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Structures, Fragmentation, and Protonation of
Trideoxynucleotide CCC Mono- and Dianions
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Both quantum chemical calculations and ESI mass spectrometry are used here to explore the
gas-phase structures, energies, and stabilities against collision-induced dissociation of a
relatively small model DNA molecule—a trideoxynucleotide with the sequence CCC, in its
singly and doubly deprotonated forms, (CCC — H) ™ and (CCC — 2H)*", respectively. Also, the
gas-phase reactivity of these two anions was measured with HBr, a potential proton donor,
using an ESI/SIFT/QqQ instrument. The computational results provide insight into the
gas-phase structures of the electrosprayed (CCC — 2H)*~ and (CCC — H)~ anions and the
neutral CCC, as well as the proton affinities of the di- and monoanions. The dianion (CCC —
2H)*~ was found to dissociate upon CID by charge separation via two competing channels:
separation into deprotonated cytosine (C — H)™ and (CCC — (C — H) — 2H) ™, and by wy /a;
cleavage of the backbone. The monoanion (CCC — H) ™ loses a neutral cytosine upon CID, and
an H/D-exchangeable proton, presumably residing on one of the phosphate groups, is
transferred to the partially liberated (C — H)~ before dissociation. This was confirmed by
MS/MS experiments with the deuterated analog. The reaction of (CCC — 2H)*~ with HBr was
observed to be rapid, k = (1.4 = 0.4) X 107? cm® molecule ' s™', and to proceed both by
addition (78%) and by [l)roton transfer (22%) while (CCC — H)™ reacts only by HBr addition,
k = (71 = 2.1) X 10" cm® molecule ! s~'. This is in accord with the computed proton
affinities of (CCC — 2H)*~ and (CCC — H) ™~ anions that bracket the known proton affinity of

Br. (J Am Soc Mass Spectrom 2008, 19, 987-996) © 2008 American Society for Mass

Spectrometry

has spawned remarkable advances in the struc-

tural characterization of biomolecules, including
DNA, RNA, and oligodeoxy/ribonucleotides, as well as
their metallated adducts and noncovalent complexes
with proteins and drugs [3-15]. Both positive and
negative gas-phase ions of oligodeoxynucleotides can
now be formed at will, covering a range of charge states
according to chosen electrospray conditions. Collision-
induced dissociation (CID) has proven to be a powerful
tool for discerning important information about nucleo-
base sequences of oligonucleotides and probable sites
for the binding of metal ions. Several mechanisms have
been suggested for the dissociation of single-stranded
oligodeoxynucleotides by base loss and cleavage of the
phosphodiester backbone [3, 5, 11]. However, no single
mechanism appears to be consistent with all observa-
tions. More information is needed about the influence
of the nature of the base, its location, the charge state of
the oligodeoxynucleotide, and its length. Here we focus
on the influence of charge state for a homogeneous

The advent of electrospray ionization (ESI) [1, 2]
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trideoxynucleotide. Trideoxynucleotides are the small-
est groups of nucleotides in DNA (codons) that deter-
mine which amino acids will be inserted in given
positions in a polypeptide chain. For instance, CCC
codes for the proline amino acid. Both quantum theory
and ESI-MS experiments are used here to explore the
gas-phase structures, energies, and stabilities against
collision-induced dissociation of an oligodeoxynucle-
otide with the sequence CCC, in its singly and doubly
deprotonated forms, (CCC — H)~ and (CCC — 2H)*",
respectively.

Another exciting opportunity that has become avail-
able with the advent of ESI is the probing of intrinsic
chemical properties of DNA-type ions by exposing them
to chemical reactions in the gas phase. For example,
oligodeoxynucleotides can be deprotonated in solution,
sprayed into the gas phase, and then reprotonated by
reaction with a suitable proton donor. In our laboratory,
we have coupled an electrospray ion source to a selected-
ion flow tube/triple quadrupole (SIFT/QqQ) mass
spectrometer [16] that allows the quantitative measure-
ment of rate coefficients and product distributions for
gas-phase chemical reactions of deprotonated oligode-
oxynucleotide anions with gases or vapors of liquids,
and we report here on the reactions of deprotonated
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CCC with hydrogen bromide. The results of these
experiments also allow an assessment of the proton
affinities of the singly and doubly deprotonated
trideoxynucleotide that are predicted by computations.

Experimental

Electrospray data were acquired in the negative ion
mode using an API 2000 (MDS-SCIEX, Concord, ON,
Canada) triple quadrupole (Q,4,Q3) mass spectrometer
equipped with a “Turbolon Spray” ion source. Experi-
ments were performed at an ionspray voltage of —5500
V, a ring-electrode potential of —300 V (used for ion
beam confinement). N, was used as a curtain gas at a
setting of 70 kPa, and air was used as nebulizer gas at a
flow rate of 8 L min™'. Samples were directly infused
into the electrospray source at a flow rate of 3 uL. min-1.
MS/MS experiments were carried out in the product
ion and multiple reaction monitoring (MRM) modes
with N, as collision gas at a pressure estimated to be
about 400 Pa (viz. multicollision conditions). The colli-
sion offset voltage (the potential difference between the
quadrupole entrance lens (g,) and the collision cell
quadrupole (g,), which nominally gives the laboratory
frame collision voltage, was adjusted between —1 and
—130 V at 1 V intervals. Space charge and contact
potentials, field penetration, and field distortion can
influence the actual collision energy, but were not taken
into account. The zero of energy was not determined
with high accuracy. Product ion spectra were then
obtained by scanning Q; over the range m/z 10-1700.
The interquadrupole lens potentials and the float
potential of the resolving quadrupole Q; were linked to
the g, potential to maintain proper transmission
through Qs. The onset voltage of a particular primary
dissociation was determined by extrapolating the steep-
est slope of a plot of the sum of the relative intensities of
the primary dissociation product and all its second and
higher generation fragments (Figure 1). The precision of
the onset voltage is taken to be one standard deviation
from the mean onset voltage value obtained in several
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Figure 1. Onset voltage (OV) determination for the collision
induced dissociation of (CCC - H) .
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(four or more) repeated experiments. In each experi-
ment, Gaussian smoothing was applied twice to the ion
signals measured at each collision voltage, each accu-
mulated for a dwell time of 200 ms, to smooth out
random noise.

In the preparation of sample solutions, CCC was
dissolved in a 80:20 (%) water/methanol mixture at a
concentration of 10 uM. HPLC degree methanol and
Millipore (18.2 m()) water were used to prepare the sol-
vent mixtures. CH;OD purchased from Sigma-Aldrich
and heavy water of 99.75% purity were utilized for the
preparation of the solvent mixture in H/D exchange in
solution.

All of the measurements of the gas-phase chemical
reactivity of CCC anions with HBr were obtained using
the ESI/SIFT/QqQ tandem mass spectrometer in accor-
dance to a procedure that has been described in detail
recently [16]. Ions were selected according to their m/z
value with a quadrupole mass filter and injected
through an aspirator-like interface into the flow tube,
continuously flushed with helium buffer gas at 0.35 =
0.01 torr and 295 + 2 K. The ions undergo ~10°
collisions with He atoms before entering the reaction
region of the flow tube and this ensures that they have
reached a translational temperature equal to the tube
temperature of 295 *+ 2 K before reacting with HBr. HBr
vapor was diluted in He gas in a reservoir system and
introduced via a needle valve into the reaction region of
the flow tube. Downstream of the reaction region, a
second quadrupole mass filter was used to monitor the
intensities of reactant and product ions as a function of
the flow of HBr. Rate coefficients for the primary
reactions of the reactant ions with HBr are determined
with an uncertainty of ~30% from the rate of decay of
the reactant ion intensity assuming pseudo-first-order
kinetics. HBr (99+ %) was obtained from Sigma-Aldrich
Co. and used without further purification.

Computational Procedure

The search for the most stable conformer/stereoisomer
(note that protonation of a phosphate group generates a
chiral centre at P) of each of the following molecules:
(CCC - 2H)*7,5'(CCC — H)~, 3/(CCC — H)~, and CCC
was done in a hierarchical fashion employing four
methods, which in reverse order of complexity and
accuracy are: AMBERS (molecular mechanics) [17, 18],
PM3 (semi-empirical) [19], RI-BP-86/SVP (density func-
tional, small basis set) [20-23], and RI-MP2/TZVPP
(Meller-Plesset perturbation theory to second-order)
[24, 25]. For each stereoisomer, an initial geometry was
constructed by employing the routine xLeap of
AMBERS with standard settings. Force field parameters
were taken from the f99 force field. For nucleotides with
a protonated phosphate group the force fields were
constructed in accordance to the general description
given on the AMBER web pages with slight modifica-
tions. The initially constructed geometry was subject to
energy minimization, whereupon it was used to gener-
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Figure 2. Minimum energy structure of (CCC - 2H)*". Color
code: P, orange; O, red; N, blue; C, grey; H, white. 5" and 3’
designate the two ends of (CCC - 2H)*".

ate the starting configuration for a subsequent 0.1 ns
molecular dynamics run at 500 K using the procedure
Sander. A total of 8 to 12 nuclear configurations from
each run were sampled, half at random, and half by
picking those of lowest potential energy. It was noted
that in some cases spontaneous inversion occurred at
one or several carbon atoms of the deoxyribose ring.
This unwanted and unrealistic behavior occurred de-
spite an effort to avoid it by defining improper dihedral
angles. In these cases, the configuration was restored to
the natural chirality. Each sampled configuration was
then subject to full geometry optimization using the
PM3 routine of Gaussian 03 [26]. In addition to the
configurations coming out of these molecular dynamics
simulations, a comparable number of configurations
were generated by starting from the configuration of a
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CGC trinucleoside segment, as it appears in a DNA
duplex, after substitution of the G with a C. From this
starting point, one, two, or three of the dihedral angles
of the oligonucleotide backbone were changed at ran-
dom, and then subject to PM3 geometry optimization.
The resulting structure was then subject to the same
procedure, a procedure that was repeated up to eight
times for each stereoisomer. Further analysis and ma-
nipulation of the intramolecular hydrogen bond net-
work of the PM3 local minimum energy structures of
lowest energy lead to even more candidates, which
were then for geometry optimizations. The resulting
dataset of PM3 minima consists of a total of 160 structures,
of which several are identical. For each of the four mole-
cules (CCC — 2H)*~, 5'(CCC — H)~, 3'(CCC — H) ", and
CCC the lowest energy conformers were subject to
final and full geometry optimization with RI-BP-86/
SVP as implemented in the TURBOMOLE package
[27]. For the doubly and singly negatively charged
species, the order of stability of the conformers
investigated turned out to be the same for both PM3
and RI-BP-86/SVP. For the neutral molecule, CCC,
several of the lowest energy conformers were ex-
tremely close in energy, and the energy order be-
tween PM3 and RI-BP-86/SVP varied somewhat.
Each of the lowest energy RI-BP-86/SVP configura-
tions was finally subjected to single point calculation
utilizing RI-MP2/TZVPP, again taking advantage of
the TURBOMOLE code.

To model the acid/base properties of the isolated
phosphate group, we conducted calculations for phos-
phoric acid (H;PO,/H,POy) at the same levels of theory
as for the DNA fragments. For calibration purposes—in
particular to obtain an accurate estimate of the proton
affinity—we also applied the G3 method [28] incorpo-
rated in Gaussian 03 to this pair of molecules. To obtain
an estimate of the strength of a hydrogen bond between
a protonated phosphate group and a nonprotonated
phosphate group, RI-MP2/TZVPP/ /RI-BP-86/SVP cal-
culations were done for the dimethyl ether of phospho-
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Figure 3. The MS/MS spectrum for the dissociation of m/z 401.4 (CCC - 2H)*~ averaged over the
region from —1 to —30 V (on the left) and CID profiles for this dissociation (on the right). The profiles
of the product ions with relative intensities lower than 0.02, e.g., those for m/z = 693, 595, 497, 386, 288,

and 275, are not shown.
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ric acid, HOP(O)(OCH),, its corresponding base, and
the dimer of the acid and base forms.

Results and Discussion
The Dianion (CCC — 2H)*~

(a) Structural details. The minimum energy structure of
(CCC — 2H)*" is presented in Figure 2. It is evident that
the preferred conformation to a large degree is dictated
by the two phosphate groups. First, Coulomb repulsion
imposes the two negatively charged phosphate groups
to stay away from each other. Second, the hydrogen
bond accepting ability of a phosphate group steers
attractive interactions with other atom groups in the
molecule. These two tendencies reduce the number
of possible conformers significantly, a situation which
turned out to simplify the search for the global potential
energy minimum for this large molecule. In the found
minimum energy structure, the phosphate group of
the 5’ end accepts two hydrogen bonds (one from the
5’-terminal hydroxy group and one from one of the
amino hydrogens of the 3'-terminal cytosine; in addi-
tion a weak coordination from the slightly acidic 6-H of
the central cytosine ring to one of the slightly basic ether
oxygens, (P)-O-(C), of the phosphate is observed), while
the phosphate group of the 3" end accepts one H bond
(from one of the amino hydrogens of the 5'-terminal; in
addition, a weak coordination from 6-H of the 3’-
terminal cytosine ring to one of the ether oxygens of the
phosphate is observed also in this case).

(b) Pathways for collision induced dissociation. CID per-
formed on the selected dianion (CCC — 2H)?*~ indicates
that this ion dissociates by charge separation via two
competing channels (see Figure 3): (a) formation of a
deprotonated cytosine (C-H)™ and its complementary
fragment, and (b) backbone cleavage leading to the

formation of either w; and a, or d; and z, ions
(McLuckey nomenclature [3]). The latter two pairs of
ions cannot be distinguished in this experiment since
they have identical sets of m/z values. The relative
abundance of channel (a) and (b) is 48% = 2% and
52% * 2%, respectively. The efficiencies of the indicated
dissociation pathways were obtained by extrapolating
normalized abundance of the two channels to 0 V of the
laboratory collision voltage. Scheme 1 indicates likely
sites for the backbone cleavage.

From Table 1 it can be inferred that the two dissoci-
ation channels have similar OV values, with the base
elimination (a) at —4.3 V (for m/z 110 and 693) and the
backbone cleavage (b) at —4.7 V (for m/z 306 and 497).
Moreover, the two complementary fragment ions ap-
pear at the same OV value within experimental uncer-
tainty, a fact that confirms our mechanistic interpreta-
tion of charge separation being in operation.

We will be careful not to speculate too widely on the
detailed mechanisms of the observed reactions, so all
details of Schemes 2 to 5 should not be taken literally.
However, the mechanisms of the primary reactions
observed here appear to be well understood. One slight
limitation is that we are not sure whether route (b)
occurs according to the wy /a, or to the d; /z, frag-
mentation. From the literature [3, 29], there is strong
evidence in favor of the former alternative in similar
molecules, so we will assume the w; /a, fragmentation
route as our working hypothesis for the rest of the
mechanistic discussion.

For route (a) it has been proposed [30] that the loss of
a base side group, in the present case (C — H)7, is
assisted by the attack of a phosphate group on the
deoxyribose ring. This can occur in two ways, either by
a nucleophilic attack on the carbon atom that is bonded
to the ring nitrogen (N1), in which case the (C — H)~
fragment is expelled directly via an Sy2 mechanism, or

Table 1. Onset voltages (in volts) for the primary, secondary, tertiary, etc. products for the dissociation of (CCC — 2H)?*

m/z 110 693 595
ovNv —(4.2 £ 0.2) —(4.3+0.3) —(5.56+0.2)
m/z 288 275 195

OV —(6.4 = 0.3) —(10.5 + 0.2)

—(15.8 + 0.3)

497 306 386
—(4.8+0.2) —(4.5+0.3) —(6.3 £0.2)
177 97 79
—(15.8 = 0.3) —(19.4 £ 0.2) —(17.6 = 0.4)
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alternatively, the phosphate may attract a proton from
the methylene group next to the connecting carbon, in
which case elimination is accomplished through an E2B
type mechanism (Cerny mechanism, upper part of
Scheme 2). The cytosine situated at the 3’ end is less
likely to be expelled in both S\2 and E2 mechanisms,
since there is no phosphate attached to this side. But we
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also have to take into account the probability of an
attack from a remote phosphate, so not even loss of this
side group can be ruled out.

A similar mechanistic scenario can also be envisaged
for route (b). We apply the Rodgers/Beauchamp [31]
mechanism for w™~ /a~ backbone cleavage as illustrated
in the lower part of Scheme 2. The direct relationship
and competition between the Cerny and Rodgers/
Beauchamp dissociation mechanisms is evident. While
the w; /a, dissociation in (CCC — 2H)?>~ leads to
favorable charge division, the corresponding w, disso-
ciation does not occur (no peaks at m/z 211/592) since
that would lead to formation of the w3~ /a, pair, which
does not dissociate as easily, partly because it is not
driven by the release of a Coulombic force, and partly
because it is bound by a strong ion-induced dipole
force. This is in full accord with the Rodgers/
Beauchamp mechanism.

Schemes 3 and 4 provide possible pathways for the
further dissociations observed with the primary fragmen-
tation products. The observed individual onsets of the
fragments are given in Table 1. Each of the sequential
dissociation steps has been verified in separate experi-
ments in which the precursor ions were generated by
in-source fragmentation and then brought to CID.
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The Monoanion (CCC — H)~

(a) Structural details. The two monoprotonated struc-
tures, in which the proton dissociated from the phos-
phate adjacent to the 5’ end and 3’ end, respectively,
are both dominated by a strong hydrogen bond from the
protonated phosphate group to the unprotonated (vide
infra) (Figure 4). This interaction limits the effective
conformational space for both structures. In addition to
this central hydrogen bond, the nonprotonated phos-
phate effectively accepts hydrogen bonds from suitably
situated hydrogen bond donors. In the case of protona-
tion at the phosphate group closest to the 5'-terminus—
the corresponding compound is denoted (5')—the 3'-
phosphate accepts hydrogen bonds from the protonated
phosphate group as well as the two terminal OH groups.
The same occurs for the 5'-phosphate in 3'(CCC — H)~
(3") (see Figure 4).

(b) Pathways for collision induced dissociation. The colli-
sion induced dissociation of the monoanion, (CCC —
H)~, was found to lead to the loss of cytosine as the
primary dissociation event (Figure 5). In addition, there
is signal corresponding to loss of furfuryl alcohol at
slightly higher OV.

The loss of a neutral base is a typical primary
dissociation event for lower charge states of oligonucle-
otides [3]. Habibi-Goudarzi and McLuckey [32] initially
proposed two pathways to account for the (a,-B,)-ion
formation, one initiated by neutral base loss, and the
second initiated by loss of a nucleobase anion. In the
first stage is partly liberated (C — H)™ is formed probably
following the mechanism illustrated in Scheme 2. In the
second stage a proton is abstracted from an available
site in the close vicinity, probably from the neighboring
phosphate group (Scheme 6, first part). If an excessive
charge resides on the rest molecule there is not suffi-
cient time to accommodate this proton transfer due to
the quick relief of Coulombic strain, and the loss of the
base as an anion is favored. For this reason, the loss of
aneutral base is increasingly disfavored with increasing
charge, in excellent agreement with the observations
here.

The availability of a nearby acidic proton for transfer
to (C — H)~, most likely the one located at the neigh-
boring protonated phosphate group, is also a critical
factor. H/D exchange experiments performed in solu-
tion indicated that there are nine exchangeable hydro-
gens in the structure of (CCC — H): a proton on one of
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the phosphates, two belonging to the end hydroxyl
groups, and six to the primary amino groups of the
cytosines. The CID fragmentation of the electrosprayed
deuterated (CCC — H)™ was found to be similar to that
of the protonated species in that the primary dissocia-
tion event involved the loss of a neutral cytosine,
however shifted to 114 u, which corresponds to a
cytosine molecule containing three deuteriums. This
observation confirms our interpretation. Barry et al. [33]
have proposed a similar mechanism for the dissociation
of short modified oligonucleotides.

Successive Gas-Phase Protonation
of (CCC — 2H)*~

(a) Computational results. The enthalpy of protonation
of the monophosphate H,PO, anion was estimated by

Figure 4. Minimum energy structures for CCC deprotonated at
either the 3’ end (right) or the 5" end (left). P, orange; O, red; N,
blue; C, grey; H, white.

Morris et al. [34] using B3LYP/TZ2Pf + diffuse to be
PA = 1370 k] mol ', in good agreement with their own
experimental observation that the gas-phase acidity of
phosphoric acid lies between those of HCl and HBr [35].
Our own theoretical estimates (Table 2) compare favor-
ably with this finding and a very high level ab initio
value of Alexeev et al. [36] of PA = 1376 kJ mol !,
compared to our “best” estimate (G3) of PA = 1376 k]
mol . The proton affinity seems to be quite unaffected
by dimethylation; our calculations at the RI-MP2/
TZVPP level of theory indicate that PA[H,PO, ] = 1388 k]
mol ! and PA[(CH;0),PO,] = 1390 k] mol ! (see Table
2). This computed value is in excellent agreement with a
bracketed gas-phase acidity of H® .4 [(CH;0),PO,H] =
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Figure 5. CID profiles for the dissociation of (CCC —H) ™. Curves
whose relative intensities were lower than 0.02 were not labeled.
The structure of m/z 195 is presented in Scheme 4.
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Scheme 6

1389 + 17 kJ mol ™' determined experimentally using
the flowing afterglow technique [37].

Table 2 also shows that the enthalpy of protonation
of the dianion,

(CCC —2H)> + H' —(CCC — H)" )

is significantly higher than that for the protonation of
the monoanion.

(CCC—-H) +H'—>CCC @)

The corresponding calculated proton affinities (first
protonation on the phosphate closest to the 5’ terminus)
are PA; = 1562 k] mol™ ' and PA, = 1206 k] mol *,
respectively (Table 2). Interestingly, the arithmetic
mean of these two values, <PA> = 1384 k] mol '}, is
very close to those of the isolated phosphate groups in
“OP(0)(OCH;), and ~OP(O)(OH),). We note that the
aforementioned intraphosphate hydrogen bond can ac-
count for some of the difference PA, — <PA> = 178 k]
mol~'. An estimate of this interaction can be made by
studying the dimer (CH;0),(O)POH: -~ OP(O)(OCHy),.
Dissociation of this dimer into its constituents is asso-
ciated with a BDE = 124 k] mol !. Therefore, the
difference PA; — < PA> cannot fully be accounted for
only by the intraphosphate hydrogen. Within (CCC —
2H)*~ we note that most of the two negative charges are
localized at each of the two phosphate groups. In terms
of classical electrostatics this has the consequence that
the molecule may be destabilized to Coulombic repul-
sion between the two charges. The corresponding re-
pulsion in vacuum is 187 k] mol " at a distance of 7.47
A that, for convenience, we have set equal to the P-P

Table 2. Proton affinities (k] mol ') at 298 K*

distance. We are not aware of any accurate value for the
dielectric constant of DNA. By assuming that the dielec-
tric constant is in the range ¢ = 5-10, Coulombic
repulsion will be in the range 20-40 k] mol .

(b) Results of the gas-phase reactivity measurements. The
results of the computations predict that HBr (proton
affinity of Br~ at 298 K is 1354 kJ mol™" [35] will
protonate (CCC — 2H)*~ but not (CCC — H) ™ in the gas
phase at room temperature. Indeed, experiments with
the ESI/SIFT/QqQ tandem mass spectrometer indi-
cated the occurrence of proton transfer from HBr to
(CCC — 2H)*", in competition with hydrobromination
(see Figure 6):

(CCC — 2H)*" + HBr —(CCC — H)™ + Br~ (3a)
— (CCC — 2H)* (HBr) (3b)

Reaction (eq 3) was seen to be rapid, k = 1.4 X 10°
cm?® molecule™' s, at room temperature with 22% of
the reaction proceeding by the charge-separation chan-
nel (eq 3a) in which a proton is transferred from HBr to
(CCC — 2H)*". The high rate of proton transfer implies
the absence of a substantial barrier to charge separation
[38—40]. Therefore the exothermicity of this reaction, ca.
220 kJ mol?, is sufficient for the Coulomb barrier that
arises from the charge separation associated with the
products to lie below the initial energy of the reactants.

The monoanion (CCC — H)™ was shown in separate
experiments, in which it was selected directly from the
ESI source, to react with HBr by sequential hydrobro-
mination but not proton transfer (see Figure 6). The
hydrobromination reaction (eq 4) was observed to be

Structure PA [RI-BP-86/SPV] PA [RI-MP2/TZVPP] PA [RI-BP-86/TZVPP] PA [G3@298K]
(CCC - 2H)2 1586/1565* * 1562/1553**
5'(CCC - H)~ 1229 1206
3'(CCC - H)~ 1250 1215
H,PO, 1425 1388 1385 1376
(CH;0),PO5 1410 1390

* Estimated at by including RI-BP-86/SPV zero point vibrational energies and adding 6.2 kJ mol~" to account for the RT contribution to enthalpy plus

difference in translational heat capacities.

** Former value for protonation at the phosphate closest to the 5'-terminus, the latter value for protonation at the phosphate closest to the

3'-terminus.
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Figure 6. ESI/SIFT/QqQ results for the protonation and hydrobromination of (CCC - 2H)*~ (left
diagram) with HBr in helium buffer gas at 47 = 1 Pa and 292 K, (CCC - 2H)*~ is designated as CCC>~
and (CCC-H) as CCC™. (CCC-H)" is shown in separate experiments to react further with HBr by

sequential hydrobromination (right part).

fast and proceed with an effective bimolecular rate
coefficient k = 7.1 X 107" cm® molecule ™' s™".

(CCC — H)™ + HBr — (CCC — H) (HBr) )

This result is consistent with the computed proton
affinities of the deprotonated phosphate in (CCC — H)™~
near the 5’ terminus or the 3’ terminus (1229 and 1250
kJ mol ', respectively) that predict proton transfer from
HBr to be endothermic by 125 and 104 kJ mol ™},
respectively. To confirm this conclusion we selected
(CCC — H)™ from the ESI source anion and exposed it
directly to the reaction with HBr (Figure 6).

The observed sequential hydrobromination recorded
in Figure 6 is also interesting, especially as regards the
number and sites of addition. The (CCC — 2H)*~
dianion was observed to add 5 molecules of HBr in
rapid succession with higher-order effective bimolecu-
lar rate coefficients k >1 X 107° cm® molecule " s™".
The (CCC — H) anion added 4 HBr molecules sequen-
tially with k > 4 x 107'® cm® molecule ' s~ Presum-
ably, all of these additions proceed by termolecular
collisional stabilization with He acting as the third
body, although bimolecular radiative stabilization can-
not be ruled out since the experiments were not taken as
a function of pressure.

So why five and four molecules, respectively? The
sixth and fifth adducts, respectively, were looked for
but not seen. We propose that HBr attaches to the most
basic sites of the anions. According to the calculations
by Green-Church and Limbach [41], and Pan et al. [42],
the most basic sites on the (CCC — 2H)>  are the
negatively-charged phosphate groups, of which there
are two, and the N; position of the cytosines, of which
there are three. This amounts to five potential sites for
hydrobromination on (CCC — 2H)*~ and four sites on
(CCC — H)™ and would match the experimental obser-
vations if the other potential sites of the cytosines are
insufficiently basic or become blocked with the addition
of the first three on the cytosines. In a sense HBr
provides a means of counting the most basic sites on

deprotonated oligonucleotides. This is analogous to the
previous use of HI to count basic sites in oligopeptide
cations [43, 44].

Conclusions

We have explored, both experimentally and computa-
tionally, the gas-phase protonation of a relatively sim-
ple model of deprotonated DNA, the deprotonated
trideoxynucleotide CCC, as well as the stability of the
deprotonated CCC against collisional dissociation and
its reactivity with HBr, a potential proton donor.

The computed minimum energy gas-phase struc-
tures of the doubly and singly deprotonated CCC
provide thermodynamic information for reprotonation
and proved to be useful in the interpretation of the
experimentally observed dissociation pathways of the
doubly and singly deprotonated CCC.

The collision-induced dissociation of deprotonated
CCC was observed to be charge-directed in that the
dianion was seen to dissociate by charge separation via
two competing channels, while the monoanion frag-
ments exclusively by the loss of a neutral cytosine.
Experiments performed with the deuterated analog of
(CCC — H)  indicate that the mechanism of the neutral
base elimination involves a transfer of a proton to the
departing cytosine from the protonated phosphate
group.

The experimental results obtained for the gas-phase
chemical reactions of the deprotonated CCC with HBr
provide a useful test of the thermochemical predictions
of high-level calculations of large molecular ions and
establish the feasibility of measuring the intrinsic chem-
istry of other, larger DNA-like anions.

The combination of theory, collision-induced dis-
sociation, and reactivity measurements applied here
to the singly and doubly deprotonated CCC tri-
deoxynucleotide illustrate a useful approach for inves-
tigating similar biological molecular ions and learning
more about the influence of charge state, number of
repeating units, base composition, and conformation on
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gas-phase proton affinity, stability against dissociation,
and chemical reactivity.
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