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Abstract

Mathematical properties of eigenfunctions of selected incidence matrices appearing in spa-
tial statistics formulae are summarized. Seven theorems are proposed and proved, and three
conjectures are posited. Results summarized here allow the determinant of massively large
n × n geographic weights matrices to be accurately approximated. In addition, the behavior
of eigenfunctions for graphs affiliated with a linear configuration of connected nodes are better
understood. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Eigenfunction research, whose results are summarized here was inspired by sev-
eral common linear algebra problems associated with massively large georeferenced
data sets, or data sets that are locationally tagged to the earth’s surface [10,27]. Two
such types of data sets to which this paper is relevant are those generated by satellite
remote sensing, and those constructed under the auspices of the US Environmental
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Protection Agency’s Environmental Monitoring and Assessment Program (US EPA
EMAP; [26]). The geographic arrangement of locational tagging in this first case is
the regular square tessellation, and in this second case is the regular hexagonal tessel-
lation [2, p. 7]. The duals of both of these geographic configurations can be analyzed
as graphs, and depicted with an incidence or binary 0–1 matrixC whosecij element
value is 1 if locationsi and j are nearby, and 0 otherwise. Throughout this paper
definition of a graph link is based upon the rook’s definition of adjacency, drawing
upon an analogy with chess moves. Accordingly, nearby is defined as whether or
not a link exists between the nodes of a tessellation dual. This definition results in
matrixC being symmetric, with all diagonal entries of 0. Historically matrix theory
and linear algebra have been used extensively to analyze such adjacency matrices of
graphs. Furthermore, Chung [8, p. 135] notes that “[a] crucial part of spectral graph
theory concerns understanding the behavior of the eigenfunctions” of these matrices.
Meanwhile, the most interesting linear algebra problem solution contributed to by
results reported in this paper is the estimation of eigenfunctions, and hence also
matrix determinants for large order sparse matrices. While numerical results for such
problems are topical (e.g., [3,5]), a number of analytical results are reported in this
paper.

1.1. Basic definitions and terminology

Spatial statistics is a very specialized subdiscipline, with its geographic applica-
tions involving terminology unfamiliar to many scholars. The interested reader may
wish to consult Cressie [10], Griffith and Layne [17], and Anselin [1], among others,
for different overview perspectives of this subdiscipline. The focus in this paper is on
specific matrices commonly used in spatial statistics work. These include not only
the previously definedn × n incidence matrixC, but alson × n matricesW, the pop-
ular row-standardized, stochastic version of matrixC (i.e.,wij = cij /

∑n
j=1 cij ), and(

I − 11T

n

)
C
(

I − 11T

n

)
, (1)

with (I − 11T/n) being the idempotent projection matrix commonly found in con-
ventional statistics [21, p. 115], whereI is the identity matrix,1 is ann × 1 vector of
ones, and the superscript T denotes matrix transpose.

The importance of these three matrices in spatial statistics lies in their appearances
in computational formulae. Their eigenfunctions also play important roles in spatial
statistical theory.

A common optimization problem in spatial statistics, involving matricesC and
W and their eigenfunctions, is the minimization of the following function, which
actually is a log-likelihood function

constant− n

2
LN(σ 2) + 1

2
LN[det(V)] − (Y − Xb)TV(Y − Xb)/(2σ 2),
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where det(·) denotes the operation of matrix determinant, LN denotes the natural
logarithm,Y is ann × 1 vector of data values,X is ann × p matrix of data forp
different additional variables,Xb andσ, respectively, denote the standard regression
mean and variance parameters of linear statistical analysis, and matrixV is a function
of the connectivity matrixC or W. The interested reader can find out more about this
expression by consulting a multivariate textbook such as [21, pp. 143–150]. From
calculus one finds that the term12LN[det(V)] is a Jacobian term. Ord [28] shows that
it can be written as a function of the eigenvalues of matrixC or W, depending upon
which matrix is used to defineV, and derives then analytical eigenvalues,λkl, of
matrix C for the regular square tessellation superimposed upon a two-dimensional
planar surface, which are

λkl = 2

[
cos

(
kp

P + 1

)
+ cos

(
lp

Q + 1

)]
,

k = 1, 2, . . . , P and l = 1, 2, . . . ,Q, (2)

for aP × Q rectangular geographic region(n = PQ).
Gasim [12] shows the derivation of this solution using Kronecker products(⊗),

and extends these results to other special adjacency definitions of matrixC.
Griffith and Sone [18] furnish a very good approximation for the Jacobian term

1
2LN[det(V)], for any planar surface partitioning, that requires the extreme eigen-
values of matrixC or W, depending upon which matrix is used to defineV. In
addition, a common measure used in spatial statistics is the Moran coefficient, whose
formula involves the matrix(I − 11T/n)C(I − 11T/n). Jong et al. [11] use Ray-
leigh quotients [20, p. 448] to show that the largest and smallest values that a Moran
coefficient can achieve are determined by the extreme eigenvalues of this matrix.

Meanwhile, Tiefelsdorf and Boots [30] derive results for the Moran coefficient
based upon the entire set of eigenvalues of matrix(I − 11T/n)C(I − 11T/n), for
any planar surface partitioning. Griffith [15,16] extends their findings by showing
the spatial statistical importance of the associated set of eigenvectors.

Therefore, spatial statistics furnishes a practical context that motivates the study
of properties of matricesC, W, andC(I − 11T/n).

2. Extension of results for matrices C and W depicting a regular square
tessellation

Extending the work of Balisevsky [4, p. 224] from one-dimension to two-
dimensions, and following Gasim [12], we get the following:

Theorem 2.1. Suppose the two-dimensional planar surface partitioning is that of a
regular square tessellation forming aP × Q rectangular geographic region, where
P is the number of units in a horizontal axis direction, and Q is the number of units
in a vertical axis direction. LetCPQ denote the binary incidence matrixC, andEpq
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denote the eigenvector matrixE for this particular partitioning. Then the eigenvec-
tors of matrixCPQ are given by

Epq =
〈

2√
(P + 1)(Q + 1)

sin

(
kpp

P + 1

)
× sin

(
lqp

Q + 1

)〉
,

k=1, 2, . . . , P, l=1, 2, . . . ,Q, p = 1, 2, . . . , P, and q =1, 2, . . . ,Q.

Proof. Consider the decompositionC = CPQ = (IP ⊗ CQ) + (CP ⊗ IQ) [12] and
let Kh be a diagonal matrix of eigenvalues andEh be the accompanying matrix of
eigenvectors for matrixCh. Following Lancaster [22, p. 259], Gasim [12, p. 393]
shows thatETCPQE = ET[(IP ⊗ CQ) + (CP ⊗ IQ)]E = IP ⊗ KQ + KP ⊗ IQ.

Now,

CPQ =(IP ⊗ CQ) + (CP ⊗ IQ)

=(EP IP EP
T) ⊗ (EQKQEQ

T) + (EP KP EP
T) ⊗ (EQIQEQ

T)

=(EP ⊗ EQ)(IP ⊗KQ)(EP ⊗EQ)T+(EP ⊗EQ)(KP ⊗ IQ)(EP ⊗ EQ)T

=(EP ⊗ EQ)[IP ⊗ KQ + KP ⊗ IQ](EP ⊗ EQ)T

=E[IP ⊗ KQ + KP ⊗ IQ]ET

Therefore,E = EP ⊗ EQ, and hence the eigenvectors of matrixCPQ areEP ⊗ EQ.
But matrix CP is aP × P andCQ is aQ × Q tridiagonal matrix like the ones

used in time series analysis; the upper and lower off-diagonals contain ones, and all
other cells contain 0’s. The eigenvectors of these matrices, respectively, are given by
[4, p. 224]

Ep =
〈 √

2√
P + 1

sin

(
kpp

P + 1

)〉
, k = 1, 2, . . . , P, p = 1, 2, . . . , P,

and

Eq =
〈 √

2√
Q + 1

sin

(
lqp

Q + 1

)〉
, l = 1, 2, . . . ,Q, q = 1, 2, . . . ,Q.

Therefore,

Epq =
〈

2√
(P + 1)(Q + 1)

sin

(
kpp

P + 1

)
× sin

(
lqp

Q + 1

)〉
,

k=1, 2, . . . , P, l = 1, 2, . . . ,Q,

p=1, 2, . . . , P, and q = 1, 2, . . . ,Q. �

Consequently, all eigenvalues and eigenvectors are known analytically for the bi-
nary geographic weights matrixC affiliated with remotely sensed images, regardless
of the size ofn = PQ.
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Martin and Griffith [24] note that if the regular square tessellation is mapped onto
a torus, then the eigenvalues given by Eq. (2) are replaced with

λkl =2

[
cos

(
k2p

P

)
+ cos

(
l2p

Q

)]
,

k=1, 2, . . . , P, l = 1, 2, . . . ,Q, (3)

for a regular square tessellation partitioning of aP × Q rectangular geographic re-
gion.

Hence, a corollary to Theorem 2.1 is as follows:

Corollary 2.1. Suppose the two-dimensional surface partitioning is that of a regular
square tessellation mapped onto a torus. Then the eigenvectors of matrixCPQ are
given by

Epq =
〈

1√
PQ

[
sin

(
kp2p

P

)
+cos

(
kp2p

P

)]
×
[
sin

(
lq2p

Q

)
+cos

(
lq2p

Q

)]〉
,

k=1, 2, . . . , P, l = 1, 2, . . . ,Q,

p=1, 2, . . . , P, and q = 1, 2, . . . ,Q.

The proof for this corollary exactly parallels that for Theorem 2.1. The following
additional corollary to Theorem 2.1 exploits the well-known eigenfunction property
that multiplying a matrix by a constant multiplies that matrix’s eigenvalues by the
same constant while leaving its eigenvectors unchanged.

Corollary 2.2. Suppose the two-dimensional surface partitioning is that of a regular
square tessellation mapped onto a torus. Then matrixWPQ = 1

4CPQ, its eigenvec-
tors are given by Corollary 2.1, and its eigenvalues are

λkl =
[
cos

(
k2p

P

)
+ cos

(
l2p

Q

)]/
2, k = 1, 2, . . . , P, l = 1, 2, . . . ,Q.

These torus results also are a two-dimensional extension of the work of Balisevsky
[4, p. 224].

The remaining solution to complete the regular square tessellation case is for
matrixW depicting a two-dimensional planar surface partitioning. First consider the
one-dimensional situation. Let the number of nodes in a linear graph (i.e., a sequence
of nodes forming a straight line) beP. Denote the associated matrixC by CP , which
is tridiagonal, with 1’s on the upper and lower diagonals immediately adjacent to
the main diagonal and 0’s on the main diagonal itself; this particular matrix also is
encountered in time series analyses. Suppose diagonal matrixD−1 has 1 in diago-
nal cells (1,1) and(P, P ), and 0.5 in all of the remaining diagonal cells (i.e., the
inverses of the row sums of matrixCP ). The eigenvalues for the resulting stochastic
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matrix, denoted here asWP = D−1CP , were first reported widely by Berman and
Plemmons [6] and Griffith [14] as

λk = cos

(
kp

P − 1

)
, k = 0, 1, . . . , P − 1. (4)

Hartfiel and Meyer [19, p. 198] also report this result, in a slightly different but
insightful way; they separatek = 0 andk = P − 1 values from the remainingP − 2
values. Their derivation inspired the following theorem:

Theorem 2.2. SupposeQ = 1 for a regular square tessellation surface partitioning.
Let matrixWP denote the stochastic version of matrixCP , andEk(k = 1, 2, . . . , P )

denote the normalized eigenvectors of matrixWP . Then the eigenvectors of matrix
WP are given by

E1= 1√
P




cos
(

0×0×p
P−1

)

cos
(

0×1×p
P−1

)
...

cos
[

0×(P−1)×p
P−1

]




,

EP = 1√
P




cos(0 × p)

cos(1 × p)
...

cos[(P − 1) × p]


 ,

and

Ek =
√

2

P − 1




cos
(

k×0×p
P−1

)

cos
(

k×1×p
P−1

)
...

cos
[

k×(P−1)×p
P−1

]




, k = 1, 2, . . . , P − 2.

Proof. Solving the standard eigenvector equation(WP − λk I)Ek = 0, the first two
equations of the system ofn linear equations defined by matrixWP are

− cos

(
kp

P − 1

)
e1k + e2k = 0,
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e1k/2 − cos

(
kp

P − 1

)
e2k + e3k/2 = 0,

which give

e1k

1
= e2k

cos
(

kp
P−1

) = e3k

2 cos2
(

kp
P−1

)
− 1

⇒ e1k

cos
(

0kp
P−1

) = e2k

cos
(

1kp
P−1

) = e3k

cos
(

2kp
P−1

) .

Extending this last result by induction onP proves the vector entries forEk . Next,
from the summation calculus,D−1,

P−1∑
i=0

cos2
(

kpi

P − 1

)
= 1 +

P−1∑
i=1

cos2
(

kpi

P − 1

)

= 1

2
+ P

2
− 1

2
cos2

(
kpP

P − 1

)

+1

2

cos
(

kp
P−1

)
sin
(

kp
P−1

) cos

(
kpP

P − 1

)
sin

(
kpP

P − 1

)

= P + 1

2
; k = 1, 2, . . . , P − 2.

The denominator term sin(kpP/P − 1) is what restrictsk from taking on the values
of 0 andP − 1. In addition, whenk = 0 all of the vector elements ofE1 are 1, and
hence the sum of squares equalsP; whenk = P − 1 all of the vector elements ofEP

are±1, and again the sum of squares equalsP. �

The qualitatively different form of these eigenfunctions corrects a popular mis-
conception appearing in the literature having to do with the asymptotic convergence
of 1

2CP on matrixWP (e.g., [12]). Rather, the eigenvalues involve a different cosine
argument, whereas the eigenvectors involve the cosine rather than the sine function.

A similarity matrix forWP is given byD−1/2CD−1/2; in other words, the eigen-
values of both of these matrices are the same. Because the analytical eigenvectors of
matrixWP are known, then those for matrixD−1/2CD−1/2 can be determined.

Theorem 2.3. Let D be a diagonal matrix whose(i, i) entry is
∑n

j=1 cij , wherecij

is the(i, j)th element of matrixCP . Then the eigenvectors of matrixD−1/2CP D−1/2

areD1/2Ek, whereEk(k = 1, 2, . . . , P ) are the eigenvectors given by Theorem 2.2.
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Proof. Consider the solution to the eigenvector problem(WP − λk I)Ek = 0 given
by Theorem 2.2. Now,

(WP − λkI)Ek = (D−1C − λkI)Ek = 0

(D−1/2C − λkD1/2)Ek = 0

⇒ (D−1/2CD−1/2 − λk)D1/2Ek = 0. �

Of note is that the eigenvectorsD1/2Ek still need to be normalized.
Following the derivations of Eq. (2) and Theorem 2.1 does not extend the one-

dimensional eigenfunction results in Theorems 2.2 and 2.3 to those for their two-
dimensional counterpart, though. Using Kronecker product notation, approximate
eigenvalueŝλpq for theλpq ’s of matrixWPQ should be furnished by

λ̂pq = (1P ⊗ kQ + kP ⊗ 1Q)/2, (5)

whereλ̂pq is the vector of approximated eigenvalues, andλP andλQ are vectors,
whose elements are given by Eq. (4). This approximation is sensible because ifP =
1 orQ = 1, then it is exact, and asP → ∞ andQ → ∞ it converges on the actual
eigenvalues. Comparison of Eq. (5) with numerical results yields the following:

Conjecture 1. Consider aP × Q regular square tessellation planar surface parti-
tioning. Let WPQ be the stochastic version of matrixCPQ for a P × Q regular
square tessellation surface partitioning. IfP = Q, then the eigenvalues given by
Eq. (5) for(p − 1)/(P − 1) = (q − 1)/(Q − 1) as well as for(p − 1)/(P − 1) =
(Q − p)/(Q − 1) are identical to their corresponding eigenvalues extracted from
matrixWPQ.

Since the sum of the eigenvalues given by Eq. (4) is 0, then the sum ofλ̂pq

given by Eq. (5) also is 0. In addition, the sum of the squared eigenvalues of ma-
trix WPQ is given by

∑P
p=1

∑Q
q=1 λ2

pq = 1TD−1CPQD−11 [13, Theorem 9.1.14, p.
301]. Therefore, a good approximation for these eigenvalues is given by

λ̂pq,γ = Isign[(I − I correct)|(kQ ⊗ 1P + 1Q ⊗ kP )/2|diag]γ 1pq

+ Icorrect(kQ ⊗ 1P + 1Q ⊗ kP )/2, (6)

where 0< γ 6 1 is selected such that

P∑
p=1

Q∑
q=1

λ̂2
pq,γ = 1TD−1CPQD−11 = 18PQ + 11P + 11Q + 12

72
,

whenP > 4 andQ > 4, subscript “diag” denotes a diagonal matrix, “|” denotes
absolute value, and the diagonal entries of diagonal matrixIcorrect= 1 if an approx-
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imate eigenvalue is correct and 0 otherwise, and of diagonal matrixIsign = −1 if
Eq. (5) is negative and 1 otherwise. In addition we have the following:

Conjecture 2. Let WPQ be the stochastic version of matrixCPQ for aP × Q reg-
ular square tessellation planar surface partitioning, and let the vectorsEp andEq be
those given by Theorem 2.3. Then the eigenvectors of matrixWPQ are approximate-
ly equal to the Kronecker productEp ⊗ Eq (p = 1, 2, . . . , P ; q = 1, 2, . . . ,Q).

The results stated in Conjecture 2 at least are asymptotically correct.

2.1. Means of and correlations between the eigenvectors of matrixCPQ

Two measures commonly used in statistics are the arithmetic mean and the prod-
uct moment correlation coefficient. For a set ofn variable values denoted byei , the
mean may be defined as

∑n
i=1 ei/n = 1TE/n; for a set ofn paired variable values

denoted byei andfi, the product moment correlation coefficient may be written,
using matrix notation, as

ET
(
I − 11T

n

)
F√

ET
(
I − 11T

n

)
E

√
FT
(
I − 11T

n

)
F

. (7)

With regard to the mean, we have the following:

Theorem 2.4. Suppose a regular square tessellation planar surface partitioning is
finite (P < ∞,Q < ∞). Then a number of the eigenvectors, Epq, of matrix CPQ

have a zero mean.

Proof. For any eigenvector of matrixCpq,

1TEpq = 2√
(P + 1)(Q + 1)

[
P∑

k=1

sin

(
kpp

P + 1

)]
×

 Q∑

l=1

sin

(
lqp

Q + 1

) .

Using the summation calculus,D−1, for a finite series involving the sine function
yields

1TEpq = 2√
(P + 1)(Q + 1)


−

cos

(
p

P+ 1
2

P+1 p

)

2 sin
(
p 1

2
1

P+1p
) −

− cos
(
p 1

2
1

P+1p
)

2 sin
(
p 1

2
1

P+1p
)


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×


−

cos

(
q

Q+ 1
2

Q+1 p

)

2 sin
(
q 1

2
1

Q+1p
) −

− cos
(
q 1

2
1

Q+1p
)

2 sin
(
q 1

2
1

Q+1p
)

 .

Using standard trigonometric identities [29], whenp is even, then
−

cos

(
p

P+ 1
2

P+1 p

)

2 sin
(
p 1

2
1

P+1p
) −

− cos
(
p 1

2
1

P+1p
)

2 sin
(
p 1

2
1

P+1p
)

 = 0;

whenp is odd, then
−

cos

(
p

P+ 1
2

P+1 p

)

2 sin
(
p 1

2
1

P+1p
) −

− cos
(
p 1

2
1

P+1p
)

2 sin
(
p 1

2
1

P+1p
)

 = 1

tan
(
p 1

2
1

P+1p
) ;

whenq is even, then
−

cos

(
q

Q+ 1
2

Q+1 p

)

2 sin
(
q 1

2
1

Q+1p
) −

− cos
(
q 1

2
1

Q+1p
)

2 sin
(
q 1

2
1

Q+1p
)

 = 0;

and whenq is odd, then
−

cos

(
q

Q+ 1
2

Q+1 p

)

2 sin
(
q 1

2
1

Q+1p
) −

− cos
(
q 1

2
1

Q+1p
)

2 sin
(
q 1

2
1

Q+1p
)

 = 1

tan
(
q 1

2
1

Q+1p
) .

Therefore, when eitherp or q is even, then the affiliated vector sum is1TEpq ≡
0. �

When bothP andQ are even then the number of eigenvectors whose sums are ex-
actly zero is 3PQ/4. When bothPandQare odd, this number is(3PQ−P −Q−1)/4.
WhenP is even andQ is odd, this number is(P (3PQ − 1))/4; and whenP is odd
andQ is even, this number is(Q(3PQ − 1))/4.

With regard to the correlation coefficient, we have the following:

Theorem 2.5. Letn = PQ, the number of units into which a surface is partitioned.
Then as both P and Q go to infinity, all of the correlations(ρ) amongst the nonprin-
cipal eigenvectors of matrixCPQ converge on zero.

Proof. Substituting two distinct nonprincipal eigenvectors of matrixCPQ, sayEj

andEk(j /= k), into expression (6) yields
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ET
j

(
I − 11T

n

)
Ek√

ET
j

(
I − 11T

n

)
Ej

√
ET

k

(
I − 11T

n

)
Ek

= −
ET

j 1
(

1TEk

n

)
√

1 − ET
j 1
(

1TEjk

n

)√
1 − ET

k 1
(

1TEk

n

) .

Theorem 2.4 states that for anyj = pq or k = rs havingp, q, r or s even, the nu-
merator of this expession is 0 regardless of the magnitude ofP andQ, and hence the
correlation coefficient is 0. Ifp, q, r ands all are odd, the numerator contains the
product of four terms of the form

1
T

× 2
T +1

tan
[

tp
2(T +1)

] .

As t → T andT → ∞, the denominator of this term goes to∞. As t → T/2 and
T → ∞, the denominator of this term goes to 1, but the numerator goes to 0. As
t → 1, by L‘Hospital’s rule (from calculus) the limit of this expression is equivalent
to

lim
T →∞

−2 2T +1
T 2(T +1)2

−1
2

tp

(T +1)2 cos2
[

tp
2(T +1)

] ,

which is 0.
Therefore, since all of the means of the nonprincipal eigenvectors asymptotical-

ly go to zero, these nonprincipal eigenvectors asymptotically are mutually uncor-
related. �

Of note is that these asymptotic eigenvectors are both orthogonal and uncor-
related.

Another noteworthy correlation is revealed by the following theorem:

Theorem 2.6. LetEn andEn
∗, respectively, denote the normalized eigenvectors as-

sociated with the smallest eigenvalues of matricesC and(I − 11T/n)C(I − 11T/n).
By Theorem3.1,vectorEn

∗ is approximated byk(I − 11T/n)En. Then vectorEn
∗

has a correlation(ρ) between itself andC(I − 11T/n)En
∗ of exactly−1.

Proof. Consider the regression equationC(I − 11T/n)En
∗ = a1 + bEn

∗.

(I − 11T/n)C(I − 11T/n)En
∗ = b(I − 11T/n)En

∗.

From ordinary least-squares (OLS) regression theory [25],
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b̂=[En
∗T(I − 11T/n)En

∗]−1En
∗T(I − 11T/n)C(I − 11T/n)En

∗

=En
∗T(I − 11T/n)C(I − 11T/n)En

∗ = λn.

Hence expression(I − 11T/n)C(I − 11T/n) is a regression coefficient, which can
be rewritten as

b̂ = ρ

S
C
(
I− 11T

n

)
E∗

S(
I− 11T

n

)
E∗

= q|λn|.

Therefore, since bothEn
∗ and(I − 11T/n)C(I − 11T/n)En

∗ are centered, andEn
∗

is normalized, then

Min : En
∗T (I − 11T/n)C(I − 11T/n)En

∗ ⇒ ρ = −1. �

Of course the largest eigenvalue of matrixC as well as its associated eigenvector
can be quickly calculated, even for very largen, using one of the oldest and the
well-known method of

lim
k→∞

1TCk+11
1TCk1

= λ1

[7, p. 213]. Theorem 2.6 furnishes analytical information that aids in calculating the
minimum eigenfunction of matrixC.

3. Commonalities between eigenfunctions of matrices C and(I − 11T/n)

× C(I − 11T/n)

Mäkeläinen [23] identifies a number of commonalities between matrices of this
sort, but for when matrixC is either positive or nonnegative-definite. Neither ma-
trix C nor matrixW is positive or nonnegative-definite. Hence Mäkeläinen’s results
provide some guidance here (e.g., a suitable diagonal matrix aI can be added to
either matrixC or W to make it positive-definite, without altering the associated
eigenvectors), but do not necessarily directly apply. Perhaps the most relevant result
by Mäkeläinen is his Theorem 4.2 [23, p. 34].

The following theorem is posited as a description of the relationship between the
eigenvectors of matrixC and those of expression(I − 11T/n)C(I − 11T/n).

Theorem 3.1. Suppose that symmetric binary(0–1)matrixC is ann × n incidence
matrix representing a planar partitioning of some two-dimensional geographic sur-
face into n polygonal units. LetE be the matrix of eigenvectors ofC, E1 denote
the principal eigenvector in matrixE, I be the identity matrix, 1 be ann × 1 vector
of ones, and k be a positive constant. If the nonprincipal eigenvectors of matrix
C are centered and renormalized(i.e., replaced withk(I − 11T/n)E), then as n
increases they converge upon the eigenvectors of matrix(I − 11T/n)C(I − 11T/n),



D.A. Griffith / Linear Algebra and its Applications 321 (2000) 95–112 107

but with the centered principal eigenvector(I − 11T/n)E1 being replaced with vec-
tor 1/

√
n1.

Proof. Consider the eigenvector problem(C − λI)E = 0, s.t.ETE = I .

(C − λI)E − (C − λI)(11T/n)E = −(C − λI)(11T/n)E,

(C − λI)(I − 11T/n)E = −(C − λI)(11T/n)E,

(I − 11T/n)[C(I − 11T/n) − λ(I − 11T/n)](I − 11T/n)E

= −(I − 11T/n)(C − λI)(11T/n)E,

[(I − 11T/n)C(I − 11T/n) − λI ](I − 11T/n)E + λ(11T/n)(I − 11T/n)E

= −(I − 11T/n)(C − λI)(11T/n)E,

[(I − 11T/n)C(I − 11T/n) − λI ](I −11T/n)E

= −(I − 11T/n)C1(1TE/n).

SinceC1 is a vector of finite-entries, andETE = I , then1TEk 6 √
n, and hence

lim
n→∞ 1TE/n = 0.

Thus

[(I − 11T/n)C(I − 11T/n) − λI ](I − 11T/n)Ek → 0, k /= 1.

If E1 > 0 (guaranteed by the Perron–Frobenius theorem) is replaced with 1/
√

n1,

then[(I − 11T/n)C(I − 11T/n) − λI ](I − 11T/n)
(
1/

√
n1
) = 0, with λ = 0

Hence, asymptoticallyk(I − 11T/n)E are the eigenvectors of(I − 11T/n)

× C(I − 11T/n) onceE1 is replaced with 1/
√

n1. �

Accordingly, all but the largest eigenvalue of matrixC approximately equal and
asymptotically converge upon one of the eigenvalues of matrix(I − 11T/n)C
× (I − 11T/n).

4. Approximate eigenvalues associated with aP × Q regular hexagonal
tessellation

Techniques used to obtain results for the regular square tessellation case provide
guidance for the regular hexagonal tessellation situation. Here the variance term for
the eigenvalues extracted from matrixCPQ based upon a planar surface may be
calculated with

1TC1 = 2(3PQ − 2P − 2Q + 1). (8)
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In addition, the limit of the principal eigenvalue,λ1, is 6 while the limit of the min-
imum eigenvalue,λn is −3. With the eigenvalues of a square tessellation given by
the well-known equation

λpq = 2

[
cos

(
pp

P + 1

)
+ cos

(
qp

Q + 1

)]
,

and those for the queen’s definition (another analogy with chess moves) of adjacency
given by

λpq = 2

[
cos

(
pp

P + 1

)
+ cos

(
qp

Q + 1

)
+ 2 cos

(
pp

P + 1

)
×cos

(
qp

Q + 1

)]
,

following the type of argument outlined by Gasim [12], those for a hexagonal tessel-
lation should be approximated by

λ̂pq =2 cos

(
pp

P + 1

)

+ 2 cos

(
qp

Q + 1

)
+ 2 cos

(
pp

P + 1

)
× cos

(
qp

Q + 1

)
. (9)

Eq. (9) supplies the basis for a good approximation of the actual eigenvalues.
The extreme eigenvalues of a regular hexagonal tessellation can be accurately

estimated, being constrained to achieve their respective asymptotic values, with

λ̂max = 0.850393

{
2

[
cos

(
p

P + 1

)
+ cos

(
p

Q + 1

)]}
+ 0.3248037

×
{

2

[
cos

(
p

P + 1

)
+ cos

(
p

Q + 1

)

+ 2 cos

(
p

P + 1

)
× cos

(
p

Q + 1

)]}
, (10)

and

λ̂min = 0.30959+ 0.82713

{
2

[
cos

(
Pp

P + 1

)
+ cos

(
Qp

Q + 1

)]}
, (11)

whose coefficients have been estimated using nonlinear regression techniques. The
limit of Eq. (10) is 6, and for a systematic sample of hexagonal surface partition-
ings fromP = 5 andQ = 5, to P = 50 andQ = 50, both the description of the
maximum eigenvalue is good (multiple correlationR2 = 0.991) and the residuals
of the estimation equation are statistically well-behaved. Eq. (10) performs better
on largerP and Q values, which in fact are the ones of most concern, since the
eigenvalues of matrixC for relatively smallP andQ values can be easily calculat-
ed numerically. Meanwhile, the limit of Eq. (11) is−2.99894, which is very close
to −3. Again, both the description of the minimum eigenvalue is good (multiple
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correlationR2 = 0.981) and the residuals of the estimation equation are statistically
well-behaved.

Now the unknownλpq ’s can be approximated iteratively as follows:
Step1: Computêλmax andλ̂min, respectively, using Eqs. (10) and (11);
Step2: Compute then = PQ estimateŝλ∗

pq using the following equation (based
upon (9)):

2 cos

(
pp

P + 1

)
+ 5

2
cos

(
qp

Q + 1

)

+ cos

(
36.5◦ − 6.6

P+1 − 2(6.6)
Q+1

180◦ p

)
2 cos

(
pp

P + 1

)
× cos

(
qp

Q + 1

)
,

and then determine max{λ̂∗
pq} and min{λ̂∗

pq}; and
Step3: Iteratively choose âγ such that the sum of the following eigenvalue esti-

mates equals 0:

λ̂pq,γ =
[

λ̂∗
pq + |min(λ̂∗

pq)|
max(λ̂∗

pq) + |min(λ̂∗
pq)|

]γ̂

(λ̂max + |λ̂min|) + λ̂min.

Eq. (8) furnishes a check on these estimates, for good ones will have a sum of squares
close to the value yielded by Eq. (8).

4.1. Approximate eigenvalues of matrixW for a P × Q regular hexagonal
tessellation

To begin, the principal eigenvalue,λ1, is known theoretically to equal 1. Mean-
while, the minimum eigenvalue may be estimated with the following equation:

λ̂min = −0.573089−
[

44.81491

(P + 1.46199)4.96963IP,even

+ 45.54852

(P + 3.00664)4.16429IP,odd

+ 44.81491

(Q + 1.27039)5.20842IQ,even

+ 45.54852

(Q + 10.01437)2.90953IQ,odd

]/
2, (12)

whose coefficients have been estimated using nonlinear regression techniques, and
which has a correspondingR2 value of 0.998, but not well-behaved residuals. Of note
here is that convergence of this estimate in the limit tracks one trajectory for even
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values ofP andQ, and a second trajectory for odd values ofP andQ. It suggests the
following conjecture:

Conjecture 3. Let WPQ be the stochastic matrix version of the binary incidence
matrixCPQ representing aP × Q regular hexagonal tessellation planar surface par-
titioning. Then the minimum eigenvalue of matrixW asymptotically is approximate-
ly −0.573089.

Following the developments outlined in the preceding section for estimating the
eigenvalues of matrixCPQ, λ̂∗

pq initially can be estimated with the expression

0.35 cos

[
(p − 1)p

P − 1

]
+ 0.35 cos

[
(q − 1)p

Q − 1

]

+0.30 cos

[
(p − 1)p

P − 1

]
× cos

[
(q − 1)p

Q − 1

]
, (13)

and then iteratively improved by estimatingγ̂ such that the sum of

λ̂pq,γ =
[

λ̂∗
pq + |min(λ̂∗

pq)|
max(λ̂∗

pq) + |min(λ̂∗
pq)|

]γ̂

(1 + |λ̂min|) + λ̂min

is 0, whereλ̂min is given by Eq. (12). Again, good approximations will have a sum
of squares close to

1TD−1CPQD−11 = 30PQ + 25P + 24Q + 23

180
,

where the horizontal axis isP > 4, the vertical axis isQ > 4, and one pair of parallel
hexagon boundaries is orthogonal to the horizontal axis.

5. Conclusion

In conclusion, the spatial statistics literature is replete with linear algebra and
its applications. This paper contributes eigenfunction results that are useful to that
segment of the spatial statistics literature. It focuses on two versions of incidence
matrices commonly employed in geographic analysis that can be viewed in a graph
theoretic context, especially in terms of planar graphs. The study of eigenfunctions of
graphs has a long history. Hence, the research summarized in this paper also contrib-
utes to this graph theory history. With particular reference to linear algebra, results
summarized in this paper allow the determinant of selected massively largen × n

matrices to be accurately approximated; these results are relevant to two spatial sta-
tistical problem areas, namely remotely sensed data for which the stochastic matrix
W is to be used and regular hexagonal tessellation data such as that for EMAP. In
addition, the behavior of eigenfunctions for graphs affiliated with a linear configura-
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tion of connected nodes are better understood, as are those for the graphs associated
with regular square and hexagonal tessellations.
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