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0. Introduction

Let K be a field, S = K[x1, ..., X;] the polynomial ring in n variables, and I C S a monomial ideal.
We denote by G(I) the unique minimal monomial system of generators of I. We say that I has linear
quotients, if there exists an order o = uy, ..., uy of G(I) such that the colon ideal (uq,...,u;_1) :u; is
generated by a subset of the variables, for i =2, ..., m. We denote this subset by qy; s (I). Any order
of the generators for which we have linear quotients will be called an admissible order. Ideals with
linear quotients were introduced by Herzog and Takayama [10]. If each component of I has linear
quotients, then we say I has componentwise linear quotients.

The concept of linear quotients, similar to the concept of non-pure shellability, is purely com-
binatorial. However both concepts have strong algebraic implications. Indeed, an ideal with linear
quotients has componentwise linear resolution while shellability of a simplicial complex implies that
its Stanley-Reisner ideal is sequentially Cohen-Macaulay. These similarities are not accidental. In fact,
let A be a simplicial complex and I its Stanley-Reisner ideal. It is well known, that Io has lin-
ear quotients if and only if the Alexander dual of A is non-pure shellable, see for example in [8]
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for a short proof of this fact. Thus at least in the squarefree case “linear quotients” and “non-pure
shellability” are dual concepts.

In this paper we prove some fundamental properties of monomial ideals with linear quotients.
In general, the product of two ideals with linear quotients need not have linear quotients, even if
one of them is generated by a subset of the variables, see Example 2.4. However in Lemma 2.5, we
show that if I C S is a monomial ideal with linear quotients, then mI has linear quotients, where
m=(X1,...,Xp) is the graded maximal ideal of S.

Let I be a monomial ideal with linear quotients and o = uq,..., Uy an admissible order of G(I).
It is not hard to see that degu; > min{deguy,...,degu;_1}, for all i € [m] ={1, ..., m}. But this order
need not be a degree increasing order. We show in Lemma 2.1, that there exists a degree increas-
ing admissible order o’ induced by o. Furthermore, one has gy (I) = qy - (I) for any u € G(I), see
Proposition 2.2. This implies in particular the “Rearrangement Lemma” of Bjorner and Wachs [2].

As a main result of this article, we show in Theorem 2.7, that any monomial ideal with linear
quotients has componentwise linear quotients, and hence it is componentwise linear. Conversely, as-
suming that all components of I have linear quotients, we can prove that I has linear quotients only
under some extra assumption, see Proposition 2.9. It would be of interest to know whether the con-
verse of Theorem 2.7 is true in general.

Herzog and Hibi showed in [5] that a squarefree monomial ideal I is componentwise linear if
and only if the squarefree part of each component has a linear resolution. We would like to remark
that the “only if” part of this statement is true more generally. Indeed for any componentwise linear
monomial ideal, the squarefree part of each component has a linear resolution. Here we prove a
slightly different result by showing that if a monomial ideal I has linear quotients, then the squarefree
part of I has linear quotients. This together with Theorem 2.7 implies that the squarefree part of
each component of I has again linear quotients. As a corollary of the above facts we obtain that
if A is non-pure shellable, then each facet skeleton (see the definition in Section 2) of A is non-
pure shellable. Unless A is pure, this result differs from the well-known fact that each skeleton of a
shellable simplicial complex is again shellable.

1. Preliminaries and background

In this section we fix the terminology, review some notation on simplicial complexes and setup
some background.

A simplicial complex A on the set of vertices [n] ={1,...,n} is a collection of subsets of [n] with
the property that if F € A then all the subsets of F are also in A (including the empty set). An
element of A is called a face of A, and the maximal faces of A under inclusion are called facets.
We denote % (A) the set of facets of A. The simplicial complex with facets Fq,..., Fy, is denoted
by (F1,..., Fn). The dimension of a face F is defined as |F| — 1, where |F| is the number of vertices
of F. The dimension of the simplicial complex A is the maximal dimension of its facets. A simplicial
complex I' is called a facet subcomplex of A if F(I') C F(A).

A subset C of [n] is called a vertex cover of A, if CNF # @ for all facets F of A. A vertex cover C
is said to be minimal if no proper subset of C is a vertex cover of A. Recently, vertex cover algebras
were studied in [6] and [7].

We denote by S = K[x1,...,x,] the polynomial ring in n variables over a field K. To a given
simplicial complex A on the vertex set [n], the Stanley-Reisner ideal, whose generators correspond
to the non-faces of A is well studied, see for example in [1,11] and [9] for details. Another squarefree
monomial ideal associated to A, so-called facet ideal, was first studied by Faridi [4]. The ideal I(A)
generated by all monomials x;, ---x;; where {iy,...,is} is a facet of A, is called the facet ideal of A.
For a simplicial complex of dimension 1, the facet ideal is the edge ideal, which was first studied by
Villarreal [12].

Recall that the Alexander dual A of a simplicial complex A is the simplicial complex whose faces
are {[n]\ F: F ¢ A}. Let I be a squarefree monomial ideal in S. We denote by IY the squarefree
monomial ideal which is minimally generated by all monomials x;, - --x;,, where (x;,,...,%;) is a
minimal prime ideal of I. It is easy to see that for any simplicial complex A, one has Inv = (IA)". Let
A= ([n]\ F: F € &#(A)). Then Ipv = I(A°), see [8].
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For any set U C [n], we denote u = l_[jEU X;j the squarefree monomial in S whose support is U. In
general, for any monomial u € S, the support of u is supp(u) = {j: x; | u}.

Remark 1.1. Let A be a simplicial complex on [n]. Then

G(I(A)Y) = {u = l_[xj: where U is a minimal vertex cover of A }.
jeu

The following notion is important for our later discussion. Let I = (uq,...,uy) be a monomial
ideal in S. According to [10], the monomial ideal I has linear quotients if one can order the set of
minimal generators of I, G(I) = {u1, ..., un}, such that the colon ideal (uq,...,u;_1):u; is generated
by a subset of the variables for i = 2, ..., m. This means for each j < i, there exists k < i such that
ug:uj =X and X | uj:u;, where t € [n] and uy : u; = ug/ ged(ug, u;). In the case that I is squarefree,
it is enough to show that for each j <, there exists k <i such that uy : u; = x; and x; | uj. Such an
order of generators is called an admissible order of G(I). Let 0 = uq,...,u, be an admissible order
of G(I). We denote by Quj,o () C{x1,..., Xn} the set of minimal generators of (uy,...,uj_1) :u;j.

It is known that if I is a monomial ideal with linear quotients and generated in one degree, then
I has a linear resolution. See for example in [13] an easy proof.

Remark 1.2. For an ideal which has linear quotients, there might exist several admissible orders.
For example, let I = (X1X2,X1X3X4, X2X4) C K[X1,X2,X3,X4]. Then o7 = X1x2, X1x3X4, XoX4 and 03 =
X1X2, X2X4, x1x§X4 both are admissible orders of G(I).

The following result relates squarefree monomial ideals with linear quotients to (non-pure)
shellable simplicial complexes. The concept non-pure shellability was first defined by Bjérner and

Wachs |2, Definition 2.1].

Theorem 1.3. (See [8, Theorem 1.4].) Let A be a simplicial complex and AV its Alexander dual. Then A is
(non-pure) shellable if and only if I ov has linear quotients.

2. Monomial ideals with linear quotients

In this section we prove some fundamental properties of ideals with linear quotients.

Let I ¢ S be a monomial ideal with linear quotients and u1i,...,uy, an admissible order of
G(I). It is easy to see that degu; > min{deguy,...,degu;_¢} for i =2, ..., m. In particular, degu; =
min{deguq, ..., deguy}. But in general, this order need not be a degree increasing order. For example,

the ideal I = (x1x2, x1x§X4, X2x4) has linear quotients in the given order, but degx1x§X4 > degx2Xa4.

In the following lemma we show that for any ideal with linear quotients there exists an admissible
order uq,...,un of G(I) such that degu; < deguj;q for i=1,...,m — 1. We call such an order a
degree increasing admissible order.

Lemma 2.1. Let | C S be a monomial ideal with linear quotients. Then there is a degree increasing admissible
order of G(I).

Proof. We use induction on m, the number of generators of I, to prove the statement. If m =1, there
is nothing to show.

Assume m > 1 and uq,..., Uy is an admissible order. It is clear that | = (u1,...,up—1) has lin-
ear quotients with the given order. By induction hypothesis, we may assume that degu; < degu;q
for i=1,...,m — 2 (if necessary we may reorder the generators ui,...,uy—1 of J, and call them
uq,...,Un—1 again). Assume that degup,_1 > degup,. Let j + 1 be the smallest integer such that
degu iy > deguy. Since degu; > min{deguy,...,degu;_1} for i =2,...,m, one sees that j+1#1.
Now we show that uq,...,Uj, Um, Ujq1,...,Un—1 iS an admissible order which is obviously degree
increasing.
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We need to prove that (uq,...,u;) :um and (ug,...,Uj, Uy, Ujpq,...,Up_1) : Up are generated
in degree one, for p=j+1,...,m — 1. Since degu,; < degug for q=j+1,...,m — 1, we have
deg(uq : uy) > 1. Since uq,...,uy is an admissible order, for any r < j, there exists k < j such
that deg(uy : um) =1 and uy : Uy | Uy : Up. This shows that (uq,...,u;j) : uy is generated in degree
one. Now let j+ 1< p<m—1. It is clear that for any r < p — 1, there exists k < p — 1 such that
deg(uk :up) =1 and ug : up | uy : up, since the ideal (ui,...,uj, ujqq,...,Uup) has linear quotients in
this order. It remains to show that there is h < p such that deg(up : up) =1 and up : up | up : up. Since
U1, ...,Uj,Ujyq,..., Uy is an admissible order and degup, < degug for q=j+1,...,m—1, there ex-
ists k < j such that uy : um =x4 and Xq | up : uy for some d € [n]. Since uy,...,uj, Ujyq,...,Up is an

admissible order, there exists h < p such that u : up =x, and xp | u : up for some b € [n].

We claim that X, | up : up. In order to prove this we first show that b # d. Suppose b =d. Then
we have Xg = uy : um and xg =Xy | uy : up. Hence deg,, u, = deg,, um + 1 and deg, uy > deg,, up + 1,
where by deg, u we mean the degree of Xq in u. Therefore deg,, um > deg,, up, which is a contradic-
tion, since x4 | up : up.

Now since xp = up : up and xp | ug : up, we have deg, up =deg,, up+1 and deg,, uy > deg,, up+1.
On the other hand, since x4 = uy : um and b # d, we have deg, um > deg, uy > deg, up +1>
deg,, up. This implies that xp | um :up. O

If o =uq,...,un is any admissible order of G(I), we denote by o’ =u;,,...,u;, the degree in-
creasing admissible order derived from ¢ as given in Lemma 2.1. The order o’ is called the degree
increasing admissible order induced by o. Attached to an admissible order o are the sets gy () as
defined in the previous section. We have the following result.

Proposition 2.2. Let I be a monomial ideal with linear quotients with respect to the admissible order o of the
generators. Then for all u € G(I) we have

Qu,o (D) =qu,o (D).

Proof. Let 0 = u1,...,un and ¢’ =u;,,...,u;,. Suppose u =u; in o and u =u;, in o’. Let x4 €
qu,o (I), for some d € [n], then there exists j <k such that u; : ux = X4. In particular, degu; < deguy.
According to the definition of o, u; comes before u;, and hence x4 € qy o' (I).

Conversely, let x4 € qy /() for some d € [n]. Then there exists an ij with j <t, such that
uj; : uj, = X4. We may assume that j is the smallest integer with this property and u;; =u, in o.

Suppose x4 ¢ gy (I). Then r > k and degu, < deguy according to the definition of o’. Therefore
ur =xgv and uy = wv where v and w are monomials with degw > 2 and x4 1 w. Since uq, ..., u; is
an admissible order and k < r, there exists s < r such that us:ur =x, and xp | ug : ur = w (b #4d).
Hence degus < degu = degu;;. Therefore us = u; with [ < j.

It follows that deg,, us = deg, ur+1< deg,, uy, deg, us < deg, ur < deg, uy for any c #d, b, and
deg,, us < deg,, ur = deg, uy + 1. If deg, us < deg,, uy + 1, then we have us | ug, a contradiction.
Therefore deg,, us = deg,, ur + 1, and hence xg = us : up = u;; : uj,, contradicting the choice of j. O

Let A be a simplicial complex with % (A) = {Fq,..., Fn}. Then Ipx = ﬂ?"ﬂ Pr; where Pp, =
(xj: j ¢ Fy), see [1, Theorem 5.4.1]. It follows from [8, Lemma 1.2] that Iov = (u1, ..., uy), where
uj = HjeéFi xj. We follow the notation in [2]: if § = Fy, ..., Fy, is any order of facets of A, then we set
Ar=(F1,..., Fy) and Rs(Fy) ={i € Fy: Fy —{i} € Ax_1} for any k € [m].

We observe the following simple but important fact: A is shellable with shelling § = Fq, ..., Fp
if and only if Iov has linear quotients with the admissible order o = uq, ..., uy. Moreover, if the
equivalent conditions hold, then Rs(F) = qy,.c (Iav).

As an immediate consequence of Lemma 2.1, Proposition 2.2 and the observation above we redis-
cover the following well-known “Rearrangement Lemma” of Bjérner and Wachs [2, Lemma 2.6].

Corollary 2.3. Let § = Fq,..., Fyy be a shelling of the simplicial complex A. There exists a shelling §' =
Fi,,..., Fi, of A induced by § such that dim F;, > dim Fipys for k=1,...,m — 1. Furthermore we have
Rs(F) = Ry (F) for any facet F of A.
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It is known that the product of two ideals with linear quotients need not to have again linear
quotients, even if one of them is generated by linear forms. Such an example was given by Conca and
Herzog [3].

Example 2.4. Let R = K]a, b, c,d], | = (b,c) and ] = (azb,abc, bcd, cdz). Then J has linear quotients,
and I is generated by a subset of the variables. But the product IJ has no linear quotients (not even
a linear resolution).

However, we have the following:

Lemma 2.5. Let [ C S be a monomial ideal. If I has linear quotients, then ml has linear quotients, where
m=(x1,...,Xp) is the graded maximal ideal of S.

Proof. We may assume G(I) = {u1,...,un} and uq,...,u; is a degree increasing admissible order.
We prove the assertion by using induction on m.
The case m =1 is trivial. Let m > 1. Consider the multi-set

T ={u1x1,...,U1Xp, U2X1, ..., UDXp, ..., U;X1, ..., UnXn}.

It is a system of generator of ml. If u;x; | u;xs for some i <r, then we remove u,x; from T. In this
way, we get the minimal set

T'={uxj: i=1,...,m, je€A;}

of monomial generators of mI, where A; =[n] and A; C [n] for i =2,...,m. We shall order G(ml)
in the following way: ugx; comes before uixs if k <t or k=t and [ <s. Now we show that
the above order o of G(ml) is an admissible order. We define the order of the generators of
m(uq,...,Upn—1) in the same way as we did for mI. Then the ordered sequence t of the generators
of m(ui...,up—1) is an initial sequence of o. Moreover, by induction hypothesis, T is an admissible
order of G(m(u1,...,Un_1)).

For a given j € Ay, let J be the ideal generated by all monomials in T’ which come before upmx;
with respect to o. It remains to be shown that J : upx; is generated by monomials of degree 1.

Let ugx € G(J). If k=m, then urx; : umxj = x,. If k <m, then we shall find an element u;x; € G(J)
and t € [n] such that uyXs : umx; =X and x¢ | ugX; : upx;. Indeed since uq, ..., uy is an admissible
order of G(I), there exists ¢ < m such that ug : u;; =X and X¢ | uj : Uy This implies that ugx; : umx; =
Ug : Uy = X¢. Since ugxj € ml, there exists, by the definition of o, a monomial u;x; € G(J) such that
UrXs | UgX;j.

We claim that urXs : umXj =X and X | ugX; : upxj. Notice that uyXs : UmX; | UgX; : UmXj = X;. If
UrXs : UmXj 7 X¢, then urxs : umx; =1, that is, urxs | umx; which contradicts the fact that j € Ap. This
shows that uyXs : umx;j = X;.

Since X¢ | ug : up, it is enough to show that x; # x; in order to prove that X; | ugX; : umx;. As-
sume that x; = x;. Since ug : uym = x¢, we have ug = x;u for some monomial u such that u | uy. Since
degug < degup, it follows that u, = uw for some monomial w with degw > 1 and x; { w. Hence
there exists some variable x; with d #t such that x4 | w. But then xjugq = Xqux; | wux; = upmX;j, con-
tradicting again the fact that je Ap. O

Remark 2.6. The converse of the above lemma is not true. For example, let I = (ab, cd) C K|[a, b, c,d].
Then mI = (a®b, ab?, abc, abd, acd, bed, c2d, cd?) has linear quotients in the given order, but I has no
linear quotients.

Now we present the main theorem of this section.

Theorem 2.7. Let I C S be a monomial ideal. If I has linear quotients, then I has componentwise linear quo-
tients.
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Proof. By Lemmas 2.5 and 2.1, we may assume that [ is generated by monomials of two different
degrees a and a + 1. We denote by I, the ideal generated by the ath graded component of the
ideal I. Let G(I) = {uy,...,Us, V1,..., V¢}, where degu; =a for i=1,...,s and degvj=a+1 for
j=1,...,t. By Lemma 2.1, we may assume that uq,...,us, vq,..., V¢ is an admissible order, hence
I gy has linear quotients. Now we show that I(g41) has also linear quotients.

We have Igy1) = m(uq,...,us) + (vi,...,ve). Let GUqny) = {w1,...,w, vy,...,v¢}, where
w1, ..., w; is ordered as in Lemma 2.5. In particular, w1, ..., w; is an admissible order. We only need
to show that (w1,...,wj, vi,...,Vp_1): v, is generated by a subset of the variables, for 1 < p <t.

First we consider v;: v, where j < p. Since ug,...,us, v1,..., V¢ is an admissible order of G(I),
there exist some u € {uy,...,us,vq,...,vp_1} and d € [n] such that u:vy, =x5 and x4 | vj:vp. If
ue{vy,..., v} we are done. So we may assume u € {uq, ..., us}. Therefore, degu = degv, — 1. Since
u:vp=xg, we have deg, u=deg, v,+1 and deg, u <deg, v, for any b #d. Since degu < degvp,
there exists a variable x. with ¢ # d such that deg, u < deg, v, — 1. Since xcu € ml(, one has
Xcu = wy for some k <. All this implies that deg,, wy = deg,, u = deg,, vy + 1 and deg, wi <
deg,, vp for any b #d. Therefore wy : vp =X and Xq | vj: vp.

It remains to consider w; : vp. In this case wj = x,u; for some i € [s] and some b € [n]. Since

uq,...,Us, V1,..., Vs is an admissible order, there exist some u € {u1,...,us, v1,...,Vv¢} and d € [n]
such that u: vy =xg and x4 | u; : v. Therefore x4 | wj: vp, since u;:vp | wj:vp. Ifuef{vy, ..., v},
then we are done. So we may assume u € {u1, ..., us}. Then, as before, there exists a variable x, with

¢ #d such that xcu € mlq), deg,, xcu =deg, u=deg, vp+1 and deg,, xcu < deg,, vp for any b #d.
This implies that xcu:vp =xg and xq | wj:vp. O

Corollary 2.8. If I C S is a monomial ideal with linear quotients, then I is componentwise linear.

We do not know if the converse of Theorem 2.7 is true in general. However we could prove the
following:

Proposition 2.9. Let | be a monomial ideal with componentwise linear quotients. Suppose for each component
I qy there exists an admissible order o of G(Iqy) with the property that the elements of G(mlq_1) form the
initial part of o4. Then I has linear quotients.

Proof. We choose the order o =uy,...,us of G(I) such that i < j if degu; < degu; or degu; =
degu; =a and u; comes before u; in og.
We show that (uq,...,up_1) : up is generated by linear forms. If degui = degup, then there is

nothing to prove.
Now assume that degu; < degup =b. Let | < p be the largest number such that degu; < b. Then,

by our assumption, there exists an admissible order w1, ..., W¢, U1, ..., up (which is an initial part
of an admissible order of Iy ), where wy, ..., wy € G(mlp_1y).

Let j < p and suppose that deg(u;: up) > 2. Let m be a monomial such that deg(mu;) = degu,
and mu;j :up =u;j: up. Since mu; € {wi,..., We, Uj41, ..., Up_1} there exist w e {wq,..., we, uyq,
...,up_1} and some d € [n] such that w:up =x4 and x4 | u;j: up because mu;j:up =u;j: up.

If w € {uj41,...,up—1}, then we are done. On the other hand, if w € {wy, ..., w¢}, then w =m'uy;

for some i <! and some monomial m’. Since w : up = xq, one has deg,, w < deg,, u, for all b #d.
Hence x4 does not divide m’, otherwise u; | up which contradicts the fact that u;, up € G(I). Therefore
Xg=1Uj:up and Xg |uj:up. O

Let I C S be a monomial ideal. We denote by I, the monomial ideal generated by the squarefree
monomials in I and call it the squarefree part of I. Indeed I, = (u: u € G(I) and u is squarefree). We
follow [5] and denote by I the squarefree part of I. In [5, Proposition 1.5], the authors proved that
if I is squarefree, then I(g has a linear resolution if and only if Ijg has a linear resolution. Indeed
for the “only if” part one does not need the assumption that I is squarefree. We have the following
slightly different result.

Proposition 2.10. Let | be a monomial ideal in S. If I has linear quotients, then I, has linear quotients.
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Proof. Let uq,...,upy be an admissible order of G(I). Assume I, = (u;,, ..., u;,), where 1 <ij <iz <
--» < i <m. We shall show u;,, ..., u;, is an admissible order of G(I,) by using induction on m.

The case m =1 is trivial. Now assume m > 1. It is clear that (u;,,...,u;,_,) is the squarefree
part of the monomial ideal (uq,...,u;_,), where uy,...,u;,_, is an admissible order. By induction
hypothesis u;j,, ..., u;_, is an admissible order of G((u;,, ..., u;_,)). Consider Ui; @ Uj, with j < t. Since
ui,...,un is an admissible order of G(I), there exists k < i; and some d € [n] such that uy : u;, =g
and xg | uj; : uj,. Since uj; and u;, are squarefree, we have x4{ u;,. On the other hand, since uy : u;, =
X4, one has deg,, ux =1 and deg,, uj < degy, u;, <1 for any b # d. Hence uy € G(I,). O

Combining Proposition 2.10 with Theorem 2.7, we obtain:
Corollary 2.11. Let I C S be a monomial ideal with linear quotients. Then Ijq has linear quotients for all a.

Let A be a d-dimensional simplicial complex. We define the 1-facet skeleton of A to be the simpli-
cial complex

AM=(G: GCFe Z(A) and |G| =|F| —1).

Recursively, the i-facet skeleton is defined to be the 1-facet skeleton of AI~1 for i =1,...,d. For
example if A = ({1, 2, 3}, {2, 3,4}, {4,5}), then

AN =({1,2},{1,3),{2,3),{2,4}, (3.4}, {5)) and AP ={({1},(2},(3}.{4}).

If A is pure of dimension d, then the i-facet skeleton of A is just the (d — i)-skeleton of A. Now
let I be a shellable simplicial complex with facets Fq,..., Fy. It is known that any skeleton of I”
is shellable, see [2, Theorem 2.9]. Since I = ﬂ',“zl Pr; where Pp, = (xj: j ¢ F;), we have (Ir)” =
(uq,...,uny), where u; = H1¢F,- xj. By Theorem 1.3 (Ir)" has linear quotients. Hence m(I-)¥ and the
squarefree part of m(I)Y have linear quotients by Lemma 2.5 and Proposition 2.10. It is not hard to
see that the squarefree part of m(I)¥ is the Alexander dual of I ;. Hence our discussions yield the
following:

Corollary 2.12. If I" is a shellable simplicial complex of dimension d, then I"l!l is shellable, for i < d. In partic-
ular, if I is pure, then any skeleton of I is again shellable.
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