Xi)

φ(θ τUi)


n

j=1
Lh1(θ

τUj − θ τUi)Ỹj

Q 2
n0(θ

τUi, θ)Qn2(θ τUi, θ)− Q 2
n1(θ

τUi, θ)Qn0(θ τUi, θ)

 1
¯̃Y

=: I(1)n1 − I(2)n1 .

Note that I(1)n1 can further be expressed as the summand of I(1)R1n1 , I(1)R2n1 and I(1)R3n1 , where

I(1)R1n1 =
1
n

n
i=1

YiT (Xi)

φ(θ τUi)


1
n

n
j=1

Lh1(θ
τUj − θ τUi)Ỹj

fθτU(θ τUi)EY

 ,

I(1)R2n1 =
1
n

n
i=1

YiT (Xi)

φ(θ τUi)


1
n

n
j=1

Lh1(θ
τUj − θ τUi)Ỹj

fθτU(θ τUi)EY



EY −

¯̃Y
¯̃Y


,

I(1)R3n1 =
1
n

n
i=1

YiT (Xi)

φ(θ τUi)


1
n

n
j=1

Lh1(θ
τUj − θ τUi)Ỹj

fθτU(θ τUi)



fθτU(θ τUi)−

1
nQn0(θ

τUi, θ)

1
nQn0(θ τUi, θ)


.

Consider term I(1)R1n1 . We know 1
n2h1

n
i=1

Y2
i T (Xi)L(0)

fθτ U (θτUi)EY
= oP(n−1/2) by the law of large numbers and Assumption (A4)(ii)

imposed on the bandwidth. The summation for i ≠ j of I(1)R1n1 is a standard U-statistic with a varying kernel with bandwidth
h1; that is,

1
n2

n
i=1

n
j≠i

YiỸjT (Xi)Lh1(θ
τUj − θ τUi)

φ(θ τUi)fθτU(θ τUi)EY
=

2an
n(n − 1)


1≤i<j≤n

H((Xi, Yi,Ui), (Xj, Yj,Uj)),

where an = (n − 1)/n. Recall that L(·) is a symmetric function and the symmetric U-statistic kernel is H(·, ·); that is,

H((Xi, Yi,Ui), (Xj, Yj,Uj)) =
1
2
Lh1(θ

τUj − θ τUi)


YiT (Xi)Ỹj

φ(θ τUi)fθτU(θ τUi)EY
+

YjT (Xj)Ỹi

φ(θ τUj)fθτU(θ τUj)EY


.

Using the projection of the U-statistic and seeing more details in Section 5.3.1 of [22], we obtain that

2
n(n − 1)


1≤i<j≤n

H((Xi, Yi,Ui), (Xj, Yj,Uj))− EH((X1, Y1,U1), (X2, Y2,U2))

=
2
n

n
i=1

H∗(Xi, Yi,Ui)+ oP(n−1/2),

with

H∗(Xi, Yi,Ui) =
1
2
E


Lh1(θ

τUj − θ τUi)YiT (Xi)Ỹj

φ(θ τUi)fθτU(θ τUi)EY

 (Xi, Yi,Ui)



+
1
2
E


Lh1(θ

τUj − θ τUi)YjT (Xj)Ỹi

φ(θ τUj)fθτU(θ τUj)EY

 (Xi, Yi,Ui)


− EH((X1, Y1,U1), (X2, Y2,U2))

=
1
2

YiT (Xi)

φ(θ τUi)fθτU(θ τUi)
E[Lh1(θ

τUj − θ τUi)φ(θ
τUj)|Ui]

+
1
2
Ỹi
EYT (X)

EY
E


Lh1(θ
τUj − θ τUi)

φ(θ τUj)fθτU(θ τUj)

Ui


− EH((X1, Y1,U1), (X2, Y2,U2)).
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We can verify that

E[Lh1(θ
τUj − θ τUi)φ(θ

τUj)|Ui] = fθτU(θ τUi)φ(θ
τUi)+ OP(h2

1),

E


Lh1(θ
τUj − θ τUi)

φ(θ τUj)fθτU(θ τUj)

Ui


=

1
φ(θ τUi)

+ OP(h2
1),

EH((X1, Y1,U1), (X2, Y2,U2)) = EYT (X)+ O(h2
1).

Thus, we have

H∗(Xi, Yi,Ui) =
1
2
YiT (Xi)+

1
2
Yi
EYT (X)

EY
− EYT (X)+ OP(h2

1).

Furthermore, OP(h2
1) = oP(n−1/2)when nh4

1 → 0. Then

2
n(n − 1)


1≤i<j≤n

H((Xi, Yi,Ui), (Xj, Yj,Uj))− EH((X1, Y1,U1), (X2, Y2,U2))

=
1
n

n
i=1


YiT (Xi)+ Yi

EYT (X)
EY

− 2EYT (X)


+ oP(n−1/2).

As a result,

I(1)R1n1 =
1
n

n
i=1


YiT (Xi)+ Yi

EYT (X)
EY

− 2EYT (X)


+ EYT (X)+ oP(n−1/2).

Note that I(1)R2n1 = I(1)R1n1 (EY −
¯̃Y )/ ¯̃Y and we have shown that I(1)R1n1 = EYT (X)+ oP(1). It follows that

I(1)R2n1 =
EYT (X)

EY
1
n

n
i=1

(EY − Ỹi)+ oP(n−1/2).

The third term I(1)R3n1 has the following asymptotic expansion.

I(1)R3n1 =
1
n

n
i=1

YiT (Xi)

φ(θ τUi)f 2θτU(θ τUi)

1
n2

n
j=1

n
s=1

Lh1(θ
τUj − θ τUi)Ỹj(Lh1(θ

τUs − θ τUi)− fθτU(θ τUi)).

Using a similar analysis to the derivation of the expression I(1)R1n1 , we have

1
n2

n
j=1

n
s=1

Lh1(θ
τUj − θ τUi)Ỹj(Lh1(θ

τUs − θ τUi)− fθτU(θ τUi)) = OP


1

nh1


.

Thus, we have I(1)R3n1 = oP(n−1/2). A combination of I(1)R1n1 , I(1)R2n1 and I(1)R3n1 yields

I(1)n1 =
1
n

n
i=1

YiT (Xi)+
1
n

n
i=1

(Yi − Ỹi)
EYT (X)

EY
+ oP(n−1/2).

In a way analogous to the proof of I(1)R1n1 = OP(n−1/2), we can also prove that I(2)n1 = oP(n−1/2) and complete the proof of
(B.9).

Step 2. We prove In2 = oP(n−1/2).

In2 =
1
n

n
i=1

YiT (Xi)

φ(θ τUi)
[φ̂b(θ

τUi)− φ̂b(θ̂
τUi)].

First we represent φ̂b(θ
τu)− φ̂b(θ̂

τu) as follows.
n

i=1
Lh1(θ

τUi − θ τu)Ỹi

Qn0(θ τu, θ)− Q 2
n1(θ

τu, θ)/Qn2(θ τu, θ)
−

n
i=1

Lh1(θ̂
τUi − θ̂ τu)Ỹi

Qn0(θ̂ τu, θ̂ )− Q 2
n1(θ̂

τu, θ̂ )/Qn2(θ̂ τu, θ̂ )
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+


n

i=1
Lh1(θ̂

τUi − θ̂ τu)(θ̂ τUi − θ̂ τu)Ỹi × Qn1(θ̂
τu, θ̂ )

Qn0(θ̂ τu, θ̂ )Qn2(θ̂ τu, θ̂ )− Q 2
n1(θ̂

τu, θ̂ )

−

n
i=1

Lh1(θ
τUi − θ τu)(θ τUi − θ τu)Ỹi × Qn1(θ

τu, θ)

Qn0(θ τu, θ)Qn2(θ τu, θ)− Q 2
n1(θ

τu, θ)


=: D(1)n2 (θ

τu, θ̂ τu)+ D(2)n2 (θ
τu, θ̂ τu).

Recall that θ̂ − θ = OP(n−1/2). By Taylor expansion, we have

Lh1(θ̂
τUi − θ̂ τu)Lh1(θ

τUj − θ τu)− Lh1(θ̂
τUj − θ̂ τu)Lh1(θ

τUi − θ τu)

= (θ̂ − θ)τ

Ui − u
h1


L′

h1(θ
τUi − θ τu)Lh1(θ

τUj − θ τu)

− (θ̂ − θ)τ

Uj − u
h1


L′

h1(θ
τUj − θ τu)Lh1(θ

τUi − θ τu)+ OP


1
n


. (B.10)

We then have,

D(1)R1n2 (θ τu, θ̂ τu)
△
=

Qn0(θ̂
τu, θ̂ )
n

1
n

n
i=1

Lh1(θ
τUj − θ τu)Ỹi −

Qn0(θ
τu, θ)
n

1
n

n
i=1

Lh1(θ̂
τUi − θ̂ τu)Ỹi

=
1
n2

n
i=1

n
j=1

(θ̂ − θ)τ

Ui − u
h1


L′

h1(θ
τUi − θ τu)Lh1(θ

τUj − θ τu)Ỹi

−
1
n2

n
i=1

n
j=1

(θ̂ − θ)τ

Uj − u
h1


L′

h1(θ
τUj − θ τu)Lh1(θ

τUi − θ τu)Ỹj + OP


1
n


= (θ̂ − θ)OP(h1)+ OP


1
n


= oP(n−1/2).

The same argument implies that

D(1)R2n2 (θ τu, θ̂ τu)
△
=

1
n

n
i=1

Lh1(θ̂
τUi − θ̂u)Ỹi

(Qn1(θ
τu, θ)/nh1)

2

Qn2(θ τu, θ)/nh2
1

−
1
n

n
i=1

Lh1(θ
τUi − θ τu)Ỹi

(Qn1(θ̂
τu, θ̂ )/nh1)

2

Qn2(θ̂ τu, θ̂ )/nh2
1

= oP(n−1/2).

Thus, D(1)n2 (θ
τu, θ̂ τu) = oP(n−1/2). In the same way we can prove that D(2)n2 (θ

τu, θ̂ τu) = OP(n−1/2). These arguments, along
with a direct calculation, indicate In2 = OP(n−1/2).

Step 3. We now consider the last term In3.

In3 =
1
n

n
i=1

YiT (Xi)φ(θ
τUi)

(φ(θ τUi)− φ̂b(θ̂
τUi))(φ̂b(θ

τUi)− φ̂b(θ̂
τUi))

φ(θ τUi)φ̂b(θ̂ τUi)

+
1
n

n
i=1

YiT (Xi)φ(θ
τUi)

(φ̂b(θ
τUi)− φ̂b(θ̂

τUi))
2

φ(θ τUi)φ̂b(θ̂ τUi, θ̂ )

△
= I(1)n3 + I(2)n3 .

Applying Lemma B.1 and the results obtained in Step 2, we obtain by Cauchy–Schwarz inequality

|I(1)n3 |
2

≤ OP


1
n

n
i=1

(YiT (Xi)φ(θ
τUi))

2(φ̂b(θ
τUi)− φ̂b(θ̂

τUi))
2


log n
nh1


= oP(n−1).
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Similarly, |I(2)n3 |
2

= oP(n−1). Thus, we have In3 = oP(n−1/2). Together with In2 = oP(n−1/2) and the asymptotic expression of
In1, we conclude that

1
n

n
i=1

(Ŷi − Yi)T (Xi) =
1
n

n
i=1

(Ỹi − Yi)
E(YT (X))

EY
+ oP(n−1/2). �

Lemma B.3. Suppose that Conditions (A1)–(A5) and (A7) hold. We have, for 1 ≤ k ≤ p,

n−1Gk
n(β) = n−1Fkn(β)+ oP(n−1/2) (B.11)

n−1Gn(β)Gτn(β) = n−1Fn(β)Fτn(β)+ oP(1), (B.12)

whereGn(β) = (G1
n(β), . . . ,

Gq
n(β))

τ , and Fn(β) = (F1n(β), . . . , F
q
n(β))

τ with

Fkn(β) =

n
i=1

εi
∂ f (Xi,β)

∂βk
+

n
i=1

(Ỹi − Yi)E

Y∂ f (X,β)
∂βk


EY

−

n
i=1

p
r=1

(X̃ri − Xri)


EXr

∂ f (X,β)
∂Xr

∂ f (X,β)
∂βk


EXr . (B.13)

Proof. By Taylor expansion, we representGk
n(β) asGk

n(β)1 +Gk
n(β)2 +Gk

n(β)3 with

Gk
n(β)1 =

n
i=1

εi
∂ f (Xi,β)

∂βk
+

n
i=1

(Ŷi − Yi)
∂ f (Xi,β)

∂βk
−

n
i=1

p
r=1

(X̂ri − Xri)
∂ f (Xi,β)

∂Xri

∂ f (Xi,β)

∂βk
,

Gk
n(β)2 =

1
2

n
i=1

p
r=1

p
t=1

(X̂ri − Xri)(X̂ti − Xti)
∂ f (Xi,β)

∂βk

∂2f (X∗

i ,β)

∂Xri∂Xti

+
1
2

n
i=1

p
1≤r,t,l≤p

(X̂ri − Xri)(X̂ti − Xti)(X̂li − Xli)
∂2f (X∗∗

i ,β)

∂βk∂Xli

∂2f (X∗

i ,β)

∂Xri∂Xti
,

Gk
n(β)3 =

n
i=1

p
r=1

εi(X̂ri − Xri)
∂2f (X∗∗

i ,β)

∂βk∂Xri
+

n
i=1

p
r=1

εi(X̂ri − Xri)(Ŷi − Yi)
∂2f (X∗∗

i ,β)

∂βk∂Xri

+

n
i=1

p
r=1

p
t=1

(X̂ri − Xri)(X̂ti − Xti)
∂ f (Xi,β)

∂Xri

∂2f (X∗∗

i ,β)

∂βk∂Xti
,

where X∗∗

i = (X∗∗

1i , . . . , X
∗∗

pi ) and X∗

i = (X∗

1i, . . . , X
∗

pi) are two points between Xi and X̂i. Applying Lemma B.2 toGk
n(β)1 with

T (X) =
∂ f (X,β)
∂βk

, and T (X) =
∂ f (X,β)
∂Xri

∂ f (X,β)
∂βk

, we obtain that

1
n
Gk

n(β)1 =
1
n
Fkn(β)+ oP(n−1/2).

We now prove that both 1
n
Gk

n(β)2 and 1
n
Gk

n(β)3 are oP(n−1/2). Applying Cauchy–Schwarz inequality and Assumption (A7),
the first term of 1

n
Gk

n(β)2 is bounded by 12n
n

i=1

p
r=1

p
t=1

(X̂ri − Xri)(X̂ti − Xti)
∂ f (Xi,β)

∂βk

∂2f (X∗

i ,β)

∂Xri∂Xti


≤

C
2

p
r=1

p
t=1


1
n

n
i=1

(X̂ri − Xri)
2(X̂ti − Xti)

2

1/2 
1
n

n
i=1


∂ f (Xi,β)

∂βk

2
1/2

.

Using Lemma B.1, we know (X̂ri − Xri)
2

= X2
ri(

ψr (θ
τUi)−ψ̂br (θ̂

τUi,θ̂ )

ψ̂br (θ̂τUi,θ̂ )
)2 = OP(

log n
nh1
). Using a similar analysis to the second term

of 1
n
Gk

n(β)2, we know 1
n
Gk

n(β)2 = OP(
log n
nh1
) = oP(n−1/2).
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The first term in the expression of 1
n
Gk

n(β)3 is bounded by
1
n

n
i=1

p
r=1

εi(X̂ri − Xri)
∂2f (X∗∗

i ,β)

∂βk∂Xri

2

≤ p2C2
p

r=1

1
n

n
i=1

ε2i
1
n

n
i=1

X2
ri


ψr(θ

τUi)− ψ̂br(θ̂
τUi, θ̂ )

ψ̂br(θ̂ τUi, θ̂ )

2

= OP


log n
nh1


= oP(n−1/2).

With a similar analysis for the first term in the expression of 1
n
Gk

n(β)3, the second and third terms of 1
n
Gk

n(β)3 are oP(n−1/2).
We complete the proof of (B.11). The proof of (B.12) follows (B.11) directly. �
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