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We study basic properties of monomial ideals with linear quo-
tients. It is shown that if the monomial ideal I has linear quotients,
then the squarefree part of I and each component of I as well as
mI have linear quotients, where m is the graded maximal ideal of
the polynomial ring. As an analogy to the Rearrangement Lemma
of Björner and Wachs we also show that for a monomial ideal with
linear quotients the admissible order of the generators can be cho-
sen degree increasingly.
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0. Introduction

Let K be a field, S = K [x1, . . . , xn] the polynomial ring in n variables, and I ⊂ S a monomial ideal.
We denote by G(I) the unique minimal monomial system of generators of I . We say that I has linear
quotients, if there exists an order σ = u1, . . . , um of G(I) such that the colon ideal (u1, . . . , ui−1) : ui is
generated by a subset of the variables, for i = 2, . . . ,m. We denote this subset by qui ,σ (I). Any order
of the generators for which we have linear quotients will be called an admissible order. Ideals with
linear quotients were introduced by Herzog and Takayama [10]. If each component of I has linear
quotients, then we say I has componentwise linear quotients.

The concept of linear quotients, similar to the concept of non-pure shellability, is purely com-
binatorial. However both concepts have strong algebraic implications. Indeed, an ideal with linear
quotients has componentwise linear resolution while shellability of a simplicial complex implies that
its Stanley–Reisner ideal is sequentially Cohen–Macaulay. These similarities are not accidental. In fact,
let � be a simplicial complex and I� its Stanley–Reisner ideal. It is well known, that I� has lin-
ear quotients if and only if the Alexander dual of � is non-pure shellable, see for example in [8]
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for a short proof of this fact. Thus at least in the squarefree case “linear quotients” and “non-pure
shellability” are dual concepts.

In this paper we prove some fundamental properties of monomial ideals with linear quotients.
In general, the product of two ideals with linear quotients need not have linear quotients, even if
one of them is generated by a subset of the variables, see Example 2.4. However in Lemma 2.5, we
show that if I ⊂ S is a monomial ideal with linear quotients, then mI has linear quotients, where
m = (x1, . . . , xn) is the graded maximal ideal of S .

Let I be a monomial ideal with linear quotients and σ = u1, . . . , um an admissible order of G(I).
It is not hard to see that deg ui � min{deg u1, . . . ,deg ui−1}, for all i ∈ [m] = {1, . . . ,m}. But this order
need not be a degree increasing order. We show in Lemma 2.1, that there exists a degree increas-
ing admissible order σ ′ induced by σ . Furthermore, one has qu,σ (I) = qu,σ ′ (I) for any u ∈ G(I), see
Proposition 2.2. This implies in particular the “Rearrangement Lemma” of Björner and Wachs [2].

As a main result of this article, we show in Theorem 2.7, that any monomial ideal with linear
quotients has componentwise linear quotients, and hence it is componentwise linear. Conversely, as-
suming that all components of I have linear quotients, we can prove that I has linear quotients only
under some extra assumption, see Proposition 2.9. It would be of interest to know whether the con-
verse of Theorem 2.7 is true in general.

Herzog and Hibi showed in [5] that a squarefree monomial ideal I is componentwise linear if
and only if the squarefree part of each component has a linear resolution. We would like to remark
that the “only if” part of this statement is true more generally. Indeed for any componentwise linear
monomial ideal, the squarefree part of each component has a linear resolution. Here we prove a
slightly different result by showing that if a monomial ideal I has linear quotients, then the squarefree
part of I has linear quotients. This together with Theorem 2.7 implies that the squarefree part of
each component of I has again linear quotients. As a corollary of the above facts we obtain that
if � is non-pure shellable, then each facet skeleton (see the definition in Section 2) of � is non-
pure shellable. Unless � is pure, this result differs from the well-known fact that each skeleton of a
shellable simplicial complex is again shellable.

1. Preliminaries and background

In this section we fix the terminology, review some notation on simplicial complexes and setup
some background.

A simplicial complex � on the set of vertices [n] = {1, . . . ,n} is a collection of subsets of [n] with
the property that if F ∈ � then all the subsets of F are also in � (including the empty set). An
element of � is called a face of �, and the maximal faces of � under inclusion are called facets.
We denote F (�) the set of facets of �. The simplicial complex with facets F1, . . . , Fm is denoted
by 〈F1, . . . , Fm〉. The dimension of a face F is defined as |F | − 1, where |F | is the number of vertices
of F . The dimension of the simplicial complex � is the maximal dimension of its facets. A simplicial
complex Γ is called a facet subcomplex of � if F (Γ ) ⊂ F (�).

A subset C of [n] is called a vertex cover of �, if C ∩ F 	= ∅ for all facets F of �. A vertex cover C
is said to be minimal if no proper subset of C is a vertex cover of �. Recently, vertex cover algebras
were studied in [6] and [7].

We denote by S = K [x1, . . . , xn] the polynomial ring in n variables over a field K . To a given
simplicial complex � on the vertex set [n], the Stanley–Reisner ideal, whose generators correspond
to the non-faces of � is well studied, see for example in [1,11] and [9] for details. Another squarefree
monomial ideal associated to �, so-called facet ideal, was first studied by Faridi [4]. The ideal I(�)

generated by all monomials xi1 · · · xis where {i1, . . . , is} is a facet of �, is called the facet ideal of �.
For a simplicial complex of dimension 1, the facet ideal is the edge ideal, which was first studied by
Villarreal [12].

Recall that the Alexander dual �∨ of a simplicial complex � is the simplicial complex whose faces
are {[n] \ F : F /∈ �}. Let I be a squarefree monomial ideal in S . We denote by I∨ the squarefree
monomial ideal which is minimally generated by all monomials xi1 · · · xik , where (xi1 , . . . , xik ) is a
minimal prime ideal of I . It is easy to see that for any simplicial complex �, one has I�∨ = (I�)∨ . Let
�c = 〈[n] \ F : F ∈ F (�)〉. Then I�∨ = I(�c), see [8].
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For any set U ⊂ [n], we denote u = ∏
j∈U x j the squarefree monomial in S whose support is U . In

general, for any monomial u ∈ S , the support of u is supp(u) = { j: x j | u}.

Remark 1.1. Let � be a simplicial complex on [n]. Then

G
(

I(�)∨
) =

{
u =

∏
j∈U

x j: where U is a minimal vertex cover of �

}
.

The following notion is important for our later discussion. Let I = (u1, . . . , um) be a monomial
ideal in S . According to [10], the monomial ideal I has linear quotients if one can order the set of
minimal generators of I , G(I) = {u1, . . . , um}, such that the colon ideal (u1, . . . , ui−1) : ui is generated
by a subset of the variables for i = 2, . . . ,m. This means for each j < i, there exists k < i such that
uk : ui = xt and xt | u j : ui , where t ∈ [n] and uk : ui = uk/gcd(uk, ui). In the case that I is squarefree,
it is enough to show that for each j < i, there exists k < i such that uk : ui = xt and xt | u j . Such an
order of generators is called an admissible order of G(I). Let σ = u1, . . . , um be an admissible order
of G(I). We denote by qu j ,σ (I) ⊂ {x1, . . . , xn} the set of minimal generators of (u1, . . . , u j−1) : u j .

It is known that if I is a monomial ideal with linear quotients and generated in one degree, then
I has a linear resolution. See for example in [13] an easy proof.

Remark 1.2. For an ideal which has linear quotients, there might exist several admissible orders.
For example, let I = (x1x2, x1x2

3x4, x2x4) ⊂ K [x1, x2, x3, x4]. Then σ1 = x1x2, x1x2
3x4, x2x4 and σ2 =

x1x2, x2x4, x1x2
3x4 both are admissible orders of G(I).

The following result relates squarefree monomial ideals with linear quotients to (non-pure)
shellable simplicial complexes. The concept non-pure shellability was first defined by Björner and
Wachs [2, Definition 2.1].

Theorem 1.3. (See [8, Theorem 1.4].) Let � be a simplicial complex and �∨ its Alexander dual. Then � is
(non-pure) shellable if and only if I�∨ has linear quotients.

2. Monomial ideals with linear quotients

In this section we prove some fundamental properties of ideals with linear quotients.
Let I ⊂ S be a monomial ideal with linear quotients and u1, . . . , um an admissible order of

G(I). It is easy to see that deg ui � min{deg u1, . . . ,deg ui−1} for i = 2, . . . ,m. In particular, deg u1 =
min{deg u1, . . . ,deg um}. But in general, this order need not be a degree increasing order. For example,
the ideal I = (x1x2, x1x2

3x4, x2x4) has linear quotients in the given order, but deg x1x2
3x4 > deg x2x4.

In the following lemma we show that for any ideal with linear quotients there exists an admissible
order u1, . . . , um of G(I) such that deg ui � deg ui+1 for i = 1, . . . ,m − 1. We call such an order a
degree increasing admissible order.

Lemma 2.1. Let I ⊂ S be a monomial ideal with linear quotients. Then there is a degree increasing admissible
order of G(I).

Proof. We use induction on m, the number of generators of I , to prove the statement. If m = 1, there
is nothing to show.

Assume m > 1 and u1, . . . , um is an admissible order. It is clear that J = (u1, . . . , um−1) has lin-
ear quotients with the given order. By induction hypothesis, we may assume that deg ui � deg ui+1
for i = 1, . . . ,m − 2 (if necessary we may reorder the generators u1, . . . , um−1 of J , and call them
u1, . . . , um−1 again). Assume that deg um−1 > deg um . Let j + 1 be the smallest integer such that
deg u j+1 > deg um . Since deg ui � min{deg u1, . . . ,deg ui−1} for i = 2, . . . ,m, one sees that j + 1 	= 1.
Now we show that u1, . . . , u j, um, u j+1, . . . , um−1 is an admissible order which is obviously degree
increasing.
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We need to prove that (u1, . . . , u j) : um and (u1, . . . , u j, um, u j+1, . . . , up−1) : up are generated
in degree one, for p = j + 1, . . . ,m − 1. Since deg um < deg uq for q = j + 1, . . . ,m − 1, we have
deg(uq : um) > 1. Since u1, . . . , um is an admissible order, for any r � j, there exists k � j such
that deg(uk : um) = 1 and uk : um | ur : um . This shows that (u1, . . . , u j) : um is generated in degree
one. Now let j + 1 � p � m − 1. It is clear that for any r � p − 1, there exists k � p − 1 such that
deg(uk : up) = 1 and uk : up | ur : up , since the ideal (u1, . . . , u j, u j+1, . . . , up) has linear quotients in
this order. It remains to show that there is h < p such that deg(uh : up) = 1 and uh : up | um : up . Since
u1, . . . , u j, u j+1, . . . , um is an admissible order and deg um < deg uq for q = j + 1, . . . ,m − 1, there ex-
ists k � j such that uk : um = xd and xd | up : um for some d ∈ [n]. Since u1, . . . , u j, u j+1, . . . , up is an
admissible order, there exists h < p such that uh : up = xb and xb | uk : up for some b ∈ [n].

We claim that xb | um : up . In order to prove this we first show that b 	= d. Suppose b = d. Then
we have xd = uk : um and xd = xb | uk : up . Hence degxd

uk = degxd
um + 1 and degxd

uk � degxd
up + 1,

where by degxd
u we mean the degree of xd in u. Therefore degxd

um � degxd
up , which is a contradic-

tion, since xd | up : um .
Now since xb = uh : up and xb | uk : up , we have degxb

uh = degxb
up +1 and degxb

uk � degxb
up +1.

On the other hand, since xd = uk : um and b 	= d, we have degxb
um � degxb

uk � degxb
up + 1 >

degxb
up . This implies that xb | um : up . �

If σ = u1, . . . , um is any admissible order of G(I), we denote by σ ′ = ui1 , . . . , uim the degree in-
creasing admissible order derived from σ as given in Lemma 2.1. The order σ ′ is called the degree
increasing admissible order induced by σ . Attached to an admissible order σ are the sets qu,σ (I) as
defined in the previous section. We have the following result.

Proposition 2.2. Let I be a monomial ideal with linear quotients with respect to the admissible order σ of the
generators. Then for all u ∈ G(I) we have

qu,σ (I) = qu,σ ′ (I).

Proof. Let σ = u1, . . . , um and σ ′ = ui1 , . . . , uim . Suppose u = uk in σ and u = uit in σ ′ . Let xd ∈
qu,σ (I), for some d ∈ [n], then there exists j < k such that u j : uk = xd . In particular, deg u j � deg uk .
According to the definition of σ ′ , u j comes before uit and hence xd ∈ qu,σ ′(I).

Conversely, let xd ∈ qu,σ ′ (I) for some d ∈ [n]. Then there exists an i j with j < t , such that
ui j : uit = xd . We may assume that j is the smallest integer with this property and ui j = ur in σ .

Suppose xd /∈ qu,σ (I). Then r > k and deg ur < deg uk according to the definition of σ ′ . Therefore
ur = xd v and uk = w v where v and w are monomials with deg w � 2 and xd � w . Since u1, . . . , ur is
an admissible order and k < r, there exists s < r such that us : ur = xb and xb | uk : ur = w (b 	= d).
Hence deg us � deg ur = deg ui j . Therefore us = uil with l < j.

It follows that degxb
us = degxb

ur + 1 � degxb
uk , degxc

us � degxc
ur � degxc

uk for any c 	= d,b, and
degxd

us � degxd
ur = degxd

uk + 1. If degxd
us < degxd

uk + 1, then we have us | uk , a contradiction.
Therefore degxd

us = degxd
uk + 1, and hence xd = us : uk = uil : uit , contradicting the choice of j. �

Let � be a simplicial complex with F (�) = {F1, . . . , Fm}. Then I� = ⋂m
i=1 P Fi where P Fi =

(x j: j /∈ Fi), see [1, Theorem 5.4.1]. It follows from [8, Lemma 1.2] that I�∨ = (u1, . . . , um), where
ui = ∏

j /∈Fi
x j . We follow the notation in [2]: if δ = F1, . . . , Fm is any order of facets of �, then we set

�k = 〈F1, . . . , Fk〉 and Rδ(Fk) = {i ∈ Fk: Fk − {i} ∈ �k−1} for any k ∈ [m].
We observe the following simple but important fact: � is shellable with shelling δ = F1, . . . , Fm

if and only if I�∨ has linear quotients with the admissible order σ = u1, . . . , um . Moreover, if the
equivalent conditions hold, then Rδ(Fk) = quk,σ (I�∨ ).

As an immediate consequence of Lemma 2.1, Proposition 2.2 and the observation above we redis-
cover the following well-known “Rearrangement Lemma” of Björner and Wachs [2, Lemma 2.6].

Corollary 2.3. Let δ = F1, . . . , Fm be a shelling of the simplicial complex �. There exists a shelling δ′ =
Fi1 , . . . , Fim of � induced by δ such that dim Fik � dim Fik+1 for k = 1, . . . ,m − 1. Furthermore we have
Rδ(F ) = Rδ′ (F ) for any facet F of �.
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It is known that the product of two ideals with linear quotients need not to have again linear
quotients, even if one of them is generated by linear forms. Such an example was given by Conca and
Herzog [3].

Example 2.4. Let R = K [a,b, c,d], I = (b, c) and J = (a2b,abc,bcd, cd2). Then J has linear quotients,
and I is generated by a subset of the variables. But the product I J has no linear quotients (not even
a linear resolution).

However, we have the following:

Lemma 2.5. Let I ⊂ S be a monomial ideal. If I has linear quotients, then mI has linear quotients, where
m = (x1, . . . , xn) is the graded maximal ideal of S.

Proof. We may assume G(I) = {u1, . . . , um} and u1, . . . , um is a degree increasing admissible order.
We prove the assertion by using induction on m.

The case m = 1 is trivial. Let m > 1. Consider the multi-set

T = {u1x1, . . . , u1xn, u2x1, . . . , u2xn, . . . , umx1, . . . , umxn}.
It is a system of generator of mI . If ui x j | ur xs for some i < r, then we remove ur xs from T . In this
way, we get the minimal set

T ′ = {ui x j: i = 1, . . . ,m, j ∈ Ai}
of monomial generators of mI , where A1 = [n] and Ai ⊂ [n] for i = 2, . . . ,m. We shall order G(mI)
in the following way: ukxl comes before ut xs if k < t or k = t and l < s. Now we show that
the above order σ of G(mI) is an admissible order. We define the order of the generators of
m(u1, . . . , um−1) in the same way as we did for mI . Then the ordered sequence τ of the generators
of m(u1 . . . , um−1) is an initial sequence of σ . Moreover, by induction hypothesis, τ is an admissible
order of G(m(u1, . . . , um−1)).

For a given j ∈ Am let J be the ideal generated by all monomials in T ′ which come before umx j
with respect to σ . It remains to be shown that J : umx j is generated by monomials of degree 1.

Let ukxl ∈ G( J ). If k = m, then ukxl : umx j = xl . If k < m, then we shall find an element ur xs ∈ G( J )
and t ∈ [n] such that ur xs : umx j = xt and xt | ukxl : umx j . Indeed since u1, . . . , um is an admissible
order of G(I), there exists q < m such that uq : um = xt and xt | uk : um . This implies that uqx j : umx j =
uq : um = xt . Since uqx j ∈ mI , there exists, by the definition of σ , a monomial ur xs ∈ G( J ) such that
ur xs | uqx j .

We claim that ur xs : umx j = xt and xt | ukxl : umx j . Notice that ur xs : umx j | uqx j : umx j = xt . If
ur xs : umx j 	= xt , then ur xs : umx j = 1, that is, ur xs | umx j which contradicts the fact that j ∈ Am . This
shows that ur xs : umx j = xt .

Since xt | uk : um , it is enough to show that xt 	= x j in order to prove that xt | ukxl : umx j . As-
sume that xt = x j . Since uq : um = xt , we have uq = xt u for some monomial u such that u | um . Since
deg uq � deg um , it follows that um = uw for some monomial w with deg w � 1 and xt � w . Hence
there exists some variable xd with d 	= t such that xd | w . But then xduq = xduxt | wuxt = umx j , con-
tradicting again the fact that j ∈ Am . �
Remark 2.6. The converse of the above lemma is not true. For example, let I = (ab, cd) ⊂ K [a,b, c,d].
Then mI = (a2b,ab2,abc,abd,acd,bcd, c2d, cd2) has linear quotients in the given order, but I has no
linear quotients.

Now we present the main theorem of this section.

Theorem 2.7. Let I ⊂ S be a monomial ideal. If I has linear quotients, then I has componentwise linear quo-
tients.
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Proof. By Lemmas 2.5 and 2.1, we may assume that I is generated by monomials of two different
degrees a and a + 1. We denote by I〈a〉 the ideal generated by the ath graded component of the
ideal I . Let G(I) = {u1, . . . , us, v1, . . . , vt}, where deg ui = a for i = 1, . . . , s and deg v j = a + 1 for
j = 1, . . . , t . By Lemma 2.1, we may assume that u1, . . . , us, v1, . . . , vt is an admissible order, hence
I〈a〉 has linear quotients. Now we show that I〈a+1〉 has also linear quotients.

We have I〈a+1〉 = m(u1, . . . , us) + (v1, . . . , vt). Let G(I〈a+1〉) = {w1, . . . , wl, v1, . . . , vt}, where
w1, . . . , wl is ordered as in Lemma 2.5. In particular, w1, . . . , wl is an admissible order. We only need
to show that (w1, . . . , wl, v1, . . . , v p−1) : v p is generated by a subset of the variables, for 1 � p � t .

First we consider v j : v p where j < p. Since u1, . . . , us, v1, . . . , vt is an admissible order of G(I),
there exist some u ∈ {u1, . . . , us, v1, . . . , v p−1} and d ∈ [n] such that u : v p = xd and xd | v j : v p . If
u ∈ {v1, . . . , vt} we are done. So we may assume u ∈ {u1, . . . , us}. Therefore, deg u = deg v p − 1. Since
u : v p = xd , we have degxd

u = degxd
v p + 1 and degxb

u � degxb
v p for any b 	= d. Since deg u < deg v p ,

there exists a variable xc with c 	= d such that degxc
u � degxc

v p − 1. Since xcu ∈ mI〈a〉 , one has
xcu = wk for some k � l. All this implies that degxd

wk = degxd
u = degxd

v p + 1 and degxb
wk �

degxb
v p for any b 	= d. Therefore wk : v p = xd and xd | v j : v p .

It remains to consider w j : v p . In this case w j = xbui for some i ∈ [s] and some b ∈ [n]. Since
u1, . . . , us, v1, . . . , vt is an admissible order, there exist some u ∈ {u1, . . . , us, v1, . . . , vt} and d ∈ [n]
such that u : v p = xd and xd | ui : v p . Therefore xd | w j : v p , since ui : v p | w j : v p . If u ∈ {v1, . . . , vt},
then we are done. So we may assume u ∈ {u1, . . . , us}. Then, as before, there exists a variable xc with
c 	= d such that xcu ∈ mI〈a〉 , degxd

xcu = degxd
u = degxd

v p + 1 and degxb
xcu � degxb

v p for any b 	= d.
This implies that xcu : v p = xd and xd | w j : v p . �
Corollary 2.8. If I ⊂ S is a monomial ideal with linear quotients, then I is componentwise linear.

We do not know if the converse of Theorem 2.7 is true in general. However we could prove the
following:

Proposition 2.9. Let I be a monomial ideal with componentwise linear quotients. Suppose for each component
I〈a〉 there exists an admissible order σa of G(I〈a〉) with the property that the elements of G(mI〈a−1〉) form the
initial part of σa. Then I has linear quotients.

Proof. We choose the order σ = u1, . . . , us of G(I) such that i < j if deg ui < deg u j or deg ui =
deg u j = a and ui comes before u j in σa .

We show that (u1, . . . , up−1) : up is generated by linear forms. If deg u1 = deg up , then there is
nothing to prove.

Now assume that deg u1 < deg up = b. Let l < p be the largest number such that deg ul < b. Then,
by our assumption, there exists an admissible order w1, . . . , wt , ul+1, . . . , up (which is an initial part
of an admissible order of I〈b〉), where w1, . . . , wt ∈ G(mI〈b−1〉).

Let j < p and suppose that deg(u j : up) � 2. Let m be a monomial such that deg(mu j) = deg up
and mu j : up = u j : up . Since mu j ∈ {w1, . . . , wt , ul+1, . . . , up−1} there exist w ∈ {w1, . . . , wt , ul+1,

. . . , up−1} and some d ∈ [n] such that w : up = xd and xd | u j : up because mu j : up = u j : up .
If w ∈ {ul+1, . . . , up−1}, then we are done. On the other hand, if w ∈ {w1, . . . , wt}, then w = m′ui

for some i � l and some monomial m′ . Since w : up = xd , one has degxb
w � degxb

up for all b 	= d.
Hence xd does not divide m′ , otherwise ui | up which contradicts the fact that ui, up ∈ G(I). Therefore
xd = ui : up and xd | u j : up . �

Let I ⊂ S be a monomial ideal. We denote by I∗ the monomial ideal generated by the squarefree
monomials in I and call it the squarefree part of I . Indeed I∗ = (u: u ∈ G(I) and u is squarefree). We
follow [5] and denote by I[a] the squarefree part of I〈a〉 . In [5, Proposition 1.5], the authors proved that
if I is squarefree, then I〈a〉 has a linear resolution if and only if I[a] has a linear resolution. Indeed
for the “only if” part one does not need the assumption that I is squarefree. We have the following
slightly different result.

Proposition 2.10. Let I be a monomial ideal in S. If I has linear quotients, then I∗ has linear quotients.
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Proof. Let u1, . . . , um be an admissible order of G(I). Assume I∗ = (ui1 , . . . , uit ), where 1 � i1 < i2 <

· · · < it � m. We shall show ui1 , . . . , uit is an admissible order of G(I∗) by using induction on m.
The case m = 1 is trivial. Now assume m > 1. It is clear that (ui1 , . . . , uit−1 ) is the squarefree

part of the monomial ideal (u1, . . . , uit−1), where u1, . . . , uit−1 is an admissible order. By induction
hypothesis ui1 , . . . , uit−1 is an admissible order of G((ui1 , . . . , uit−1)). Consider ui j : uit with j < t . Since
u1, . . . , um is an admissible order of G(I), there exists k < it and some d ∈ [n] such that uk : uit = xd
and xd | ui j : uit . Since ui j and uit are squarefree, we have xd � uit . On the other hand, since uk : uit =
xd , one has degxd

uk = 1 and degxb
uk � degxb

uit � 1 for any b 	= d. Hence uk ∈ G(I∗). �
Combining Proposition 2.10 with Theorem 2.7, we obtain:

Corollary 2.11. Let I ⊂ S be a monomial ideal with linear quotients. Then I[a] has linear quotients for all a.

Let � be a d-dimensional simplicial complex. We define the 1-facet skeleton of � to be the simpli-
cial complex

�[1] = 〈
G: G ⊂ F ∈ F (�) and |G| = |F | − 1

〉
.

Recursively, the i-facet skeleton is defined to be the 1-facet skeleton of �[i−1] , for i = 1, . . . ,d. For
example if � = 〈{1,2,3}, {2,3,4}, {4,5}〉, then

�[1] = 〈{1,2}, {1,3}, {2,3}, {2,4}, {3,4}, {5}〉 and �[2] = 〈{1}, {2}, {3}, {4}〉.
If � is pure of dimension d, then the i-facet skeleton of � is just the (d − i)-skeleton of �. Now
let Γ be a shellable simplicial complex with facets F1, . . . , Fm . It is known that any skeleton of Γ

is shellable, see [2, Theorem 2.9]. Since IΓ = ⋂m
i=1 P Fi where P Fi = (x j: j /∈ Fi), we have (IΓ )∨ =

(u1, . . . , um), where ui = ∏
j /∈Fi

x j . By Theorem 1.3 (IΓ )∨ has linear quotients. Hence m(IΓ )∨ and the
squarefree part of m(IΓ )∨ have linear quotients by Lemma 2.5 and Proposition 2.10. It is not hard to
see that the squarefree part of m(IΓ )∨ is the Alexander dual of IΓ [1] . Hence our discussions yield the
following:

Corollary 2.12. If Γ is a shellable simplicial complex of dimension d, then Γ [i] is shellable, for i � d. In partic-
ular, if Γ is pure, then any skeleton of Γ is again shellable.
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