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For given k and s let n(k, s) be the largest cardinality of a set whose pairs can 
be covered by s k-sets. We determine n(k, q*+q+ 1) if a PG(2, q) exists, 
k > q(q + 1)2, and the remainder of k divided by (q + 1) is at least &. Asymptotic 
results are also given for n(k, s) whenever s is fixed and k + cc. Our main tool is 
the theory of fractional matchings of hypergraphs. cl 1990 Academic Press, Inc. 

1. DEFINITIONS 

This paper is organized as follows. In this section we recall some detini- 
tions. The first part of the paper is devoted to the fractional matchings of 
intersecting hypergraphs. (The proofs can be found in Section 7 and 8). In 
the second part we apply the results to the following problem: How large 
a set can be if its pairs can be covered by s k-sets. 

A hypergraph H is a pair (V(H), E(H)), where V(H) is a (finite) set, the 
vertices or points, and E(H), the edge-set, a collection of subsets of V(H). 
If we want to emphasize that H contains multiple edges, then we call 
H a multihypergruph. G is a subhypergraph of H if V(G) c V(H) and 
E(G) c E(H). The dual of H, HT is obtained by interchanging the role of 
vertices and edges, i.e., V(HT) = E(H), and E(HT) = (E(p):pe Y(H)), 
where E(p) = {EE E(H) :p E E}. A hypergraph is an r-graph, or r-uniform, 
if all edges have r elements. The rank of H is maxi [El : E E E(H) >. The 
degree of a point p is deg,(p)=:)(E:EEE(H),pEE)I. The maximum 
degree, max deg,(p), is denoted by D(H). A hypergraph is regular if for all 
p E V(H) we have deg(p) = D. A matching &Z is a subfamily of pairwise dis- 
joint edges; the matching number v(H), is the maximum number of edges in 
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a matching in H. If v(H) = 1, i.e., if En E’ # 0 holds for all E, E’ E E(H), 
then H is called intersecting. A couer T is a subset of V(H) which meets all 
edges of H, and the covering number z(H) is the minimum size of T. An 
r-uniform hypergraph H is called a projective plane of order r - 1 if 
I V(H)1 = IE(H)l = r2 - r + 1 and every two edges intersect in exactly one 
element. Briefly, H is a PG(2, r - 1). Projective planes are known to exist 
whenever r - 1 is a power of a prime. An r-graph is a truncated projective 
plane (of order r - 1) if it is obtained from a PG(2, r - 1) by deleting a 
vertex p and all the lines through p. A TPG(2, r - 1) is the dual of the afline 
plane AG(2, r - 1). The notations LxJ and rxl stand for the lower and 
upper integer parts of the real x, respectively. 

2. FRACTIONAL MATCHINGS OF INTERSECTING HYPERGRAPHS 

A fractional matching of the (multi)hypergraph H is a non-negative 
function on the edges W: E(H) + R+, such that 

1 w(E)<1 
PEE 

holds for every vertex PE V(H). The value of W, lIwlI, is the total sum 
C w(E). The supremum of IlwIl, denoted by v*(H), is the fractional 
matching number of H. A fractional cover of H is a function on vertices, 
t: V(H) -+ R+, such that 

holds for every edge EE E(H). The value of t is lltll = I,, V t(x). The frac- 
tional covering number, r*(H), of H is the infimum of 11 tll. The calculation 
of T* and v* are dual linear programming problems, so their optima 
coincide, i.e., for all H we have 

v<v*=z*<z<rv . . . 

The value of z* is always a rational, and there are optimal fractional 
matching w:E(H)+Q+ and cover t: V(H) -Q’ with llwll = lItI =r*(H). 
In [Fii] the following theorem is proved. 

(2.1) Suppose that H is an intersecting hypergraph of rank r. Then 
either z*(H) < r - 1, or H is a finite projective plane of order r - 1. 

In the latter case r*(H) = r - 1 + (l/r). In general, one cannot improve 
(2.1), because if H is a hypergraph obtained from PG(2, r - 1) by deleting 
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a line, then z*(H) = r - 1. There is another intersecting hypergraph G with 
r*(G) =Y- 1, the so-called twisted projective plane. Then 1 V(G)1 = 
/E(G)/ = r2 - r, it is r-uniform, every degree is r, and the edges cover all 
pairs. Such a hypergraph is known to exist only for r < 4 (see, e.g., in [F]), 
and it is proved that its existence implies that r or r -2 is a square. 
(Further constraints about the existence of twisted planes can be found in 
CLMVI.) 

(2.2) THEOREM. Suppose that H is an intersecting hypergraph of rank 
q + 1. Then either 

(i) H is a PG(2, q), and then z*(H) = q + l/(q + 1), or 

(ii) H contains a truncated projective plane TPG(2, q), i.e., 
TPG(2, q) s E(H), and then z*(H) = q, or 

(iii) H is a twisted projective plane, and then t*(H) = q, or 

(iii/a) H contains a twisted projective plane, and then z*(H) = q (in 
this case q = 2), or 

(iv) z*(H)<q- l/(q2+q- 1). 

The proof of this theorem is postponed to Section 7. Let E = .Qq + 1) 
denote the largest real such that in (iv) one can write z*(H) < q - E. Delete 
three nonconcurrent lines of a PG(2, q). The obtained hypergraph F has 
fractional matching number z*(F) = q- 1/(2q - 1). Hence in this case 
ad 1/(2q - 1). It is known that s(3) = 4 (see[CFGG]). 

(2.3) Conjecture. For r > 4, E(r) > 1/(2r - 3). 

Later we will see some partial evidence that E(r) = O( l/r). 
We determine the maximum of z * for another class of hypergraphs. 

Define 

t*(s) = max{z*(H):H is intersecting, 1 V(H)1 G s}. (2.4) 

It is not difficult to see that 

t*(42+q+ l)<q+ l/(q+ l), 

and here equality holds iff a PG(2, q) exists. (This was proved, e.g., in 
[AKL, PSI). We will use the following improvement of this statement. 

(2.5) THEOREM. Let H be an intersecting hypergruph over q2 + q + 1 
elements (q an integer). If H does not contain a PG(2, q) as a subhypergraph 
then T*(H)<q+(q-l)/(q2+q-1). 
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If we replace a line L of a PG(2, q) by a superset L u 1x1, where 
XE V(PG(2, q)) - L, then for the obtained intersecting hypergraph F we 
have equality in (2.5). So the upper bound in Theorem (2.5) could not be 
improved in general. (To see that z*(F) = (q3 + q2 - l)/(q’+ q - 1) one can 
consider the fractional matching ~1, 

w(E) = (4- Mq2+q- 1) if .ueE, E#Lu {x> 

4/(4*+4-l) otherwise, 

and fractional cover t, 

with values 

t(P) = 
(4-Mq2+q- 1) if pEL 

q/(4* + 4 - 1) if PE V(F)-L, 

llwll = lla) 

3. COVERING OF PAIRS BY A SMALL NUMBER OF SUBSETS 

C(n, k t) 
pairs of an 
proved that 

denotes the minimal number of k-sets required to cover all 
n-set. For fixed k, and for n + co, Erdijs and Hanani [EH] 

(3.0) 

This limit theorem easily follows from the following theorem of Wilson 
[W]. For all n > no(k) if (I;)/(:) and (n - l)/(k - 1) are integers then a 
Steiner system S(n, k, 2) exists. But the lower bound in (3.0) is very poor 
if n is not much bigger than k. Mills CM793 determined the solution of 
C(n, k, 2) = s for all s up to 12. For s = 13 he [M84] and Todorov [T] 
determine all (n, k) pairs with C(n, k, 2) = 13, except the pairs (28,9) and 
(41, 13) which are undecided. 

Suppose s is given, and let n(k, s) = max{ n: C(n, k, 2) < s}; i.e., n(k, s) is 
the largest size of a set whose pairs can be covered by s k-sets. In the 
following theorem T*(S) was defined in (2.4). 

(3.1) THEOREM. For all s and k one has 

z*(s) k-s < n(k, s) d T*(S) k. 

For any given s equality holds for inf;nitelS~ many k. 
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Mills CM793 also proved that lim, _ m n(k, s)/k exists and equals to its 
maximum. He has determined this limit for s < 13. With our notations his 
results is the following: 

s 1 2 3 4 5 6 7 8 9 10 11 12 13 
z*(s) 1 1 ; 5 ; 2 ; y $ ; 14 5 3 4 13 

Some of his result (s < 6) was rediscovered in [SVZ]. 

Proof of (3.1). Considering the dual problem we obtain 

(3.2) PROPOSITION. n(k, s) = max{ IE(H)I: H is an intersecting (multi)- 
hypergraph over s elements with maximum degree at most k). 

Then the upper bound follows from the fact that for all hypergraphs 

IE(H)I <z*(H) D(H). (3.3) 

(Indeed, w(E) = l/D is a fractional matching with value IE(H)I/D.) 
To prove the lower bound let G be an intersecting hypergraph with 

1 I/(G)1 <s, r*(G)=rT(s). We may suppose that IE(G)I < I V(G)/ ds (see 
[Fii], or later (7.4)) Let w: E(G) + R+ be an optimal fractional matching 
of G. Replace every edge E of G by L w(E) k J copies. We optain a multi- 
hypergraph H: 

n(k s) 2 I-W-U 

=6~~G)Lw(E)kJ>C(~(E)k-1)~~:(~)k-~. I 

In the case s = q2 + q + 1 if a PG(2, q) exists, (3.3) and (2.5) imply much 
more. We will state our main result in Section 5 after some preparations. 

4. GENERALIZED r-COVERS 

Let H be an intersecting hypergraph, r a non-negative integer, 0 < r 6 q. 
The pair of (multi)hypergraphs (B, L) over V(H) is a generalized r-cover of 
H if the following holds 

(i) L is a subset of edges of H (with multiplicities) 

(ii) B u H is intersecting (i.e., B u H u L is intersecting), 

(iii) IEW 2 IEW)l, 
(iv) E(B) n E(L) = 0 (i.e., an edge of H cannot appear in both B 

and L), 

(v) degdx) d deg,(x) + r. 
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The value of the r-cover is v,(B, L) = [E(B)1 - I,?(L)/. Finally, v,(H) = 
max{v,(B, L): (B, L) is a generalized r-cover of H}. 

In this section H will be a finite projective plane P of order q. Let v,(q) = 
max(u,(P): P is a projective plane of order q}. 

(4.1) We have u,(q) 2 rq - q + r. 

Proof. We give a construction. Let L, be a line, {pi, . . . . pr} c L, an 
r-element set. Then define L as (q-r) copies of LO, and let E(B) = 
{LEE(P):L#L~, Ln (~5, . . ..pr) #0>. I 

(4.2) We have v,(q)brq for all 0 < r 6 q. 

Proof Every set BE E(B) has at least q + 1 elements, so we have 

r(q2 + q + 1) 2 1 (deg,(x) - deg,(x)) 

= c IBI- c IL1 ~(q+l)(IE(B)I-lE(L)I). I (4.3) 
BE E(B) LEE(L) 

(4.4) THEOREM. Zf r 2 &, then u,(q) = rq - q + r. 

For the proof we need a new definition and a lemma. A set B is a 
blocking set of the hypergraph H if it intersects all edges but does not 
contain any. The investigation of the blocing sets of block designs was 
initiated by Pelikan [PI. He observed that there is no blocking set T of the 
projective plane P of order q < 2, and for q > 3 one has 1 TI > q + 1 + m. 

(4.5) (Pelikan [Pe], Bruen [B]) Suppose qa 3 and 1 d ITn LI <q+ 1 
holds for all line of a PG(2, q). Then 1 T[ 2 q + 1 + &. Moreover if equality 
holds then T induces a Bear subplane. 

That is, the system {L n T: L is a line, 1 L n TI > 1 } is a projective plane 
of order &. 

Proof of (4.4). Let (B, L) be an r-cover of P. If B contains a line, L,, 
of P then by definition we have 

v,(B, L) = IEP)l - IW)I 

< 1 + 1 max(0, degB(X) - deg,(X)} 
-YELO 

<l+(r-l)(q+l). (4.6) 

If B does not contain any line, then I BI 2 1 + q + & holds for all BE E(B), 
by (4.5). Hence we have from (4.3) that 

r(q*+q+l)~(q+l).u,(B,L)+ c W-q-1) 
BE E(B) 

2 (4 + 1 + ,,h, v,(B, L). (4.7) 
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This implies 

rq + r - r& > u,(B, L). 

The left hand side is less than rq + r - q for r > &. 1 

The determination of o,(q) for 1 6 r < & seems to be very difficult. The 
following example shows that u,(q) can be much larger than the lower 
bound in (4.1). 

(4.8) EXAMPLE. Let P be a Desarguesian projective plane of order q, 
where & is an integer. Let B,, . . . . B 4-~+ i be a decomposition of V(P) 
into Baer subplanes. (Such a decomposition exists, see [Br, Y].) Let L,, be 
a line and let A= {A,, . . . . A,-&+’ ) be an intersecting family on L, such 
that the maximum degree D(A) <&( 1 + o(1)). (It is easy to prove that 
such a family exists.) Define 

E(B)= {AiuBi:l<i<q-&+l) 

E(L) = D(A) copies of L,. 

Then (B, L) is a generalized l-cover of P with value q -2 &+ o(A). 
Hence 

u,(q) 3 rq - 2r(Ji + 4JG)). 

(4.9) COROLLARY. u,(3) = 1, and u,(4) = 2. 

Proof: u,(3) > 1 follows from (4.1). v,(4) > 2 is given by (4.8) with the 
following modifications. Let B,, B,, B, be three disjoint Bear subplanes of 
GF(2,4) (IB, I = 7) and let L, = {x1, . . . . x,} be an arbitrary line. Suppose 
that BinLO= for i= 1,2 and B,nL,= {x3,xq,x5). Then the 
following family is a generalized l-cover with value 2. B = (B, u (x2, x3 }, 
B, u {xc& b}, L = {L,}. 

To obtain an upper bound for u,(q), the proof of (4.4) gives that if (B, L) 
is a generalized l-cover with B not containing any line, then o,(B, L) < 1 
by (4.6). ui > 1 implies IBI > ui, i.e., lB1 > vi + 1. Hence (4.7) implies 

i.e., u,(3)< 1 and 0,(4)<2. 1 

Call a generalized r-cover (B, L) of P optimal if u,(B, L) = u,(q). 

(4.10) PROPOSITION. There exists an optimal r-couer (B, L) of P such 
that every line L E L has multiplicity m(L) at most L& J(q - r + 1) - 1. 
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Proof: If v,(q) = rq + r- q, then Example (4.1) is optimal, and then 
max m(L)=q-r. Consider the case v,(q)> rq+r-q. Then r < &9 bY 
Theorem (4.4). Moreover, (4.6) implies that B does not contain any line. 
Hence (4.7) gives that 

r(q2+q+1)~(q+1)u,(q)+ 1 (14-q-I) 
BEB 

>(4+l)(qr+r-q)+rJ;rll~l, 

implying L&](q - r + 1) > IBI. Finally, clearly, m(L) < IL/ < IBI. 1 

5. THECASEOFS=~'+~+I 

(5.1) THEOREM. Suppose that a PG(2, q) exists and s=q2 +q+ 1. Let 
k=(q+l)a+r, where O<r<q. Then if a is large enough (a>q2+q- 
rq- 1) we have 

n(k, s) = (q2 + q + 1) a + u,(q). 

This is a large improvement on a result from [To] if k tends to infinity. 
Theorems (3.1) and (2.5) imply 

(5.2) COROLLARY. If a PG(2, q) exists then 

n((q+l)a,q2+q+l)=a(q2+q+1) 

and 

hold for all integers a > 0. 

(5.3) COROLLARY. We have 

n(4a+ I, 13)= 13a+ 1 if aa8, 

n(4a+2,13)= 13a+5 if a>5, 

n(5a+l,21)=2la+2 if a> 15, 

n(5a+2,21)=2la+6 if aall, 

n(5a+3,21)=21a+ll if a37. 
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This corollary follows from (5.1) and (4.4) for r 2 &. In the remaining 
cases r= 1 and o,(3)= 1, u,(4) =2 follow from Corollary (4.9). 

Proof of Theorem (5.1). First we prove the lower bound. Suppose that 
(B, L) is an optimal r-cover of P, and let m(L) be the multiplicity of 
the line LEL, M=max{m(l):L~L}. Suppose that k=a(q+l)+r, 
(0 Qr < q), where UBM. We may suppose that M< L&](q- r+ 1) by 
Proposition (4.10). Define the following hypergraph H with the vertex set 
V(P): E(H) = E(B) u {(a-m(L)) L: L E E(P)}, i.e., the multiplicity of a 
line from P is (a - m(L)). Obviously, D(H) < k, H is intersecting, and 

IE(H)( = (q* + q + 1) a + v,(B, L) = (q’ + q + 1) a + u,(q). (5.4) 

(5.4) and (4.1) imply that for a > q - r one has 

n((q+l)u+r,q*+q+l)>/(q*+q+l)u+rq+r-q. (5.5) 

Proof of the upper bound: Let H be an intersecting multihypergraph 
over q* + q + 1 elements. According to Theorem (2.5) we distinguish two 
cases. 

(i) If r*(H) <q + (q - l)/(q* + q - l), then (3.3) and (5.5) imply that 

IE(H)I < ((q + 1) a + r) r*(H) < (q* + q + 1) a 

+rq+r-q<n((q+ l)u+r, q2+q+ 1) 

for a > q(q + 1 - r) - 1. 

(ii) If r*(H)>q+ (q- l)/(q’+q- 1) then a finite plane P is a 
subhypergraph of H. Define the (multi)hypergraphs B and L as follows: 
Denote the multiplicity of a line LEE(P) by m(L). Then E(L) consists of 
the lines of P with multiplicities max{O; u-m(L)}. E(B) consists of the 
edges of H different from the lines and with the lines L of P with multi- 
plicities max{ 0; m(L) - u}. Then (B, L) is a generalized r-cover of P, hence 

bW)I =u(q*+q+ 1)+ IE(B)I - P(L)/ <u(q2+q+ l)+u,(q). 1 

6. DIRECTION OF FURTHER RESEARCH 

The method of the previous chapters is a powerful tool to determine 
n(k, s) asymptotically, whenever we are able to calculate z:(s). E.g., 
Theorem (2.2) easily implies the case s = q* + q. 
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(6.1) THEOREM. Let H be an intersecting hypergraph over q2 + q 
elements. Then either 

(i) H contains a TPG(2, q), or 

(ii) H contains a twisted plane, or 

(iii) r*(H) < q - 1/3(q + 1)3. 

The proof of (6.1) is analogous to the proof of (2.5) (see Section 9). 
Suppose that a TPG(2, q) or a twisted plane on q2 + q vertices exist, let 
k > 10q4, and write k in the forms k=a,q+r, =a,(q+ l)+r,, where 
Odr,<q, O<r,<q+l. Then (6.1) and (3.3) imply that 

4% q2 + 4) = max{alq2 + vi,(q), a2(q2 + 4) + $2(q)}, (6.2) 

where v:(q) is the maximum value of a generalized r-cover in a TPG(2, q) 
(in the case cx = 1) or in a twisted plane (in the case a = 2). 

It seems to be hopeful to determine TT(q2 + q + 1 + a) if /a( is small and 
a PG(2, q) exists. 

(6.3) Conjecture. We have 

eyq2+q+2)Gq+2/(2q+ l), 

and here equality holds if a PG(2, q) exists. 

Our method also can be extended to the following generalization of 
n(k, s) (also investigated in [M79]). Recall that C(n, k, t) denotes the mini- 
mal number of k-sets required to cover all t-sets of an n-set. For large n 
Rod1 [R] proved that 

<C(n,k,t)<(l+o(l)) 

We are interested in the case when k is large. Let nr(k, s) = 
max{n: C(n, k, t) <s}, i.e., the largest size of a set whose t-sets can be 
covered by s k-sets. The followings are simple generalization of (3.2), (3.1). 
H is t-wise intersecting if E, n . .. n E, # 0 for all t edges of H. 

(6.4) PROPOSITION. nr(k, s) = max{ /E(H)1 :H is a t-wise intersecting 
multihypergraph over s elements with maximum degree at most k). 

Let z*(s, t) = max{z*(H):H is t-wise intersecting over s elements}. 

(6.5) PROPOSITION. z*(s, t) k -s < n,(k, s) < z*(s, t) k, and here equality 
holds for infinitely many values of n. 
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7. PRWF OF THEOREM (2.2) 

A hypergraph H is called z*-critical if z*(H’) < z*(H) holds for all sub- 
hypergraphs H’; i.e., we cannot delete an edge without decreasing the value 
of z*. Let w  be an optimal fractional matching of the hypergraph H. The 
support T of w  is the set of vertices p for which CpeE w(E) = 1, i.e., the set 
of saturated vertices. The following lemma easily follows from the basic 
properties of linear programming. 

(7.1) LEMMA. (see in [FSS]) Let H be r*-critical and T be a maximal 
support. Then 1 E(H) 1 d 1 TI . 

This lemma implies, e.g., that if H is r*-critical of rank r then 

lHH)I d I W-VI, (7.2) 

IE(H)I d VT*, (7.3) 

and if equality holds, then V(H) = T. We will need the following 
sharpening of (7.1). 

(7.4) LEMMA. Let H be z*-critical and T a maximal support. Then the 
characteristic vectors of En T( E E E(H)) are linearly independent in R T. 

Proof Let v(E) denote the characteristic vector of En T, i.e., 

if XET~E 
if XGT-E 

Suppose on the contrary that one has reals H(E) such that 
CE a(E) v(E) = 0. Suppose that CE M(E) 2 0. Let z be a real, and w  be an 
optimal fractional matching with the maximal support T. Then w(E) >O 
for all edges. Define 

w(E,z)=w(E)+zcr(E). 

This is a fractional matching of H if IzI is sufficiently small with value 
II w[I + z C CC(E). Start with z = 0 and increase it until we hit a constraint 
either of the type 

w(E, z) 2 0 

or of the type 
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where now x & T. In both cases we get a contradiction to one of the earlier 
constraints (i.e., that H is t*-critical, and T is maximal). 1 

(7.5) LEMMA. Let H be an arbitrary hypergraph and w: E(H) + R+ an 
optimal fractional matching, t: V(H) + R+ an optimal fractional cover. 
Suppose that for some p E V(H) we have t(p) > 0. Then Cpc E w(E) = 1, i.e., 
p is saturated by w. 

This is a well-known lemma in linear programming. 

Proof: Let s(x) = CrcE w(E). Then we have 

WC t(x)(l -s(x,,=~ t(X-11 t(x) w(E) 
I E E 

<z*-Cw(E)=O, 
E 

i.e., 1 -s(x) = 0 whenever t(x) > 0. 1 

We will prove Theorem (2.2) in the following form. 

(7.6) THEOREM. Zf H is T*-critical, intersecting, and (q + l)-uniform and 
T*(H)=q-& where O<E< l/(q’+q- I), then H is either a truncated or a 
twisted projective plane. 

The next step of the proof requires the following 

LEMMA. Zf T is a (q + 1)-element set and it intersects all edges of a 
twisted plane H of order q, q >, 3, then TE E(H). 

Proof: Suppose that T does not contain any edge of H. Let 
m=max{JTnEl:EEE(H)), IEO n TI = m. Let XE E,\T. There are q 
disjoint edges of H through x which are pairwise disjoint outside of x. 
This implies that 

i.e., m Q 2. For q > 3 there exists an x E E,\T such that all the q + 1 edges 
through x are disjoint outside of E,\T. Hence I&, n TI = 1. This is a 
contradiction, because there is no (q + l)-element set intersecting every 
edge in a singleton. 1 

Proof of (2.2)from (7.6). Let now H be an arbitrary intersecting hyper- 
graph of rank q + 1 with T* = q -8. Deleting edges we obtain a z*-critical 
subhypergraph H’ of H with t*(H)=r*(H'). If H’ is not (q+ 1)-uniform 
we can add extra points of degree 1, obtaining Hz. Then Theorem (7.6) 
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implies that Hz is one of two extreme cases. Neither of them has vertex of 
degree 1, hence H’ = H2. In the case H’ is a twisted plane and q > 3, we 
obtain that H’ = H, because if a (q + 1)-element set T intersects all the 
edges of H’ then T E E(H’ ) by the above lemma. 1 

The rest of this section is devoted to the proof of (7.6). Let w  be an 
optimal fractional matching of H with a support T of maximal size. As H 
is critical we have 

w(E) > 0 for all edges E E E(H ). (7.7) 

For a vertex x E V(H) define S(X) = C,, E w(E). Then 0 < s(x) < 1. Let E, 
be an arbitrary edge, x E E,. We have 

s(x) + q a c 0) = c w(E)IEn Eo I J’EEO E 

=z*(H)+qw(E,,)+ c w(E)(lEnE,I - 1). (7.8) 
E#Eo 

This implies that 

(7.9) 

holds for all x E E. E E(H). We can improve on (7.9) if deg(x) <q. Fix x 
and add up (7.9) for all x E E0 E E(H). We obtain 

d 
4 (s(x) + E) 2 s(x), 

i.e., S(X) G dc/(q - d). Then (7.9) implies that 

& 
&),- q-d(x) ’ w(Eo) (7.10) 

holds for x E E, if deg(x) = d(x) < q. For this x 

(q- l)Ead(x)EaS(x). (7.11) 

Divide V(H) into three parts: T is the set of saturated vertices, 
A={xEV(H)-T: deg(x)<q}, B={xEV(H)-T: deg(x)aq}. The 
inequality (7.10) implies that 

deg(x) 3 q (7.12) 
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holds for each point x E Tu B. If En A # l;r7 for an edge E E E(H) then we 
have 

lEnAI = 1. (7.13) 

Indeed, as we used in (7.8) we have 

z*=q-&< 1 s(x)<IE-AI+ C s(x). 
XEE XcEnA 

However, by (7.11), for x E A one has S(X) < E(q - 1 ), so the right-hand side 
is not larger than 

(q+l)-IEnAl(l-(q-l)&), 

i.e., 

IEnAl<L(l+e)/(l-(q-l)s)J=l. 

Let d= {EeE(H):AnE#@}), IdI =a. Now (7.13) implies that 

Our next claim is 

1 s(x) 6 Ea. 
i E A 

(7.14) 

IdI < 2q. (7.15) 

Indeed, (7.9) and (7.10) imply that 

Using IE(H)I < (q+ l)(q- E) (by (7.3)) and the fact that E < 1/(3q- 1) we 
obtain (7.15). 

(7.16) PROPOSITION. [TuBI =q*+q. 

ProojI The lower bound for ) Tu BI follows from (7.14) and from 
(7.15). 

/TuBI> 1 s(x)=(q+l)r*- 
XET”B .LA s(x) 

>(q+l)(q-E)-&a=q*+q-c(q+l+a)>q’+q-1. 
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To prove an upper bound for I Tu B( start again with the inequality 
ILEES(X) > r* + qw(E) and add it up for all edge E. We obtain 

Cdx)deg(x)> IE(H)I ~*+p*. 

Substract C deg(x) = (q+ l)IE(H)I from both sides, we have after 
rearranging that 

IE(H)I(l +E)-qT* s c deg(x)(l -s(x)). 
.XE i’(H) 

(7.17) 

Continue it, using (7.12); we have 

2 1 deg(x)(l -@))a q C (1 -S(X)) 
IE TUB XETVB 

=q /TuBI- 
( 

c s(x) >qlTuBJ-q(q+l)z*. 
> 

(7.18) 
XCTLJB 

Rearranging between the extreme sides of (7.17) and (7.18) we have 

(7.19) 

Using (7.3) we have 

q*+q+l-&Z- ?a ,TvBl, 

implying I Tu BI < q* + q in the case E > 0. If E = 0 and IE(H)[ < q2 + q - 1 
then again (7.19) implies that ITu BI <q* + q. Finally, if z* = q and 
IE(H)I=q*+q=(q+l)z*, then by (7.2) we have that I’(H)= T, 
i.e., A = B= 0, so the obvious ITI 6 (q + 1) z* inequality implies the 
proposition. [ 

Using the above Proposition (7.16) and (7.17) we improve on (7.15) by 

(7.20) PROPOSITION. I &‘I G q - 1. 

Proof If E = 0 then T = V(H) so d = 0. We may suppose that E > 0 
and so IE(H)I < q2 + q. From (7.17) we have 

IE(H)I(l +E)-qqt*> 1 deg(x)(l -s(x)) 
x~TuB 

+ c deg(x) (1 -s(x)). 
x E A 

(7.21) 
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Here 

1 S(X) 

=q q2+q-(q+1)z*+ c s(x) 
i E A > 

=(q2+qb+q 1 s(x). 
J E A 

Then (7.21) implies 

~E(H)~(l+~)-q~+qe~q~e+q~+ c de&)+ c (q-@))s(x) 
x E A 

B q2& + qE + a. 

XE A 

Then we have 

A corollary of (7.20) is 

-,E;“B (1 -S(X))G%E. 

Indeed, 

(7.22) 

,cF”B (1 -dx))=q 2+q- (4+l)l*- c s(x) <(q+l)E+uE. 
I E A 

Another corollary of (7.16) and (7.22) is 

(7.23) COROLLARY. rf z* = q then 1 TI = 1 V(H)1 = q2 + q. 

Indeed by (7.7) and (7.10) we have d = 0, implying Tu B= V(H). 
Then (7.22) gives that B= 0. 

(7.24) CLAIM. 1f deg,(x) 2 q + 1 for all XE Tu B then H is a twisted 
plane. 

Prooj We have 

(q’+qNq+l)G c deg(x)=CIEn(TuB)l~(q+l)IE(H)I, 
rsTvB E 

582a/54/2-9 
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which implies that 1 V(H)1 = IE(H)I = q2 + q, and H is (q + 1)-regular. Let 
Y be the set of pairs covered at least twice by E(H). Then every edge E 
contains exactly one member of 9, because 

c IE~~l-~=(~~l~~~l)-(l~(H)l-1 
FEE(H)- {E} 

= (1 deg(x)-I)-(q’+q-l)=l. 
‘E E 

This implies 131 Q $IE(H)I = $(q’+ q). On the other hand every point is 
covered by u Q, hence 191 = $(q2 + q), and it is a matching. Then a simple 
counting shows that E(H) covers every pair exactly once except the pairs 
in 9 are covered twice. Shortly, H is a twisted plane. 1 

(7.25) PROPOSITION. IfxieEi, Ei~E(H)for i= 1,2 and IE,n E,I > 1, 
then 

w(E,) + wb%) 6 
2s + S(XI) + s(x2) 

q+l . 

Here E, #E, but x1 =x2 is allowed. 

Proof. (7.8) implies that 

+I) + q-z* 3 qw(E,) + w(E2), 

and here the roles of E, and E, can be exchanged. Adding up these two 
inequalities we obtain (7.25). 1 

From now on we suppose that q >, 3. (In the case q = 2 we can use the 
fact that ~(3) = i; see (2.3).) 

Let Q = (xg V(H):deg,(x) = q} and define b= (EEE(H):E~Q#@}. 
By definition Q c Tu B. By (7.24) we may suppose that 

(7.27) PROPOSITION. lJ dc TUB. 

Proof Indeed, if x E E n Q, EE E(H), then S(X) 2 1 - 2q-s by (7.22). 
Then by (7.9) we have 

w(E)=s(x)- c 
.xeF, EfF 

w(F)Zs(X)-(q-l)‘-. 
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These imply that 

1 3q-1 
W(E)>---& 

4 4 
(7.28) 

On the other hand if En A # @ then by (7.10) we have w(E) d E, a 
contradiction to (7.28). 1 

Until this point we used only that 0 <E < 1/(4q- 1). However, in the 
next steps we really need that E < l/(q’ + q - 1). 

(7.29) LEMMA. Every two edges of d intersect in exactly one element. 

Proof Suppose on the contrary that Ei E d with xi E Ej n Q for i = 1,2 
such that IE, n E2 1 > 1. We will get a contradiction in three steps. First we 
suppose that xi = x2 = x. By (7.22) we have 

s(x) z 1 - 2qE. (7.30) 

On the other hand (7.9) and (7.25) give 

s(x)<(q-2)----- 
s(x) + G + 2s + 2s(x) 

4 q+l ’ 

which implies that 

s(x) <; (q? + q - 2). (7.31) 

Now (7.30) and (7.31) imply that F 32/(q2+ 5q-2), a contradiction. 
As a second step we have 

(7.32) CLAIM. Zf deg,(p) = q then s(p) = 1. 

Proof If E =0 then T= V(H) by (7.23), so there is nothing to prove. 
Suppose that E > 0. Denote the edges through p by E,, . . . . E,. By the above 
part of the proof of (7.29) these edges are disjoint outside p. Let 
r : V(H) -+ R + be an optimal fractional cover. Then 

q+&t(x)= i -(q-l)Q)kq-(q-l)t(p). 
i= 1 

We obtained that t(p) B .s/(q - 1) > 0. Then Lemma 7.5 implies s(p) = 1. 1 
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Proof of (7.29) (Conclusion). Suppose now that x1 # x2. Instead of 
(7.30) we have s(xj) = 1 by (7.32). Again (7.9) gives 

l+E 
l=s(xi)<(q-l)- q + w(4), 

yielding 

l-(q-l)& 
< W(Ej). 

4 

Apply (7.25), we obtain 

21-(q-l)E 2 + 2E 

4 
< w(E,) + w(E,) < - 

q+l’ 

a contradiction if E < l/(q* + q - 1). 
ForapointxEQdefineC(x)=TuB- u{E-{~}:~EEEE(H)).T~~~ 

is x E C(x), C(x) c Tu B and it consists of those points which cannot be 
reached from x by one step. Clearly, IC(x)l = q and 

IC(x)nElQ 1 for all EE E(H). (7.33) 

Indeed, (7.33) holds for the edges E if x E E, by definition. If x 4 E then let 
E 1, . . . . E, denote the edges through x. As Ei - (x} are pairwise disjoint and 
E meets each of them, only at most one point of E can lie outside u Ei. 

This proof also gave that 

[C(x) n El = 1 if EE&. (7.34) 

(7.35) LEMMA Suppose x, YE Q. Then either C(x) = C(y) or 
C(x) n C(Y) = 0. 

Proof. If y E C(x) then all edges F through y intersect C(x) only in y by 
(7.34). Hence 

C(x)n(u {F- {y}:y~FWW})=0, 

i.e., C(x) c C(y). If y 4 C(x) then the q edges through y cover the points of 
C(x), so C(Y) n C(x) = 0. I 

Suppose that the collection {C(x):x E Q} consists of s sets C,, . . . . C,. 
These are disjoint q-sets and we have Q c u C;. Hence 

IQ1 d w  (7.36) 
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Let [E(H)/ = q2 + q - m. We have 

(q2+q-m)(q+l)=C14a c deg(x)b(q+l)(q’+q)-IQI. 
XCTUB 

This implies 

IQ1 Bm(q+ 1). (7.37) 

Now (7.36), (7.37), and (7.26) give 

sam+l. (7.38) 

(7.39) CLAIM. E =O. 

ProoJ Suppose E > 0. Then by (7.33) we have 

-rFc ‘tx)=C w(E)IEn Gil <T* = ICil -&. (7.40) 
E 

So Gin B# 121. AS the Cls are pairwise disjoint we get that (B( 2 s. Apply- 
ing (7.1) to H we have 

q2+q-m= IE(H)I < ITI <q2+q-s. 

This contradicts (7.38). 1 

From now on we suppose that E= 0. As in this case every point is 
saturated, (7.40) implies that 

for all EEE(H) one has /En Gil = 1. (7.41) 

(7.42) CLAIM. m =q. 

ProoJ Suppose first that m < q. Then (7.41) implies that the charac- 
teristic vectors vi of Ci (1~ i < m + 1~ s < q + 1) are linearly independent 
together with the characteristic vectors v(E) (EEE(H)). Indeed, suppose 
on the contrary that for some cli and a(E) reals we have 

m+l 
1 aivi + C a(E) v(E) = 0. (7.43) 

i= 1 E 

Consider the scalar product of (7.43) with vi. We obtain that 

(7.44) 
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holds for all 1 < j 6 m + 1. Now multipy (7.43) by the characteristic vector 
of V(H). We obtain 

q c c(j + (q + 1) c cr(E) = 0. 
j= 1 

(7.45) 

Now (7.44) and (7.45) imply that CI, = ... =a,+, =O, and 

1 a(E) v(E) = 0. 
E 

But the vectors v(E) are linearly independent by Lemma 7.4. So we have 
proved that all of these vectors are linearly independent, hence 
(E(H)1 + m + 1 < q* + q, a contradiction. 1 

If E(H) = q* then every degree is exactly q. So we have obtained that H 
is a q-regular intersecting hypergraph over q2 + q elements, any two edges 
and C, , . . . . C,, , intersect in exactly one point. So it is a truncated projec- 
tive plane. 1 

8. PROOF OF THEOREM (2.5) 

Suppose that z*(H) > q + (q - l)/(q’ + q - 1). We will prove that H con- 
tains a PG(2, q) and hence t*(H) = q + l/(q + 1). Every edge of H has at 
least rt*(H)l= q + 1 elements. Let G consist of the q + 1 element edges of 
H. Put a weight l/(q+ 2) into every vertex of H. In this way we have 
covered all the large (i.e., 2 q + 2 elements) edges and (q + l)/(q + 2) part 
of the edges of G. Hence 

q+ q-1 
q*+q-1 

<r*(H) < 
q*+q+ l+r*(G) 

cl+2 q+2’ 
(8.1) 

implying that r*(G) > q - l/(q’ + q - 1). Then Theorem (2.2) implies that 
z*(G)>q, and one of the cases (2.2)(i), (ii), or (iii) holds. In the case of 
(2.2) (iii) G is a twisted plane on q* + q points only. Then 

if XE V(G, 
if XE V(H) - V(G), 

(8.2) 

is a fractional covering of H with value q, contradicting (8.1). 
In the case (2.2) (ii) let A be a truncated projective plane of order q, 

E(A)cE(G)cE(H). Let p= V(H)- V(A), and a= {EEE(G):~EE). If 
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&?= @ then the cover (8.2) shows that r*(H)<q, a contradiction. If 
1331 = 1, i.e., B= {B), then let 

if x#B, 
if .uEB- {p}, 
if x= p. 

This is a fractional cover of H with value q + l/q’, which is less then the 
left hand side of (8.1). If 15!3 3 2, then E(G) = E(A) u g is a subhypergraph 
of a PG(2, q). If any line L of this plane is missing from G (this line L 
contains p) then 

t3(x) = 
k-lHq2+q-l) if xcL, 

m2+4- 1) if x$L 

is a fractional cover of H with value q + (q - l)/(q* + q - l), again contra- 
dicting (8.1). 

The only remaining case is when G contains a PG(2, q), so 
~*(H)2z*(G)=q+ l/(q+ l), as desired. 

9. PROOF OF THEOREM (6.1) 

Let H, be the set of (q + 1)-element edges of H. Suppose that (i) and (ii) 
do not hold; then, by Theorem (2.2), we have 

z*(H,) 6 q - 
1 

q*+q- 1’ 
(9.1) 

Suppose that H is t*-critical, and let w:,!?(H) + R+ be an optimal 
fractional matching. Obviously r*(H) < q. (If every edge has at least q + 1 
elements then t(x) = l/(q + 1) is a fractional cover with 1 tI = q, and if there 
is an edge with at most q elements then r*(H)<z(H) <q.) 

Let z*(H) = q - E, where E > 0; suppose E < 1. Then every edge has at 
least q elements. Let E, be an edge of q elements. Then 

implies 

w(b) G d(q - 1). 
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Thus 

Then we have 

This and (9.2) imply that 

1 w(E)4(q+1)E+~6. 
IEl>q+l 

Finally (9.2) and (9.3) imply that 

4-- 
3q2+2q- 1 

q-1 
E< 1 w(E)<z*(H,). 

IEl=q+l 

(9.2) 

(9.3) 

(9.4) 

Then (9.1) and (9.4) yield that E > 1/(3(q + 1)3). 

Note added in proof Our main result (Theorem (5.1)) settles a conjecture of Todorov 
[T89] for almost all n. However, as Proposition (4.10) shows, this conjecture does not hold 
for every n. 
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