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We prove that it is impossible to construct a grand unified model, based on a simple gauge group, in 
four dimensions that leads to the exact MSSM, nor to a singlet extension, and possesses an unbroken R
symmetry. This implies that no MSSM model with either a ZR

M�3 or U(1)R symmetry can be completed
by a four-dimensional GUT in the ultraviolet. However, our no-go theorem does not apply to GUT models 
with extra dimensions. We also show that it is impossible to construct a 4D GUT that leads to the MSSM 
plus an additional anomaly-free symmetry that forbids the μ term.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

The scheme of supersymmetric grand unification provides an 
attractive framework for physics beyond the standard model (SM) 
of particle physics. Apart from the observation that gauge cou-
plings seem to unify at a scale of a few times 1016 GeV [1] in the 
minimal supersymmetric standard model (MSSM), the structure of 
matter hints at unification. SM matter comes in three copies of 
10 ⊕ 5 representations under

SU(5) ⊃ SU(3)C × SU(2)L × U(1)Y = GSM, (1.1)

or, after introducing the right-handed neutrino, in form of three 
16-plets of SO(10). Arguably, the most compelling explanation of 
the smallness of neutrino masses is due to the see-saw mecha-
nism [2], which also appears to require the see-saw scale to be 
close to MGUT. However, despite all these hints the scheme of 
grand unified theories (GUTs) does not yet provide us with a clear 
picture. For instance, typical obstacles encountered when con-
structing GUTs in four dimensions include the so-called doublet– 
triplet splitting problem, i.e. the question why Higgs fields appear 
in split multiplets, and, associated to it, the prediction of too fast 
proton decay.

While, arguably, all known proposals for doublet–triplet split-
ting in four-dimensional (4D) GUTs have some weak points, up to 
now there exists no argument for why this is necessarily the case. 
One purpose of this Letter is to give such an argument.

Suppose there is indeed a doublet–triplet splitting mechanism 
which can be completely understood in terms of 4D physics. Then
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one should be able to understand in the effective theory why the
μ term essentially vanishes. If the smallness of the μ term is to
be ‘natural’ (in ’t Hooft’s sense [3]), there has to be a symmetry 
that forbids it. On the other hand, it has been shown that, if one 
demands consistency with grand unification and anomaly freedom, 
then only R symmetries may forbid the μ term [4] (cf. also the
somewhat similar discussion in [5]). It therefore appears that, if 
one is to solve the μ problem in ‘a natural way’, R symmetries are
instrumental.

However, we shall prove that for a spontaneously broken GUT 
symmetry (based on a simple Lie group) in four dimensions one 
cannot get the exact MSSM with residual R symmetries. This al-
lows us to conclude that a ‘natural’ solution to the doublet–triplet 
problem is not available in four dimensions. Our proof applies to 
singlet extensions of the MSSM as well and, in what follows, we 
will use the abbreviation MSSM also for these singlet extensions.

This Letter is organized as follows. We will start with the spe-
cial case of a SU(5) × Z

R
M in Section 2 and extend the result ob-

tained there to more general cases in Section 2.2. Implications of 
our no-go theorem for model building are discussed in Section 3. 
Section 4 is devoted to the question of circumventing our no-go 
theorem in extra dimensions while Section 5 contains our sum-
mary.

2. No R symmetries from 4D GUTs

This section is devoted to the proof that it is impossible to con-
struct a GUT (based on a simple gauge group) in four dimensions 
with a finite number of multiplets that leads to the MSSM (or any 
of its singlet extensions) with a residual R symmetry. While our 
discussion is based on Abelian discrete R symmetries, denoted by 
Z

R
M in what follows, it also applies to continuous, i.e. U(1)R , sym-

metries because in this case one can always resort to a discrete
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subgroup Z
R
M ⊂ U(1)R . In our analysis, we focus on discrete Z

R
M

symmetries with M � 3.1 Our conventions are such that the super-
potential carries R charge 2. We start by discussing 4D SU(5) GUTs
in Section 2.1, and then consider generalizations in Section 2.2.

2.1. Massless exotics vs. unbroken Z
R
M in 4D SU(5) GUTs

Consider the MSSM with an additional Z
R
M symmetry, i.e. the

symmetry group of the model is GSM × Z
R
M (possibly amended

by further symmetries). We can then ask whether this symmetry
group can emerge from an SU(5) GUT by spontaneous breaking;
the extension to larger GUT groups is deferred to Section 2.2.2.
Since there is a residual Z

R
M symmetry, the symmetries at the GUT

level have to contain Z
R
M as a subgroup. Without loss of generality,

we can base our discussion on a GUT with SU(5) × Z
R
M symmetry,

although the actual (R and/or non-R) symmetry before sponta-
neous breaking might be larger (and lead to stronger conditions
than we need). In other words, in case there is actually a larger
symmetry group above the GUT scale, the charges we will refer to
will always be the ones of the Z

R
M subgroup.

We proceed by classifying the GUT multiplets R according to
their Z

R
M charges. Most mass terms between such multiplets are

prohibited by Z
R
M . For our purposes it will be sufficient to fo-

cus on the subsector of fields with charges 0 and 2. Particles
of the latter two types can only have mass terms of the form
M(m, 〈H0〉,Λ)Ψ0Φ2, where the subscripts denote the R charges
and M is an arbitrary scalar function of SU(5) invariant mass pa-
rameters m and SU(5) breaking VEVs 〈H0〉 (and a ‘cut-off’ scale Λ).

In what follows, we will show that it is impossible to:

1. spontaneously break SU(5) → GSM by assigning a VEV to a
suitable representation,

2. keep the R symmetry unbroken and to
3. avoid extra massless GSM charged representations

at the same time. We will present our analysis in two steps. First,
we focus on the simplest possibility of spontaneously breaking
SU(5) × Z

R
M → GSM × Z

R
M by giving a VEV to a 24-plet and allow-

ing only for further 24-plets as mass partners in the model. This
setting already illustrates the crucial point of our proof, namely
the obstruction to decouple unwanted exotics. In the second step,
we will discuss the general case where the symmetry is broken
by an arbitrary reducible representation and where we allow for
arbitrary further representations to render all exotics massive.

2.1.1. Breaking the GUT symmetry using only 24-plets
Since we wish to leave Z

R
M unbroken, the 24-plet that is sup-

posed to break the GUT symmetry to the SM group has to carry
Z

R
M charge 0. The branching rule for 24 is

24 = (8,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (3,2)−5/6 ⊕ (3,2)5/6. (2.1)

In the course of spontaneous symmetry breakdown the last two
SM representations (3,2)−5/6 ⊕ (3,2)5/6 get absorbed in the lon-
gitudinal components of the extra gauge bosons. However, we are
now left with chiral superfields transforming as (8,1)0 and (1,3)0
and carrying R charge 0. The crucial observation here is that the

1 Discrete R symmetries of order two are no ‘true’ R symmetries since any global
supersymmetric theory possesses a symmetry under which the superspace coor-
dinates transform as θ → −θ and all spin-1/2 fermions get multiplied by −1. In
particular, using this ‘automatic’ symmetry one can easily convince oneself that the
so-called R parity of the MSSM [6] is equivalent to matter parity [7] (cf. also the
discussion in [8]).
mass term m2424 for the adjoint is forbidden: although the 24-
plet is a real SU(5) representation the mass term is prohibited by
the Z

R
M symmetry because 0 + 0 	≡ 2 (mod M). Therefore, in or-

der to give masses to the extra (8,1)0 and (1,3)0 fields, we would
have to introduce further fields furnishing the same representa-
tions and carrying R charge 2. Yet we cannot simply introduce
these desired SM representations, rather we have to add com-
plete SU(5) multiplets. That is, we have to introduce one or more
multiplets that contain (8,1)0 and (1,3)0 and carry R charge 2.
Here, in the first step, we consider the possibility to add a 24-plet
with R charge 2, the 24 being the smallest multiplet containing
(8,1)0 and/or (1,3)0. While this, in principle, allows us to write
mass terms for (8,1)0 and (1,3)0, we are now left with extra
chiral fields transforming as (3,2)−5/6 and (3,2)5/6 and carrying
R charge 2. Now of course, we may add another 24-plet with R
charge 0, but this will lead us just back to the problem we started
with: extra massless (8,1)0 and (1,3)0 representations. So we con-
clude that adding an arbitrary but finite number of 24-plets with
R charges 0 or 2 cannot solve the problem; we will always obtain
massless exotics.

2.1.2. General case
Could one rectify the situation by introducing representations

different from 24 as the GUT breaking Higgs and as mass partners?
In what follows, we will show that this is not the case.

Instead of using just a 24 to break SU(5) to the SM, we will
use an arbitrary, finite, possibly reducible representation H0, such
as one or several 75-plets. This representation H0 has to fulfill two
requirements:

(i) it has Z
R
M charge 0 (as suggested by the subscript) in order to

leave this symmetry unbroken and
(ii) it lies within the congruence class [9,10] of the 24.

The second property must hold because only SM singlet compo-
nents of SU(5) representations may attain VEVs. They can only
originate from the adjoint congruence class because of the fol-
lowing reasoning. The decomposition of an SU(5) representation
into SM representations can be accomplished by using an invert-
ible projection matrix P [10, Section 6],

P =
⎛
⎜⎝

1 1 0 0
0 0 1 1
0 1 1 0

−1/3 1/6 −1/6 1/3

⎞
⎟⎠ , (2.2)

which maps SU(5) weights (in the Dynkin basis) to the corre-
sponding SM weights. SU(5) has five congruence classes of mu-
tually disjoint weight lattices. Using the projection P , one can map
the weight lattice of each congruence class onto an equivalence
class of SM weights. (Of course, there are further SM representa-
tions that do not fit into complete SU(5) multiplets.) These equiv-
alence classes are disjoint. The SM singlet lies in the class that
originates from the SU(5) congruence class of the adjoint, and
also the representation (3,2)−5/6 ⊕ (3,2)5/6, which is needed to
make the extra SU(5) gauge bosons massive, lies in the same class.
Hence we can choose H0 from the adjoint SU(5) congruence class.
Of course, there may be additional fields with R charge 0 that do
not obtain a VEV and therefore do not have to be in this class, but
they do not interfere with the following arguments.

In order to arrive at the precise SM spectrum, we allow for
an additional finite, possibly reducible representation R2 with R
charge 2. All non-trivial SM representations contained in H0 except
for (3,2)−5/6 ⊕ (3,2)5/6 have to obtain masses by pairing up with
representations in R2 in order to avoid massless exotics. However,
in the following we will show that this is impossible.
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Without loss of generality, we can restrict R2 to belong to the
SU(5) congruence class of the adjoint. This is because the complex
conjugates of representations from the adjoint congruence class lie
in the same class. Therefore no SM representation coming from a
different congruence class can pair up with representations coming
from H0. Clearly, one can also remove those representations from
H0 and R2 for which one can write down SU(5) × Z

R
M invariant

mass terms. For notational simplicity we will call the remaining
representations again H0 and R2, respectively.

Now we take the highest weights Λ0 from H0 and Λ2 from R2,
respectively.2 They cannot be equal because otherwise the corre-
sponding representations could pair up and, therefore, would have
been removed in the previous step. Thus we arrive at two cases:
(i) Λ0 > Λ2 and (ii) Λ2 > Λ0.

Case 1: Λ0 > Λ2. Using the projection matrix P , the SU(5) rep-
resentation with highest weight Λ0 = (a1,a2,a3,a4) introduces
an SM representation r = r(P (Λ0)) with highest weight P (Λ0) =
P · (a1,a2,a3,a4)

T. In what follows, we will show that (i) r is nei-
ther any of the desired representations (3,2)−5/6 or (3,2)5/6 nor
(ii) SM matter nor (iii) an SM singlet and that (iv) it cannot pair
up with any partner from R2.

(i) Since P establishes a one–to–one correspondence between
SU(5) and SM weights, we can use its inverse to calcu-
late the inverse image of the highest weight of (3,2)−5/6 =
((1,0), (1),−5/6),

P−1 · (1,0,1,−5/6)T = (1,0,1,−1)T, (2.3)

which is not a highest weight of SU(5). Hence it cannot
be equal to Λ0. The same holds for the highest weight of
(3,2)5/6. Therefore r 	= (3,2)−5/6 and r 	= (3,2)5/6.

(ii) r can also not be part of the SM matter content because H0
was chosen to be in the congruence class of the adjoint and
matter originates from different classes.

(iii) Furthermore, we can exclude the case that r is an SM sin-
glet because otherwise the highest weight would be Λ0 =
(0,0,0,0) and we could not give masses to the extra SU(5)

gauge bosons.
(iv) In addition to that, there is no chance that r can pair up be-

cause the necessary partner r is not contained in R2. This is
true because, by assumption, the highest weight Λ2 of R2 is
smaller than Λ0.

Therefore r is a massless, SM charged exotic.

Case 2: Λ2 > Λ0. For analogous reasons as in case 1, r′ = r(P (Λ2))

can neither be SM matter nor a singlet nor can it pair up with a
partner from H0 to obtain a mass. As it originates from R2, its R
charge is 2 and therefore it can also not be used to give masses to
the extra SU(5) gauge bosons. Again we are left with at least one
massless, SM charged exotic in representation r′ .

Altogether we have seen that, if one wants to break SU(5) to
the SM with a finite number of multiplets while leaving a Z

R
M un-

broken, one will necessarily obtain massless, SM charged exotics.
Let us illustrate the main point with an easy example, based on

H0 = 24 and R2 = 75 (such that R2 = R2). The highest weights of
the two sets are Λ0 = (1,0,0,1) and Λ2 = (0,1,1,0), respectively.
Out of the two highest weights, Λ2 is the higher one and we are

2 The term highest weight can be defined using the following ordering: λ > μ if
and only if the first non-zero coefficient ni in the expansion λ−μ = ∑

i niαi , where
ni ∈ N0 and αi are the simple roots, is greater than zero.
left with a massless, SM charged field r(P (0,1,1,0)) = (8,3)0 with
R charge 2. There are, of course, further massless exotic states.

At this point, a remark is in order. The restriction to a finite
number of multiplets is crucial for our proof. Our analysis is, in this
sense, very similar to the one by Goodman and Witten [11], where
obstructions for building 4D GUT models with a finite number of
multiplets have been identified. As discussed in [11] and as we
shall see explicitly in Section 4, in theories with compact extra
dimensions, which from a 4D perspective appear to have infinitely
many states, our no-go theorem does not apply.

2.2. Further no-go theorems

It is straightforward to extend the no-go theorem to the case
of singlet extensions of the MSSM as well as to GUTs with gauge
groups containing SU(5) as a subgroup (such as SO(10)).

2.2.1. No-go for singlet extensions of the MSSM
As already mentioned in the introduction, our arguments also

apply to the case of singlet extensions of the MSSM. This is be-
cause the presence of additional singlets cannot lead to a decou-
pling of the charged states. Therefore we will still be left with
charged light states beyond the MSSM spectrum.

2.2.2. No-go for GUTs with simple gauge group G ⊃ SU(5)

In the case of a GUT with simple gauge group G containing
SU(5) as a subgroup, the multiplets will become larger and the
constraints derived in Section 2 get tighter. To see this, one can
decompose all representations of G into irreducible representa-
tions with respect to the SU(5) subgroup. Adding representations
of G can therefore not circumvent our no-go theorem. One may
now wonder whether the extra gauge bosons from G/SU(5) may
provide mass partners for the unwanted exotics discussed in Sec-
tion 2.1.2. However, these gauge bosons come in SU(5) congruence
classes which are different from the one containing the adjoint.
This is because the difference between weights of extra gauge
bosons and a weight of a representation in the SU(5) adjoint con-
gruence class is not an SU(5) root. (For instance, in SO(10)/SU(5)

one has extra gauge bosons transforming as 10 ⊕ 10 while in the
case of SU(6) one gets extra 5⊕5 states.) Therefore the extra gauge
bosons from G/SU(5) cannot pair up with the unwanted exotics
discussed in Section 2.1.2 and thus cannot interfere with our proof.
Hence our no-go theorem from Section 2 applies to the case of a
GUT based on a simple group G ⊃ SU(5) as well. In particular, it
also holds in the case of G = SO(10) ⊃ SU(5) × U(1)χ and there-
fore excludes R symmetries in another important class of 4D GUT
models.

3. Implications for model building

As already stated in the introduction, assuming that (in the ef-
fective MSSM theory) matter is contained in GUT multiplets and
that the theory is anomaly-free, only R symmetries can control
the μ term [12, Section 2.1]. (The role of anomaly-free discrete
R symmetries in controlling the μ parameter has also been dis-
cussed earlier in [13]). Yet, as we have shown, such symmetries are
not available if the MSSM is to be completed by a 4D GUT. There-
fore it is not possible to obtain a ‘natural’ (in ’t Hooft’s sense), i.e.
symmetry-based, solution to the doublet–triplet splitting problem
in four dimensions.

This applies in particular to the five Z
R
M symmetries recently

discussed in [12]. These are the only family-independent, anomaly-
free symmetries for the MSSM which (i) commute with SU(5) in
the matter sector, (ii) forbid the μ term at tree level, (iii) allow
for the usual Yukawa couplings and the dimension five neutrino
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mass operator and (iv) suppress proton decay. Our no-go theorems
tell us that these symmetries, providing simple and simultaneous
solutions to the μ and proton decay problems, are not available in
4D GUT model building.

4. ZZZ
R
4 MSSM from GUTs in extra dimensions

As mentioned above, our no-go theorems do not apply in the
presence of extra dimensions, where new ways of GUT symmetry
breaking arise [14,15]. Let us discuss the case of breaking by a dis-
crete Wilson line. This Wilson line breaks the GUT symmetry in
the same way as an adjoint VEV would do, i.e. SU(5) → GSM in the
phenomenologically interesting case. However, a Z2 (or more gen-
erally a ZN ) Wilson line is quantized. Hence there are no continu-
ous deformations (i.e. (8,1)0 or (1,3)0 fields). From the 4D point
of view, the symmetry breaking is not spontaneous. Or, adopting
the point of view suggested in [11], there are infinitely many rep-
resentations such that each of the unwanted states can find a mass
partner to pair up. Therefore this mechanism evades our no-go
theorems.

Wilson line breaking of the GUT symmetry has been im-
plemented in the context of MSSM Calabi–Yau compactifications
[16,17]. More recently, it has also been realized in heterotic orb-
ifold compactifications [18]. At this point it is worthwhile to point
out that there is a slightly confusing terminology. What is tradi-
tionally called a “discrete Wilson line on an orbifold” [19] is in
fact a discrete Wilson line on the underlying torus and a difference
between “local shifts” on the orbifold (see [20] for an explana-
tion of local shifts). An appealing feature of the orbifold models
is that there the discrete R symmetries are not imposed by hand,
rather they originate from the Lorentz symmetry of compact di-
mensions [21], and their appearance can be related to the fact
that orbifolds are highly symmetric compactifications. More impor-
tantly for phenomenology, it has been demonstrated explicitly that
the remnant Z

R
M symmetries can be of the type discussed above.

Specifically, in a global Z2 × Z2 orbifold model vacua with the
precise MSSM spectrum and a residual Z

R
4 symmetry have been

identified. This Z
R
4 is the unique Z

R
M symmetry for which the dis-

crete matter charges commute with SO(10) [4]. It forbids the μ
term and dimension five proton decay operators at tree level, and
contains matter parity as a subgroup. In summary, we see that
grand unified theories in extra dimensions allow us to circumvent
our no-go theorems (and, arguably, provide us with the most com-
pelling way of doublet–triplet splitting). In the context of heterotic
orbifolds it is rather straightforward to realize the phenomenolog-
ically attractive Z

R
4 in MSSM vacua, and, moreover one obtains

a simple geometric intuition for how this discrete R symmetry
emerges.

5. Summary

We have shown that 4D GUTs cannot provide an ultraviolet
completion of the MSSM with a residual Z

R
M�3 symmetry, nor

with a continuous R symmetry. These theories fail because, as
we demonstrated, one will necessarily have additional SM charged
states at low energies.

Given that, assuming (i) matter charges that commute with
SU(5) and (ii) anomaly freedom, only R symmetries can forbid
the μ term in the MSSM, we have argued that it is not pos-
sible to obtain a ‘natural’, i.e. symmetry-based, solution to the
doublet–triplet problem in four dimensions. In particular, none of
the five generation-independent, anomaly-free discrete R symme-
tries, which forbid the μ term and suppress proton decay in the
MSSM, can be implemented in a 4D GUT (based on a simple gauge
group).

On the other hand, as we have discussed, higher-dimensional
models of grand unification (with an explicit string completion)
can give us precisely the MSSM with a residual Z

R
4 symmetry. In

such models, the doublet–triplet splitting has a very simple solu-
tion and the μ parameter is related to the gravitino mass. In these
constructions, the discrete R symmetries are not imposed by hand,
rather they originate from the Lorentz symmetry of compact di-
mensions.
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