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QTL Fine Mapping by Measuring and Testing for Hardy-Weinberg and
Linkage Disequilibrium at a Series of Linked Marker Loci in Extreme
Samples of Populations
Hong-Wen Deng,1,2 Wei-Min Chen,1,2 and Robert R. Recker1

1Osteoporosis Research Center and 2Department of Biomedical Sciences, Creighton University, Omaha

It has recently been demonstrated that fine-scale mapping of a susceptibility locus for a complex disease can be
accomplished on the basis of deviations from Hardy-Weinberg (HW) equilibrium at closely linked marker loci
among affected individuals. We extend this theory to fine-scale localization of a quantitative-trait locus (QTL) from
extreme individuals in populations, by means of HW and linkage-disequilibrium (LD) analyses. QTL mapping and/
or linkage analyses can establish a large genomic region (∼30 cM) that contains a QTL. The QTL can be fine
mapped by examination of the degree of deviation from HW and LD at a series of closely linked marker loci. The
tests can be performed for samples of individuals belonging to either high or low percentiles of the phenotype
distribution or for combined samples of these extreme individuals. The statistical properties (the power and the
size) of the tests of this fine-mapping approach are investigated and are compared extensively, under various genetic
models and parameters for the QTL and marker loci. On the basis of the results, a two-stage procedure that uses
extreme samples and different tests (for HW and LD) is suggested for QTL fine mapping. This two-step procedure
is economic and powerful and can accurately narrow a genomic region containing a QTL from ∼30–1 cM, a range
that renders physical mapping feasible for identification of the QTL. In addition, the relationship between para-
meterizations of complex diseases, by means of penetrance, and those of complex quantitative traits, by means of
genotypic values, is outlined. This means that many statistical genetic methods developed for searching for sus-
ceptibility loci of complex diseases can be directly adopted and/or extended to QTL mapping for quantitative traits.

Introduction

For diseases and quantitative traits with complex genetic
and environmental determinations, with the use of cur-
rent analytical and technical tools, fruitful linkage anal-
yses and quantitative-trait locus (QTL) mapping in hu-
mans and in experimental organisms generally can locate
a disease-susceptibility locus or a QTL to a genomic
region of ∼30 cM. In the present study, QTLs denote
loci underlying the variation of continuous quantitative
traits. One central objective of linkage analyses and QTL
mapping is to find individual specific genes underlying
the differential susceptibilities of complex diseases and
those underlying the variation of quantitative traits.
However, physical mapping of such individual genes
generally is not feasible, unless a genomic region con-
taining such a gene can be reduced, through the use of
fine-scale mapping, to a region of ∼1 cM.

Fine mapping is relatively simple for Mendelian traits
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with high penetrance, by means of haplotype analyses
of recombination event(s) in extended pedigrees whose
members are densely genotyped at markers at ∼1-cM
intervals (Boehnke 1994; Glaser et al. 1995). For more
complex diseases, linkage-disequilibrium (LD) mapping
(Hastbacka et al. 1992, 1994; Bennett et al. 1995) and
association studies (Corder et al. 1993) have success-
fully been employed to locate genes for diastrophic dys-
plasia, insulin-dependent diabetes mellitus type 2
(IDDM2), and late-onset Alzheimer disease. Maturing
under constant development in recent years, some fine-
mapping techniques (e.g., Terwilliger and Ott 1992;
Spielman et al. 1993; Curtis and Sham 1995; Sham and
Curtis 1995a, 1995b; Kaplan et al. 1997; Martin et al.
1997; Tregouet et al. 1997; Sham 1997; Xiong and Guo
1997a; Boehnke and Langefeld 1998; Lazzeroni and
Lange 1998; Nielsen et al. 1998; Spielman and Ewens
1998; Xiong and Jin 1999) have been proposed for
complex diseases. These techniques use different types
of samples from populations, such as random case pa-
tients and control individuals, nuclear families, sibs, or
case patients only. Comparatively speaking, develop-
ment of fine-mapping techniques for continuously dis-
tributed quantitative traits has received relatively less
attention (however, see Allison 1997; Rabinowitz 1997;
Tregouet et al. 1997; Xiong and Guo 1997b; Fulker et
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al. 1999). In particular, there are few studies of fine
mapping of the QTL from unrelated samples in large
random-mating populations. This may, in part, be a
result of the perceived importance of the diseases within
the framework of clinical diagnosis and public health.
However, the clinical importance and health relevance
of many quantitative traits (such as bone mass, diabetes,
obesity, cholesterol level, and blood pressure) have in-
creasingly been recognized (Fulker et al. 1999). In ad-
dition, as has repeatedly been tested by the Hardy-Wein-
berg (HW)–equilibrium law, random mating holds
reasonably well for samples that are carefully selected
from relatively homogeneous populations of the same
ethnicity and/or geographic location (see Deng et al.
1998).

Development of fine-mapping techniques for complex
diseases and quantitative traits has largely been done in
isolation; the direct relevance and the applicability of
the techniques developed for complex diseases have sel-
dom, if ever, explicitly been given for analyses of quan-
titative traits or vice versa. This is largely a result of the
different parameterizations of genetic diseases and
quantitative traits. For example, genetic diseases are
commonly modeled by population prevalence, pene-
trance of the underlying susceptibility loci (which is the
probability that a disease will develop in an individual,
given that he/she has a certain genotype), and pheno-
copy rates. However, for quantitative traits, the central
parameters are population mean and variance and the
genotypic values of QTLs (Falconer 1989; Lynch and
Walsh 1998). It is well known that complex diseases
can be viewed as threshold traits that can be modeled
by underlying, continuously distributed quantitative
traits (liabilities, Falconer 1989; Lynch and Walsh
1998). Therefore, a theoretical framework that unifies
and bridges the techniques developed for complex dis-
eases and quantitative traits is needed. This theoretical
framework will provide a basis for direct adoption of
many methods of mapping disease loci for QTL.

A novel fine-mapping approach was recently pro-
posed and was successfully applied to fine map a sus-
ceptibility locus for hereditary hemochromatosis to a
genomic region of ∼600 kb (Feder et al. 1996). In the
Feder et al. study, fine mapping was accomplished by
utilization of the degree and pattern of HW disequilib-
rium among affected individuals and of LD among af-
fected and nonaffected individuals, for a panel of
densely typed markers. Fine mapping through use of the
HW test was examined and was extended theoretically
(Nielsen et al. 1998) for complex genetic diseases. It has
been shown, both empirically (Feder et al. 1996) and
theoretically (Nielsen et al. 1998), that HW-disequilib-
rium tests done only with the use of affected individuals
can be more powerful and accurate in the fine mapping
of a disease-susceptibility locus than can LD methods

done with the use of both affected and control
individuals.

In this article, we developed the methodological coun-
terpart of the novel fine-mapping approach used by
Feder et al. (1996) and Nielsen et al. (1998) for fine
localization of QTL(s) for quantitative traits. We ex-
tended the method so that samples from both extremes
of the quantitative-trait distribution can be combined
for analyses, to substantially increase the mapping
power. Under a variety of parameter space and inheri-
tance models, we performed extensive computer sim-
ulations to investigate and to compare the statistical
properties (power and size) of the new method for QTL
fine mapping. On the basis of these results, we proposed
and examined a two-stage procedure for fine mapping
a QTL from a genomic region of ∼30–1 cM, which will
make physical mapping feasible for identification of in-
dividual QTLs. In addition, we present a general frame-
work that may serve as a theoretical bridge to unify
mapping techniques for complex diseases and those for
quantitative traits.

Methods

Two Alleles at Both the Marker Locus and the QTL

Define a QTL locus with two alleles: A1 and A2. Allele
A2 may also be regarded as all of the non-A1 alleles
with similar genetic effects. Let p be the frequency of
the allele A1, and let be the frequency of alleleq = 1 � p
A2. Let a be the mean (genotypic value) for individuals
with genotype A1A1, let d be the genotypic value of
individuals with A1A2, and let �a be the genotypic value
of A2A2 individuals. This is a general model for a QTL
(Falconer 1989). The d value is equal to 0, a, and �a,
respectively, under additive, dominant, and recessive ge-
netic effects. Under partial dominant or partial recessive
genetic effects, but . The additive ge-�a ! d ! a d ( 0
netic variance of this locus is ,2 2j = 2pq[a � (q � p)d]A

and the dominant genetic variance is (Fal-2 2j = (2pqd)D

coner 1989). The total genetic variance resulting from
this QTL is . We assume that the variance2 2 2j = j � jG A D

resulting from all other QTLs and all random environ-
mental effects is . The heritability, h2, that results from2jE

this QTL is . The phenotypic value of2 2 2 2h = j / (j � j )G G E

an ith individual in the population is ,y = m � G � ei i i

where m is the mean baseline value of the quantitative
trait, where Gi is the genotypic value at the QTL for the
ith genotype, and where ei represents a random variable
for the combined effects of all the rest of the polymorphic
QTLs and all random environmental effects. Gi is equal
to a, d, and �a, respectively, for genotypes A1A1, A1A2,
and A2A2. Without loss of generality, we can assume
that . We can also assume that ei follows a normalm = 0
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distribution with a mean of 0 and variance of —that2jE

is, .2e ∼ N(0,j )i E

As in the original investigations of Feder et al. (1996)
and Nielsen et al. (1998), random mating is assumed,
and, thus, HW equilibrium holds in the population. The
quantitative trait in the population then follows a mix-
ture distribution of three normal distributions, each of
which is weighted by the respective genotype frequencies
in the population

2 2 2 2 2p(x) = p N(x,a,j ) � 2pqN(x,d,j ) � q N(x, � a,j ) ,E E E

where N(x,m,j2) = (1/ j)exp{�[(x�m) 2/2j2]}, which�2p

is the probability density function for a normal random
variable x with mean m and variance .2j

Let us define . This is a cu-
2x �w /2�f(x) = (1/ 2p) e dw∫��

mulative distribution function of a standard normal var-
iable. Given a low-threshold value T, we can compute
the proportion ( ) of the population that has values (y)JT

of the quantitative trait !T, or vice versa, to compute T
from a given by use of the following relationship:JT

T � a T � d T � a2 2J = p f � 2pqf � q f . (1)T ( ) ( ) ( )j j jE E E

Similarly, given the upper-threshold value U( 1T), we
can compute the proportion ( ) of the population withJU

y 1 U, or vice versa, to compute U from a given byJU

use of the following relationship:

U � a U � d U � a2 2J = 1 � p f � 2pqf � q f .U [ ( ) ( ) ( )]j j jE E E

Let y be the value of the quantitative trait of a random
individual and let be that of a random individualyA A1 1

of genotype A1A1; and are similarly defined.y yA A A A1 2 2 2

It can easily be seen that

T � a
Pr(y ! T d A A ) = Pr(y ! T) = f = f , (2a)1 1 A A 111 1 ( )jE

T � d
Pr(y ! T d A A ) = Pr(y ! T) = f = f , (2b)1 2 A A 121 2 ( )jE

and

T � a
Pr(y ! T d A A ) = Pr(y ! T) = f = f .2 2 A A 222 2 ( )jE

(2c)

Therefore,

Pr(A A d y ! T) = P !1 1 A A dy T1 1

= Pr(A A )Pr(y ! T d A A )/Pr(y ! T)1 1 A A 1 11 1

2= p f /J11 T

and

Pr(A d y ! T) = p = Pr(A ,y ! T)/Pr(y ! T)!1 A dy T 11

= [pPr(A A d A )Pr(y ! T d A A )1 1 1 1 1

�p Pr (A A d A )Pr(y ! T d A A )]/Pr(y ! T)1 2 1 1 2

2= (p f � pqf )/J11 12 T .

Recall that random mating is assumed in the whole
population.

Departure from HW equilibrium at the QTL can be
measured by the disequilibrium coefficient D =A A1 1

(Weir 1996). Among individuals with y ! T,2P � pA A A1 1 1

2D = P � p! ! !A A Fy T A A Fy T A Fy T1 1 1 1 1

2 2 2 2= p q (f f � f )/J .11 22 12 T

HW disequilibrium can also be measured by (FederFA1

et al. 1996; Nielsen et al. 1998), among individuals with
y ! T:

2 2P � P � p � p! ! ! !A A Fy T A A Fy T A Fy T A Fy T1 1 2 2 1 2F =!A Fy T 2 21 1 � p � q
22D pq(f f � f )!A A Fy T 11 22 121 1= = .22pq JT

A marker locus closely located near the QTL may be
in LD with the QTL. That is, alleles at the marker locus
and the QTL are associated. Denote a marker allele as
M and denote the rest as m, with respective frequencies
denoted as pM and qm. The degree of the association can
be expressed by a measure of LD: D = P � p pA M A M A M1 1 1

(Crow and Kimura 1970). If A1 and M are in coupling
disequilibrium (Crow and Kimura 1970), then D 1A M1

. Otherwise, if they are in repulsion disequilibrium,0
. Among individuals with ,D ! 0 y ! TA M1
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Pr(MMFy ! T) = P !MMFy T

= [Pr(MM,A A )Pr(y ! TFA A )1 1 1 1

�Pr(MM,A A )Pr(y ! TFA A )1 2 1 2

�Pr(MM,A A )Pr(y ! TFA A )]/J2 2 2 2 T

2= [P f � 2P (p � P )fA M 11 A M M A M 121 1 1

2�(p � P ) f ]/JM A M 22 T1

and

Pr(MFy ! T) = p !MFy T

= Pr(M d A )Pr(A d y ! T)1 1

( ) ( )�Pr M d A P A d y ! T2 r 2

( )=P � D pf � q � p f � qf /J . (3)[ ]M A M 11 12 22 T1

Therefore, among individuals with y ! T, the HW dis-
equilibrium coefficient at the marker locus is

2D = P � p! ! !MMFy T MMFy T MFy T

2 2 2= (f f � f )D /J . (4)11 22 12 A M T1

is nonzero only if there is LD—that is,D !MMFy T

—and ifD ( 0A M1

2f f � f ( 0 (5)11 22 12

or, equivalently,

2

T � a T � a T � d
f f ( f (6)( ) ( ) ( )[ ]j j jE E E

Equation (5) indicates that, at the QTL, for individuals
with y ! T, the product of the frequencies of the two
homozygotes should not be equal to the square of the
proportion of the heterozygote. It is clear, from equation
(6), that, for any genetic effects a and d, a range of T
values can be chosen so that Inequality (5) holds. There-
fore, in practice, various T values can be chosen so that
the HW disequilibrium at the marker locus solely reflects
the LD in the whole population—that is, is non-D !MMFy T

zero if and only if .D ( 0A M1

Note that this is quite different from complex genetic
diseases (Nielsen et al. 1998), in which the penetrances
(corresponding to ’s in the present study; see equationsf

[13a] and [13b] below) of genotypes are generally fixed
and unknown. There always exists a possibility that HW
equilibrium holds, despite the fact that the marker is
closely linked to the QTL and despite the fact that they
are in strong disequilibrium. Therefore, as pointed out
by Nielsen et al. (1998), to fine map a disease-suscep-

tibility locus through use of the HW-equilibrium test,
the genotypic penetrances must not be multiplicative.

The HW-disequilibrium measure of FM, for the marker
locus among individuals with , isy ! T

2 2P � P � p � p! ! ! !MMFy T mmFy T MFy T mFy TF =!MFy T 2 21 � p � qM m

2 2D (f f � f )D!MMFy T 11 22 12 AM= = (7)2p q J p qM m T M m

In relation to the HW deviation at the QTL, we have

2F = D F , (8)! !MFy T A M A Fy T1 1

where , which corresponds to those2 2D = D /pqp qA M A M M m1 1

given for affected individuals of complex diseases (Feder
et al. 1996; Nielsen et al. 1998).

Equations (4) and (8) convey the essential point that,
among extreme individuals (with ), HW disequi-y ! T
librium at a marker locus corresponds to the whole-
population LD between the marker locus and the QTL.
Generally, in individuals at either end of the quantitative-
trait distribution, HW disequilibrium exists if and only
if there exists a whole-population LD between the
marker locus and the QTL. Although it is the latter that
has been of general interest in previous fine-mapping
efforts, it may be both easier—in some situations—and
equivalent to test for the former (Nielsen et al. 1998)
—for example, when only case patients are readily avail-
able for diseases or when only individuals from one ex-
treme end of the phenotypic distribution are readily
available from clinics. Measurement of HW disequilib-
rium by means of FM requires the estimation of marker-
allele frequencies in the whole population, whereas mea-
surement of HW disequilibrium by means of doesDMM

not.
A direct measure of LD (Bengtsson and Thomson

1981; Lehesjoki et al. 1993; Feder et al. 1996; Nielsen
et al. 1998) is

p � pMFaffected MFunaffectedp = . (9)excess 1 � pMFunaffected

Nielsen et al. (1998) demonstrated that, for the complex
genetic-disease model of Feder et al. (1996), pexcess is a
function of . In our general model for a quantitativeDA M1

trait,

p � Pr(y ! T)p !M MFy Tp =1MFy T Pr(y 1 T)

p � f p !M T MFy T= ,
1 � fT
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where was given in equation (3). Therefore, inp !MFy T

individuals with ,y ! T

p � p! 1M dy T M dy Tp =!excessFy T 1 � p 1MFy T

d1= , (10)
f (1 � f )[q � d /(1 � f )]T T m 1 T

where . Therefore,d = D [pf � (q � p)f � qf ]1 A M 11 12 221

pexcess is also a function of for quantitative traits.DA M1

Similarly, in individuals with (where ), cor-y 1 U U 1 T
responding measures for HW and LD can also be de-
veloped in a manner similar to that described above for

. It can be seen that HW disequilibrium can bey ! T
tested with the use of samples from either the upper or
the lower end of the phenotypic distribution, as opposed
to being tested by means of case-control-type studies that
use individuals with and those with , whichy ! T y 1 T
is necessary for an LD measurement such as pexcess.

If we sample individuals from both ends of the quan-
titative distribution with or , then we cany ! T y 1 U
define a new index of LD as

p � p! 1M dy T MFy Uq = . (11a)excess 1 � p 1MFy U

qexcess compares the marker-allele frequency in the two
opposite extreme ends of the phenotype distribution. It
can be shown—as was shown earlier—that:

(C /J � C /J )DT T U U A M1q = , (11b)excess 1 � q � C D /JU A M U1

where

C = pf � (1 � 2p)f � (1 � p)f , (11c)T 11 12 22

C = pg � (1 � 2p)g � (1 � p)g , (11d)U 11 12 22

and where ,g = 1 � f [(U � a) /j ] g = 1 � f [(U �11 E 12

, and .d) /j ] g = 1 � f [(U � a) /j ]E 22 E

Similarly, if we have sample individuals from both
ends of the quantitative distribution with ory ! T y 1

, we can define a new index of HW disequilibrium inU
the combined sample of these individuals as

— —2 2CD = [(P � p ) � (P � q )]! !MMFy T M mmFy T m

——2 2�[(P � q ) � (P � p )] , (12a)1 1mmFy U m MMFy U M

where and are, respectively, the average frequen-— —p pM m

cies of alleles M and m in individuals with and iny ! T

those with . Combined disequilibrium is denotedy 1 U
as “CD”. It can be shown that

CD = 2(C /J � C /J )D . (12b)T T U U A M1

Apparently, .CD = q /2(1 � p � C /J )Dexcess M U U A M1

It can easily be shown that the disequilibrium mea-
sures , FM, pexcess, qexcess, and CD are all monotonicD !MMFy T

functions of the degree of LD in the whole population
( ). Therefore, testing for LD through testing for HWDA M1

disequilibrium can be performed by use of marker-ge-
notype or allele frequencies of one extreme end and of
those in the other extreme end of the phenotype distri-
bution. It is noted that some disequilibrium measures
can be negative (e.g., and FM in equations [4]D !MMFy T

and [7]). Therefore, the absolute values of these mea-
sures should be used in QTL fine mapping, via the peaks
of these measures.

Multiple Alleles at Both the Marker Locus and the QTL

If there are multiple alleles at both the marker locus
and the QTL, then the previously developed theory can
still be applied, by classification of one allele either as
A1 at the QTL locus or as M at the marker locus and
by classification of the rest of the alleles either as A2 or
as m at the QTL and the marker locus, respectively.
However, it would be of interest to present a more rig-
orously defined general theory for QTL fine map-
ping—one that corresponds to those theories given else-
where (Nielsen et al. 1998) for disease-susceptibili-
ty-gene fine mapping. We define the genotypic value for
genotype ArAs at the QTL as Grs, where Ar and As denote
the rth and sth alleles, respectively, at the QTL locus.
With various notations defined as they were earlier,
then for a threshold value T that corresponds to J =T

, we definePr (y ! T)

T � Grs
f = Pr(y ! TFA A ) = Pr(y ! T) = f (13a)rs r s A Ar s ( )jE

and

J = P f . (13b)�T A A rsr s

and correspond, respectively, to population prev-J fT rs

alence and genotype-specific penetrances (or phenocopy
rates) for diseases, as in the study by Nielsen et al.
(1998). is the frequency of the genotype ArAs. SincePA Ar s

the rest of the theory of QTL fine mapping for quan-
titative traits in the instance where can closelyy ! T
follow those theories developed, for diseases, by Nielsen
et al. (1998), they will not be elaborated. For individuals
with or for the combined sample of those withy 1 U

and those with , the mapping theory fory ! T y 1 U
quantitative traits follows naturally from the framework
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and from the theory developed in the Two Alleles at
Both the Marker Locus and the QTL section; therefore,
it will not be elaborated here. In fact, the framework,
as reflected by equations (13a) and (13b), relates, in a
general manner, the parameterizations for complex dis-
eases—in terms of population prevalence, penetrance,
and phenocopy rates—with those for quantitative traits,
in terms of genotypic values and variance. Thus, this
framework can serve as a bridge between the methods
developed for gene mapping for continuous quantitative
traits and those developed for dichotomous complex dis-
eases. This framework may provide a basis for direct
adoption and/or extension of many methods developed
for gene mapping of complex diseases to map QTLs by
specification of appropriate thresholds.

Statistical Tests

We presented four types of measures that reflect
marker/ QTL association resulting from linkage and LD.
The first type, pexcess (equations [9] and [10]), character-
izes LD from random samples with . The secondy ! T
type includes HW-disequilibrium measures D !MMFy T

(equation [4]) and FM (equation [7]), in random samples
with . The third and fourth types, are, respectively,y ! T
qexcess (equations [11a] and [11b]) and CD (equations
[12a] and [12b]), both of which use samples with y !

and those with ( ).T y 1 U U 1 T
The first two types of measures correspond to those

used elsewhere (Feder et al. 1996; Nielsen et al. 1998)
for fine mapping the disease-susceptibility locus, whereas
the last two are new and unique to QTL fine mapping.
The last two measures take advantage of our ability to
sample individuals with and those with .y ! T y 1 U
However, this is not feasible for complex diseases with
unknown, continuously distributed liabilities that are
manifested only through individuals being affected or
unaffected, presumably through underlying thresholds.
These four types of measures correspond to different
practical approaches, in terms of study-subject sampling
and data analyses. To compare these approaches, we
consider the power of the corresponding test statistics.

The test can be used—and is popular—for testing2x

for association on the basis of random samples of case
patients and control individuals; this is the design that
corresponds to measures 1 and 3. The df is , wherek � 1
k is the number of alleles at the marker locus being
tested. Let the tilde (∼) denote an estimated value from
the sample, for the type 1 measure

k 2˜ ˜(p � p )! 1iFy T iFy T2x = 2n . (14)�1 ˜ ˜p � pi=1 ! 1iFy T iFy T

For the type 3 measure,

k 2˜ ˜(p � p )1 !iFy U iFy T2x = 2n ,�3 ˜ ˜p � pi=1 1 !iFy U iFy T

where denotes the total sample sizes of individuals2n
with (case patients) and those with (controly ! T y 1 T
individuals). The test corresponds to the test used2 2x x1 cc

elsewhere (Nielsen et al. 1998). Under the alternative
hypothesis of LD, the noncentrality parameters of and2x1

statistics (Meng and Chapman 1966) are, respectively,2x3

k

2l = 2n (p � p ) /p � p� ! 1 ! 11 iFy T iFy T iFy T iFy T
i=1

k

2= 2n d /{J (1 � J )[2J (1 � J )p d y ! T� 1 T T T T i
i=1

( )� 1 � 2J d ]} , (15a)T i

where

d = [p(f � f ) � (1 � p)(f � f )]D , (15b)i 11 12 12 22 A i1

and

k 2(p � p )! 1iFy T iFy U
l = 2n�3 p � pi=1 ! 1iFy T iFy U

k 2 2(C /J � C /J ) DT T U U A i1= 2n , (16)�
2q � (C /J � C /J )Di=1 i T T U U A i1

where is the LD measure for allele A1 and the ithDA i1

marker allele. CT and CU are defined in equations (11c)
and (11d). It should be noted that the coefficient on the
left-hand side of equation (14) should be “2” rather than
“4” (as was seen—most likely as the result of an er-
ror—in Nielsen et al. [1998]).

The -test statistics for HW disequilibrium that cor-2x

respond to the type 2 and type 4 measures (Weir 1996)
are as follows:

k 2 2˜ ˜(P � p )! !iiFy T iFy T2x = 2n�2 2p̃i=1 !iFy T

k k 2˜ ˜ ˜(P � 2p p )! ! !ijFy T iFy T jFy T�2n , (17)� � ˜ ˜2p p!i j i ! !iFy T jFy T

where 2n is the number of individuals with . They ! T
test can also be performed in individuals with2x y 12

. In this study, for the test, we examined only those2U x2

individuals with . The test corresponds to the2y ! T x2

test used elsewhere (Nielsen et al. 1998).2xHW

For the type 4 measure, the corresponding test statistic
is
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k 2 2 2 2˜ ˜˜ ˜(P � p ) � (P � p )! 1iiFy T i iiFy U i2x = 2n�4 2p̃i=1 i

k k 2 2˜ ˜˜ ˜ ˜ ˜(P � 2p p ) � (P � 2p p )! !ijFy T i j ijFy U i j�2n ,� � ˜ ˜2p p!i j i i j

where is the estimated average frequency of the ithp̃i

marker allele in the combined sample of individuals with
and those with . The total sample size is 2n.y ! T y 1 T

n individuals are from the bottom end of the phenotype
distribution, and the other n individuals are from the
top end. has df, and has2 2x [k(k � 1)/2] x [k(k � 1) �2 4

df. Equation (17) corresponds to equation (5) in the3]
study by Nielsen et al. (1998). It should be noted that,
in equation (5) in the study by Nielsen et al. (1998), the
coefficient of the first term should be 2 rather than 1
(again, this is presumably the result of an error). Under
the alternative hypothesis of linkage and LD between
the marker locus and the QTL, the noncentrality pa-
rameters of the and statistics are, respectively,2 2x x2 4

k k 2(J d � d d )T ij i j
l = 2n , (18)� �2 2J (J p � d )(J p � d )i j T T i i T j j

where pi is the population frequency of the ith marker
allele. In equation (18), . Dri measuresd = � � f D Dij r s rs ri sj

the LD between the ith marker allele (with frequency pi)
and the rth QTL allele (with frequency qr). D = P �ri ri

, where Pri is the population frequency of the hap-p qi r

lotype ArMi. When summed over all the alleles at either
the marker or the QTL locus, . mea-� D = � D = 0 di ri r ri ij

sures genotypic disequilibrium at the marker loci (for
details, see Nielsen et al. [1998]). and are definedd di j

in the same manner as in equation (15b).

k 2 2 2 2¯ ¯(P � p ) � (P � p )! 1iiFy T i iiFy U i
l = 2n�4 2p̄i=1 i

k k 2 2¯ ¯ ¯ ¯(P � 2p p ) � (P � 2p p )! !ijFy T i j ijFy U i j�2n .� � ¯ ¯2p p!i j i i j

The analytical relationship between and Dri cannotl4

be easily obtained, especially for the multiple-allele sit-
uation. The analytical relationship is not important for
our investigation or for the practical applicability of our
methods. Our simulation shows that there is a positive
and monotonic relationship between and Dri.l4

With under various parameters, the expectedk = 2
power of the , , and tests can be compared di-2 2 2x x x1 2 3

rectly, by comparison of the noncentrality parameters
, , and , since they all have df = 1. The detailedl l l1 2 3

statistical properties (power and size) of these tests were
extensively investigated by means of computer simula-
tions. It can be shown analytically that, for the two-

allele model, the statistics ( , , , and ) are mono-2 2 2 2x x x x1 1 3 4

tonic functions of , as was substantiated in theDA M1

computer simulations of the present study. Therefore,
they can also serve as disequilibrium measures in QTL
fine mapping, since they have the advantage that they
are always positive.

Computer Simulations

To substantiate our theoretical results and to illustrate
and compare the statistical properties of the various tests
outlined above, we performed extensive computer sim-
ulations. The computer simulations were performed un-
der a range of parameters and population-sampling
strategies (one-side extreme versus two-side extremes,
and various percentiles selected, etc.). As seen elsewhere
(Nielsen et al. 1998), evolving populations segregating
for a biallelic QTL and biallelic markers were simulated
under random mating. The simulation parameters were
as follows: frequency (p) of allele A1 at the QTL and
that ( ) of allele M at a marker locus, the ratio ,p d/aM

thresholds T and U and associated and , h2 resultingJ JT U

from the QTL, and sample size (2n), etc. Without loss
of generality, was set to 1.0 throughout, in the sim-2jE

ulations used in the present study. The ratio repre-d/a
sents the genetic models simulated. 1 1d/a = 1, , 0, � ,2 2

and �1 represents, respectively, dominant, partial dom-
inant, additive, partial recessive, and recessive genetic
models at the QTL. Unless otherwise specified, we con-
sidered a set of dense marker loci that are positioned at
0.25-cM intervals and that span 0–2 cM on both sides
of the QTL. In simulations, recombinations between the
QTL and the marker locus were independent—that is,
there was no interference. The recombination rate was
obtained from the physical distance between the QTL
and the marker locus, by use of Haldane’s map function
(Ott 1991).

Under a specific genetic model, the population started
at generation G0, with complete association between al-
lele A1 at the QTL and a marker allele M. Then the
population evolved for 50 generations, under random
mating and genetic drift. To facilitate comparison, as in
the study by Nielsen et al. (1998), we retained the first
100 populations for which, after 50 generations, the
difference in p’s at the start and at the end of evolution
do not differ by more than 5% of that at the G0 gen-
eration. Unless otherwise specified, the effective popu-
lation size is 15,000. The genetic drift under such a pop-
ulation size (Ne) is extremely small. On average, the
heterozygosity decreases by ∼( ) per generation11 � 2Ne

(Crow and Kimura 1970), as a result of random genetic
drift. Thus, the heterozygosity at the end of evolution
should be, on average, 199.8% of that at generation G0.
For such a large population size and for minor effects
resulting from genetic drift, as seen elsewhere (Nielsen
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Figure 1 Illustration of the three- and five-point moving-average methods for QTL fine mapping done by use of the measure qexcess. If
there are L markers genotyped, then there are L raw-data points of the point-wise disequilibrium measures. As is apparent from the figure,
from these L raw-data points, there will be L-2 and L-4 data points, respectively, generated from the moving three- and five-point averages.
The peaks of these three- or five-point averages indicate that the QTL is located nearby. The true location of the QTL is 0 on the X-axis. The
data were obtained from one simulation, with the use of the following parameters: , , , ; 100 extreme individuals2p = .1 p = .2 2n = 200 h = .20M

were sampled from the bottom 10%, and 100 were selected from the top 10% of the phenotypic distribution, for computation of raw qexcess

values (equation [11a]). The measures qexcess(1), qexcess(3), qexcess(5) indicate the data for the raw qexcess value and for the three- and five-point
moving averages of qexcess, respectively.

et al. 1998), we did not adjust for genetic drift at the
marker loci.

In simulations, we first compared three quantitative
genetic models that, according to equations (1) and (2a),
(2b), and (2c), are essentially equivalent to the first three
complex disease models in table 1 of a study by Nielsen
et al. (1998). Note that the multiplicative model used
by Nielsen et al. (1998) was not investigated, since the
multiplicative model for a QTL can easily be trans-
formed into an additive model by means of a simple log
transformation of the quantitative data. This maneu-
verability of quantitative trait and a range of selectable
thresholds render that the HW disequilibrium exists in
extreme samples if and only if the LD between the QTL
and marker loci exists in the whole population.

We compared statistical properties (power and size)
for different tests, under six different genetic models with

and �1. We then compared all these1 1d/a = 1, , 0, � ,2 2

tests under a range of plausible parameter space of p,
pM, J T, h2, and 2n. Since changing these parameters has
similar effects on different tests, we often presented re-
sults for only one or two tests, which should be sufficient
to demonstrate our conclusions. Under each parameter
set and genetic model, we drew 5,000 appropriate sam-
ples (sampling with replacement)—each with 2n indi-
viduals—from each of the 100 simulated populations,
to perform various statistical tests. The percentage of
times that the null hypothesis of no disequilibrium was
rejected was recorded for each test. This percentage is

the statistical power of a test when the populations were
simulated under the alternative hypotheses of LD, and
it is the size (type I error) of a test when the simulations
were performed under the null hypothesis of no LD. In
simulations, we investigated sampling for (1) individuals
with ( test), (2) individuals with and2y ! T x y ! T y 12

( test), and (3) individuals with and those with2T x y ! T1

( and tests).2 2y 1 U x x3 4

In practice, the position of a QTL or a disease-sus-
ceptibility locus is fine mapped by the peaks of the dis-
equilibrium measures and/or by the test statistics that
reflect the degrees of disequilibrium. To indicate the like-
lihood of success of QTL fine mapping from these peaks,
we explored the probability that the peaks fall within a
certain distance from the QTL position (the power of
QTL fine mapping). To guard against noisy distributions
of the disequilibrium measures or test statistics, as has
occurred elsewhere (Feder et al. 1996), we located the
peaks by means of the j-point moving-average method
(see figure 1 in the present study and figure 2 in the study
by Feder et al. [1996]). We also tested, in simulations,
a series of problems that are of practical significance.
For example, we investigated the power of QTL fine
mapping within a certain distance of the peaks, by (1)
comparing the performance of various disequilibrium
measures and test statistics with the performance of the
j-point moving-average method with various j’s (fig. 2)
and (2) by comparing the best and worst constellation
of QTL and marker positions for QTL fine mapping (fig.
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Figure 2 Comparison of QTL fine mapping by use of different average analyses (three-, five-, and seven-point moving averages) and by
use of the raw measures themselves. The qexcess was used for illustration. In simulations, , , , and , and extreme2p = .1 p = .2 2n = 200 h = .20M

samples from the bottom 10% and the top 10% of the population were used.

3). The best constellation occurs when one of a series
of markers is located at the QTL. The worst constella-
tion occurs when the QTL is located in the middle of
two of a series of markers. We also compared the power
of QTL fine mapping under various sample sizes (2n),
sample-selection criteria (5th, 10th, 15th, bottom, and
top percentiles of the populations) for the study, and
various ’s (fig. 4).2h

In all previous simulations, markers are densely geno-
typed at intervals of ∼0.25–0.20 cM, as is specified on
the respective figures. In practice, to fine map a QTL on
the basis of genomic regions of ∼30 cM, it is expensive
to genotype the ∼30-cM regions with a marker at in-
tervals of ∼0.20 cM. To reduce the cost, we propose a
two-stage procedure for QTL fine mapping. In the first
stage, we genotype the ∼30-cM region with markers at
1-cM intervals and locate the peaks of the disequilibrium
measures or test statistics. In the second stage, we ge-
notype a marker at 0.20-cM intervals, to saturate the
genomic region of ∼3 cM on both sides of the peak
located in stage 1. The performance of such a two-stage
genotyping procedure was investigated in simulation
(fig. 3).

Results

Statistical Properties of the Two Tests ( and ) for2 2x x1 3

the Three Quantitative Genetic Models Comparable to
Those of Nielsen et al. (1998) for Complex Diseases
(fig. 5)

The power results for the three quantitative genetic
models closely agree with the corresponding results of

Nielsen et al. (see fig. 1 of Nielsen et al. [1998]) for
complex genetic diseases. This demonstrates the gener-
ality of quantitative genetic models for modeling com-
plex genetic diseases. It also substantiates the no-
tion—reflected by the framework of equations (13a) and
(13b)—that, by selection of a threshold, genetic models
of quantitative traits and complex genetic diseases are
interchangeable. Thus, the analytical methods developed
for mapping complex disease–susceptibility locus can of-
ten be directly adopted for QTL mapping by selection
of appropriate threshold values.

In agreement with the findings of Nielsen et al. (1998),
the power of the test for HW disequilibrium in the ex-
treme bottom samples with is generally higher thany ! T
that for the direct test for LD, by use of samples with

(case patients) and (control individuals) un-y ! T y 1 T
der recessive genetic models, and it is generally lower
under the additive model. Under the additive model, if
the marker is extremely close to the QTL or is at the
QTL (within 0.25 cM), then the HW test has the same
power as the LD test. Under recessive model 1, when
the marker is 1∼1.3 cM away from the QTL, the test
for LD is slightly more powerful than the test for HW.
This result is a little different from the results of the
study by Nielsen et al. (1998), in which the HW test
was found to always be more powerful than the LD test
under the recessive model 1. However, comparison of
noncentrality parameters computed, by use of equations
(15a) and (16), from samples (estimated) with those
from the whole population (theoretical) revealed the
same pattern that corresponds to the power for the re-



Figure 3 Two-stage QTL fine mapping and comparison of the power of QTL fine mapping under the best (panels a and c) and worst
(panels b and d) constellations of the QTL and the markers and with various disequilibrium measures or test statistics. The “best” and “worst”
constellations refer to instances when the QTL position is the same as one marker and when the QTL is in the middle of two markers, respectively.
In simulations, , , , and . The three- and five-point moving-average methods were used, respectively, in the first2p = .1 p = .2 2n = 200 h = .20M

stage (panels a and b) and in the second stage (panels c and d) of QTL fine mapping. In the first stage, -test statistics and the qexcess measure2x4

were used for HW and LD, with the use of 100 individuals from the bottom 10th percentile and 100 individuals from the top 10th percentile
of the population. In the second stage, , , , and statistics and DMM , FM , pexcess, and qexcess measures were used and compared. Since the2 2 2 2x x x x1 2 3 4

powers of , DMM, and FM are much smaller than those of the other measures or statistics, they are not presented. Panels a and b demonstrate2x2

the power of the first stage of QTL fine mapping, with genotyping of the genomic region at 1-cM intervals. Panels c and d demonstrate the
power of QTL fine mapping, with genotyping of the genomic region at 0.2-cM intervals around the peaks obtained in the first stage. The
genetic effect of the QTL is partial recessive for simulations in this figure and in figures 2 and 4.



Figure 4 Performance of QTL fine mapping under (a) various h2, (b) various sample sizes (2n), (c) various selection criteria of the samples
(5th, 10th, and 20th percentiles are respectively selected from the top and bottom distributions of the population), and (d) various degrees of
LD, as measured by at the G0 generation. and tests for HW and LD, with the use of samples from the bottom 10th percentile (1000 2 2D x xA M 3 41

individuals) and top 10th percentile (100 individuals) of the population, are illustrated. In simulations, unless otherwise specified, ,p = .1
, , and ; is the maximum amount of LD simulated at the G0 generation. After 50 generations of evolution, the2 0p = .2 2n = 200 h = .20 DM A M1

expected LD is .50 50 0D = (1 � c) DA M A M1 1



Figure 5 Statistical properties of the test (gray-shaded box) and test (blackened box). In simulations, and , and, in the2 2x x p = .1 p = .21 3 M

initial generation, and . Corresponding to model 1 used by Nielsen et al. (see table 1 in Nielsen et al. [1998]), the geneticP = .1 D = .08A M A M1 1

effects for the QTL (recessive 1) are: and ; corresponding to model 2 (recessive 2), and ; and correspondinga = �50 d = 50 a = �99.62 d = 99.62
to model 3 (additive), and . In these quantitative-trait models, . Sample sizes are . In the recessive 1, recessive2a = �23.45 d = 0 h = .99 2n = 200
2, and additive models, the bottom 6%, 10%, and 10% of the populations were defined as “affected,” corresponding to T values of ∼50, 99,
and 24, respectively. It can be easily verified, from equations (2a), (2b), and (2c), that, for the quantitative-trait model, , , and aref f f11 12 12

exactly the same as those in the three models used by Nielsen et al. (1998) for complex diseases. The symbols for power in the three plots
represent the range of the proportions of times that the null hypothesis of no disequilibrium was rejected for the 100 simulated populations.
The points joined by the connecting line are the medians, and the bottom and top edges of the boxes represent the sample 25th and 75th
percentiles; the whiskers extend the range of the results. For the size plot, the symbols represent the proportion of times a true null hypothesis
was rejected. The last two plots give the estimated and theoretical noncentrality parameters for the recessive 1 model.
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cessive 1 model. In addition, the sizes of the two tests
for the three models are all close to the expected theo-
retical level of .05. In Nielsen et al. (1998), the size of
the tests for LD, for the first three models, was always
lower than the expected 0.05 level, signaling potential
deviation from theoretical expectations in their simu-
lations. Therefore, our results should be robust. The size
of the HW test has larger variation than does the LD
test, which is consistent with the findings of Nielsen et
al. (1998).

Comparison of Statistical Properties of the Tests under
Various Genetic Models (fig. 6).

The relative powers of the four tests vary according
to different genetic models. In the recessive model, the
rank of the powers of different tests is 2 2 2x 1 x 1 x 12 4 3

. In simulations, is the LD test applied to samples2 2x x1 1

from the bottom 10% and the top 90% of the popu-
lations. is the HW test applied to samples from the2x2

bottom 10% of the population. and are, respec-2 2x x3 4

tively, LD and HW tests, both of which are applied to
samples from the bottom 10% and top 10% of the pop-
ulations. The rank of the powers of different tests is,
respectively, in the rest of the four2 2 2 2x 1 x 1 x 1 x3 4 1 2

models. The and tests differ little from each other2 2x x3 4

in these four models, particularly when the marker is
within 1 cM of the QTL. However, in the recessive
model, the test is significantly better than the test,2 2x x4 3

especially when the marker locus is within 1 cM of the
QTL. The power of the test, which is equivalent to2x2

the test used by Nielsen et al. (1998), is very un-2xHW

stable. In the recessive model, the test has the highest2x2

power, whereas in the rest of the models, it has the lowest
power. In particular, for the partial recessive model, its
power is ∼.05, which is equivalent to the type 1 error
rate. Therefore, the and tests that are applied to2 2x x3 4

the samples from two extreme ends of the phenotypic
distribution generally are the most powerful tests, and
the power of the test is the most robust one across2x4

different models. The sizes of the four tests all centered
around the expected .05 level for all the models tested,
thereby substantiating our simulation results. While the

test has the largest variation in size, the variations in2x2

size of the other three tests are relatively small and are
essentially the same.

Comparison of Statistical Power of the Tests under
Various Parameters with Partial Recessive Genetic
Effects (fig. 7)

In simulations, all the tests were examined. Since the
effects of changing various parameters are generally the
same for different tests, we presented the results for only
one or two tests (fig. 7). With increasing h2 of the QTL,
the power to detect disequilibrium at the marker locus

increases. Although the power of the test is almost2x4

uniformly more powerful than that of the test, the2x2

increase of power with increasing h2 was more dramatic
for the test than it was for the test. Furthermore,2 2x x2 4

the increase is larger for markers that are close to the
QTL compared with those that are far away. With in-
creasing sample sizes (2n), the power to detect disequi-
librium increases. The increase is much larger for mark-
ers that are far away from the QTL than it is for those
close by the QTL. This conclusion is also true for the
effect of increasing stringency of selection criteria of the
samples (from the 20th percentile, to the 10th percentile,
to the 5th percentile of the population, respectively).
With an increasing degree of LD between markers and
the QTL, the power increases. Although we only pre-
sented results for the effects of various degrees of LD
through changing p while fixing pM, our simulation re-
sults (not presented here) show that the effects are the
same for various degrees of LD by changing pM while
fixing p in simulations.

The Power of QTL Fine Mapping

Recall that QTL fine mapping is achieved through the
peaks of the disequilibrium measures or test statistics.
The power of QTL fine mapping is defined as the prob-
ability that the peaks fall within a certain distance from
the QTL. For the two-stage fine-mapping procedure (fig.
3), in the first stage, with the measures qexcess and , the2x4

power of QTL mapping is 199% for a physical distance
of ∼1 cM, when . If , the data not shown2 2h = .2 h = .05
indicate that the power is generally 199% for a distance
of 3 cM. In the second stage, the power is generally
197% for a distance of 0.5 cM. The above conclusion
is robust for different constellations of the QTL and
markers. Under the partial recessive model presented,
the power is low for DMM and that measure the HW2x2

disequilibrium in samples with (data not shown),y ! T
corresponding to the pattern in figure 2. However, the
power of the other disequilibrium measures and test sta-
tistics is quite high (fig. 3c and d). The rank of the power
of these disequilibrium measures and test statistics is

. Generally speaking, with2 2 2q 1 x 1 x 1 p 1 xexcess 3 4 excess 1

the measures of disequilibrium by qexcess, , , and pex-
2 2x x3 4

cess, the QTL can be located within 0.5 cM of the peaks
with 195% probability and within 1 cM of the peaks
with 199.5% probability. For the measures qexcess and

, the power to locate the QTL to a region within 0.52x4

cM of the peaks is ∼99%.
Use of the moving-average method greatly improved

the power for QTL fine mapping over the raw disequi-
librium measures. For a distance 10.3 cM from the QTL,
the three-, five-, and seven-point moving averages gen-
erally have roughly the same power (fig. 2). The power
of the QTL fine mapping increases rapidly, with an in-



Figure 6 Comparison of statistical properties of different tests under various genetic models. Different symbols were used to differentiate
the four tests, as is indicated on the first plot. On each plot, the data are the mean and SD at each marker (for the power plots) or for each
model (the size plot), over 100 simulated populations, with each population sampled 5,000 times. Models 1–5 on the size plot correspond,
respectively, to recessive (1), partial recessive (2), additive (3), partial dominant (4), and dominant (5) models. For models 1–5, the genetic
parameters (a and d) are, respectively, (�2.51, 2.51), (�1.85, 0.93), (�1.18, 0), (�0.83, �0.42), and (�0.64, �0.64). For all the simulations
in this figure, , , , and .2h = .20 p = .10 p = .2 2n = 200M



Figure 7 Comparison of statistical power under various parameters, with partial recessive genetic effects. In panel (1), the results for
and tests are presented. In the remaining three panels (2–4), only the results for the test are presented. Unless otherwise specified in2 2 2x x x2 4 4

the panels, , , sample size , and , and extreme samples from the bottom 10% (for the test) or those from the2 2p = .1 p = .2 2n = 200 h = .20 xM 2

bottom 10% and the top 10% of the population (the sample selection) were used for testing. Different levels of h2 in panel (1), 2n in panel
(2), sample selection in panel (3), and (in the initial population at the generation) in panel (4) were indicated in the respective panels.D GA M 01

in panel (4), and various levels of were achieved by varying p for allele A1, which is in complete LD, in theD = P � pp 7 p = .5 DA M A M M M A M1 1 1

, with the marker allele M.G0
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creasing h2 of the QTL (plot a of fig. 4). For a QTL with
, the power for a distance of 0.3 cM from the2h 1 .3

peaks is generally 199%. Even for a QTL with 2h =
, the power is ∼97% for a distance of 0.7 cM from.05

the peaks. By contrast, a QTL with is usually2h = .05
beyond the practical power to be detected by almost all
of the other current linkage analyses and/or QTL-map-
ping methods. The power of QTL fine mapping increases
rapidly with increasing sample sizes (2n) (fig. 4b). While

is simulated in all other simulations and is of2n = 200
high power—even if —the power to detect the2n = 50
QTL is quite decent and is 195% for a distance of 0.7
cM from the peaks. However, as can be seen, to accu-
rately locate the QTL, the sample sizes should be as large
as possible. For example, if , the probability2n = 400
that the peak is the QTL per se is ∼84% and is 199%
for a distance of 0.3 cM from the QTL. The power of
QTL mapping increases with the stringency of the sam-
ple selection (fig. 4c). If the samples are selected from
the top and the bottom 5th percentiles of the population,
then the peaks will be on the QTL with 85% probability
and will be within 0.3 cM of the QTL with 199% prob-
ability. Even if samples are selected from the top and
bottom 30% of the population, the peaks have a 55%
probability of being the QTL and a 95% probability of
being within 0.5 cM of the QTL. The power of QTL
fine mapping increases with an increasing disequilibrium
between markers and the QTL (fig. 4d)—a critical de-
terminant of the success of the QTL fine-mapping
approach.

Discussion

Stimulated by the work of Feder et al. (1996) and Niel-
sen et al. (1998), we have developed and investigated
several methods with which to accurately localize a QTL
from extreme population samples. These are based on
a large established genomic region (∼30 cM) that con-
tains the QTL. The QTL can be fine mapped by ex-
amination of HW disequilibrium and LD at a series of
closely linked marker loci that cover the genomic po-
sition for the QTL. The test can be performed for sam-
ples of individuals belonging to either high or low per-
centiles of the phenotype distribution or for combined
samples of these extreme individuals. The statistical
properties (the power and the size) of the tests of this
approach were investigated and were compared exten-
sively under various genetic models and parameters for
the QTL and the marker locus. Based on the results, a
two-stage procedure that uses extreme samples and dif-
ferent tests (for HW and LD) is suggested for QTL fine
mapping. This procedure is economic, efficient, and
powerful and can generally narrow (with 195% prob-
ability) a genomic region containing QTL from ∼30–1

cM, a range that renders physical mapping feasible to
clone the QTL.

Although numerous approaches of association, link-
age, and/or LD mapping have been and continue to be
developed for complex diseases, their direct relevance
to QTL mapping of quantitative traits has seldom, if
ever, been explicitly or correctly given. The development
of mapping methods for qualitative and quantitative
traits has largely been done in isolation. Nielsen et al.
(1998) correctly pointed out that much of their theory
could be applied to the study of quantitative traits. In
fact, as can be seen from equations (13a) and (13b), to
bridge the mapping methods from complex diseases and
quantitative traits, the penetrances are functions of the
genotypic values, the threshold, and the environmental
variance. Equations (13a) and (13b), although simple,
may actually serve as a bridge that organically joins
mapping methods for complex diseases and for quan-
titative traits in an integrated framework. Therefore,
many methods that are developed for qualitative disease
traits (see Spielman et al. 1993; Sham and Curtis 1995a,
1995b; Kaplan et al. 1997; Xiong and Guo 1997a;
Spielman and Ewens 1998) can be directly adopted for
quantitative-trait mapping by specification of a thresh-
old in the quantitative-trait distribution. In many situ-
ations, the methods for disease traits not only can be
directly adopted but also can be extended to improve
the mapping power for QTLs. This can be achieved by
the ability (demonstrated in the present study) to em-
ploy samples from the discontinuous top and bottom
percentiles of the population (e.g., with andy ! T y 1

) for the quantitative traits. However, for complexU
traits with continuously distributed liabilities, samples
can only be contrasted in terms of affected and non-
affected individuals. On the scale of an unmeasurable
underlying liability, affected individuals and nonaf-
fected individuals reflect the continuously neighboring
samples with and . To test LD, samples ofy ! T y 1 T
the discontinuous bottom and top percentiles (those
having individuals with and ) are usuallyy ! T y 1 U
much more powerful and robust than are the neigh-
boring bottom and top samples (those having individ-
uals with and ). For example, the test that2y ! T y 1 T x3

employs samples from the bottom 20 and top 20 per-
centiles is more powerful and robust than is the test2x1

that employs samples from the bottom 20 and top 80
percentiles. Generally speaking, the measures and sta-
tistics for HW and LD in samples from the two dis-
continuous ends of the phenotypic distribution have the
largest power and are most robust across various genetic
models. This is understandable, since the contrast of
allele or genotype frequencies (generated as a result of
population LD) in the samples of discontinuous top and
bottom percentiles is much larger than that in the sam-
ples of continuous top and bottom percentiles. There-
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fore, the ability, in the present study, to sample discor-
dant extreme individuals for quantitative traits usually
may confer higher power to locate QTLs than to locate
equivalent disease-susceptibility loci, as defined by
equations (13a) and (13b).

For our new QTL-mapping approach, various mea-
sures and statistics for HW and LD were examined.
Their relative powers largely depend on specific genetic
effects. The absolute powers of various measures and
test statistics for QTL fine mapping depend on a number
of factors, such as the h2 resulting from the QTL, the
degree of LD, sample size, criteria for sample selection,
etc. Generally speaking, as is revealed by the extensive
computer simulations used in the present study, with
100 individuals from the top 10th percentile and 100
from the bottom 10th percentile of the population, the
approach used in this study has extremely high power
and accuracy for locating a QTL. For a specific sample
selection, if multiple disequilibrium measures and test
statistics are applicable, they should all be applied re-
spectively in analyses. Various measures and test statis-
tics not only may have different power for different
specific genetic effects of the QTL (which is unknown),
but they also can provide a mechanism with which to
examine the consistency of each other. This is actually
the approach adopted by Feder et al. (1999).

LD is a complex phenomenon that can result from
random genetic drift, selection, mutation, and popula-
tion history (such as population expansion, population
admixture, and population bottlenecks, etc. [Hartl and
Clark 1989]). The degree of LD is determined by a
number of parameters associated with the aforemen-
tioned processes that generate LD, all of which are gen-
erally unknown, in practice, for real populations. Re-
gardless of the detailed process and mechanism that
generate the LD, what is essential and relevant to LD
fine-mapping methods are the amount and pattern of
LD between the QTL (or the disease locus) and the
markers closely located in the genome. Therefore, in the
present study, the LD generated in the simulation in the
final generation should be of general significance to the
LD generated by other processes, with regard to gene
fine mapping by means of the LD methods.

It is well known that, if there is population stratifi-
cation, spurious association may result between a par-
ticular marker locus and diseases or quantitative traits
in association studies. However, it should be noted that,
in the present study, the QTL fine-mapping approach
used is based on a series of markers, instead of one or
two. Despite extensive molecular studies for population
subdivision, it has never been found that populations
(especially human populations) are differentiated at a
series of closely linked loci. Therefore, population strat-
ification is unlikely to exist for a series of closely linked
loci, even in a mixed sample of different populations.

Therefore, even if population stratification exists at one
or two marker loci, their effects are likely to be dimin-
ished with use of the moving-average method in the
QTL fine-mapping approach used in this study. This is
because the peak is located by the averages of the neigh-
boring points. Importantly, the current mapping ap-
proach is for QTL fine mapping based on established
genomic regions that contain a QTL established from
previous linkage and/or QTL mapping analyses that
should be robust to population stratification. Therefore,
spurious results from our fine-mapping approach seem
unlikely. This is especially true if we select samples care-
fully, with regard to the ethnic and geographic origins
of the study subjects, so that they are from homoge-
neous populations with minimum population subdivi-
sion. It is noted that, although the qualitative effects of
population stratification have long been recognized, the
detailed quantitative effects of various degrees of pop-
ulation stratification on various relevant mapping meth-
ods have seldom, if ever, been investigated. The effects
of various degrees of population subdivision on our fine-
mapping approach and on other approaches will have
to come from extensive simulation studies that have yet
to be performed. Results of a recent investigation (Deng
et al. unpublished data) suggest that the LD methods
used by Feder et al. (1996) and Nielsen et al. (1998),
as well as those developed in the present study, that
employ extreme samples are fairly robust, compared
with customary case-control studies, to a range of var-
ious degrees of population admixture, in which HW
equilibrium is violated. However, in the presence of ap-
parent population substratification in the sample, the
methods developed, in this study, for randomly mating
populations should be treated with caution in appli-
cation. Methods, such as TDT (Allison 1997; Rabinow-
itz 1997), for quantitative-trait analyses can be adopted.
Research is being conducted (Deng et al. unpublished
data) to develop fine-mapping techniques that are sim-
ilar to the ones developed in this study but that employ
TDT that should be robust to the confounding of pop-
ulation admixture.

It is known that if there are multiple QTLs closely
linked in the genome, current linkage analyses and/or
QTL-mapping methods generally yield biased and in-
accurate positions for these QTLs, even if linkage can
be established in this genomic region (Lynch and Walsh
1998). The high power and extraordinary accuracy of
this study’s fine-mapping approach, which can pinpoint
a single QTL to a genomic region from ∼30–1 cM, may
offer an opportunity to separate QTLs that are closely
linked in the genome—a hypothesis that needs to be
examined in our future studies. It is also known that
QTL mapping and linkage analyses (especially those for
the whole genome) usually suffer from inflated type 1
errors. That is, many of the identified QTLs may be
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spurious. Confirmation of the identified QTL genomic
regions, by means of regular QTL mapping and linkage
analyses, is notoriously difficult and expensive, and few
replications have been achieved as a result of the lower
statistical power. For example, the extensive studies of
body-mass index or obesity (Chagnon et al. 1998) dem-
onstrated this difficulty. The ability of our approach to
exclude a spurious QTL genomic region is not known
but is likely to be high, as is suggested by its high power
to fine map a QTL. We will extensively investigate this
issue in future studies, by devising appropriate statistical
measures and tests for exclusion analyses of QTLs. In
the present investigation, random genetic drift is ig-
nored, which is reasonable for QTL fine mapping in
large populations. However, future studies that account
for genetic drift (e.g., see Devlin et al. 1996) will be
pursued for the current approach. As a direct extension
of the work by Feder et al. (1996) and Nielsen et al.
(1998) for disease-locus fine mapping, as in their de-
velopment and successful application of the method, our
investigation of QTL fine mapping was conducted under
ideal conditions of ignoring new mutations at the
marker locus and the QTL. LD fine mapping that in-
corporates mutations (especially at the marker loci) is
of interest and represents the direction that we are going
to pursue to fine-tune the work of both Feder et al.
(1996) and Nielsen et al. (1998) and the work in the
present study. The approach for such future work can
be pursued by means similar to those used by, for ex-
ample, Xiong and Guo (1997a).

There are a few advantages in QTL fine mapping,
compared with the fine mapping of disease-susceptibil-
ity loci with use of the HW-testing approach. As pointed
out by Nielsen et al. (1998), for disease-susceptibility
loci, if the genotypic penetrances are multiplicative, then
the HW approach is not supposed to be of any power.
For a quantitative trait, if the locus genetic effects are
multiplicative, then the simple log transformation of the
quantitative-trait values can yield additive within-locus
genetic effects; thus, the HW-testing approach can still
be powerful. In contrast, an equivalent simple data
transformation is not available for complex binary-dis-
ease traits to render the HW test powerful. As was cor-
rectly pointed out by Nielsen et el. (1998), an absence
of HW disequilibrium does not necessarily imply that
a marker locus and a QTL are not in LD. Underlying
all the measures and test statistics of the current ap-
proach is the LD between marker loci and the QTL.
The LD is captured and magnified in extreme samples,
where the QTL genotypes and alleles are dispropor-
tionately represented. The disequilibrium is the highest
at the QTL locus, since it underlies the sample selections
of extremes. The phenotypically neutral markers will
also be disproportionately represented in the extreme
samples if they are linked to and are in LD with the

QTL. As the degree of linkage and LD decreases, the
disproportional representation of the marker alleles and
genotypes will also decrease. It is this correlation be-
tween disequilibrium (HW and/or LD) and the physical
distance between a panel of linked marker loci and a
QTL that provides a basis for QTL fine mapping with
use of the peaks of the disequilibrium measures and/or
test statistics.
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