
Bone 79 (2015) 43–51

Contents lists available at ScienceDirect

Bone

j ourna l homepage: www.e lsev ie r .com/ locate /bone

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Original Full Length Article
Differentially circulating miRNAs after recent osteoporotic fractures can
influence osteogenic differentiation
Sylvia Weilner a, Susanna Skalicky b, Benjamin Salzer a, Verena Keider a, Michael Wagner b, Florian Hildner d,
Christian Gabriel d, Peter Dovjak e, Peter Pietschmann f, Regina Grillari-Voglauer c,
Johannes Grillari a,b,c,⁎, Matthias Hackl a,b

a CD Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU — University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
b TAmiRNA GmbH, 1190 Vienna, Austria
c Evercyte GmbH, 1190 Vienna, Austria
d Red Cross Blood Transfusion Service of Upper Austria, Austrian Cluster for Tissue Regeneration, 4020 Linz, Austria
e Salzkammergut-Klinikum Gmunden, 4810 Gmunden, Austria
f Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria
⁎ Corresponding author at: Department of Biotechnolo
Resources and Life Sciences Vienna, Muthgasse 18, 1190 V

E-mail addresses: johannes.grillari@boku.ac.at (J. Grilla
matthias.hackl@tamirna.com (M. Hackl).

http://dx.doi.org/10.1016/j.bone.2015.05.027
8756-3282/© 2015 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 14 December 2014
Revised 8 May 2015
Accepted 21 May 2015
Available online 28 May 2015

Edited by Mark Cooper

Keywords:
Osteoporosis
Circulating microRNA (miRNA)
Bone
Quantitative PCR (qPCR)
Osteogenic differentiation
Mesenchymal stem cells
Osteoporosis is the consequence of altered bonemetabolism resulting in the systemic reduction of bone strength
and increased risk of fragility fractures. MicroRNAs (miRNAs) regulate gene expression on a post-transcriptional
level and are known to take part in the control of bone formation and bone resorption. In addition, it is known
that miRNAs are secreted by many cell types and can transfer “messages” to recipient cells. Thus, circulating
miRNAs might not only be useful as surrogate biomarkers for the diagnosis or prognosis of pathological condi-
tions, but could be actively modulating tissue physiology.
Therefore, the aim of this study was to test whether circulating miRNAs that exhibit changes in recent osteopo-
rotic fracture patients could be causally related to bone metabolism.
In the first step we performed an explorative analysis of 175 miRNAs in serum samples obtained from 7 female
patients with recent osteoporotic fractures at the femoral neck, and 7 age-matched female controls. Unsuper-
vised cluster analysis revealed a high discriminatory power of the top 10 circulatingmiRNAs for patients with re-
cent osteoporotic fractures. In total 6miRNAs, miR-10a-5p, miR-10b-5p,miR-133b, miR-22-3p, miR-328-3p, and
let-7g-5p exhibited significantly different serum levels in response to fracture (adjusted p-value b 0.05). These
miRNAs were subsequently analyzed in a validation cohort of 23 patients (11 control, 12 fracture), which con-
firmed significant regulation for miR-22-3p, miR-328-3p, and let-7g-5p. A set of these and of other miRNAs
known to change in the context of osteoporotic fractureswere subsequently tested for their effects on osteogenic
differentiation of humanmesenchymal stem cells (MSCs) in vitro. The results show that 5 out of 7 testedmiRNAs
can modulate osteogenic differentiation of MSCs in vitro.
Overall, these data suggest that levels of specific circulatingmiRNAs change in the context of recent osteoporotic
fractures and that such perturbations of “normal” levelsmight affect bonemetabolism or bone healing processes.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Osteoporotic fractures are caused bydecreasedbone strength,which
can occur due to low bonemass andmicroarchitectural changes in bone
tissue [1]. Such fractures are the critical hard outcome of osteoporosis, a
disease that affects more than 75 million people in the United States,
Europe and Japan. With a lifetime fracture risk of 30%–40% (vertebral
gy, BOKU, University of Natural
ienna, Austria.
ri),

. This is an open access article under
or non-vertebral fractures), osteoporosis has an incidence rate similar
to that of coronary heart disease. Furthermore, with the exception of
forearm fractures, osteoporotic fractures are associated with increased
mortality. Most fractures cause acute pain and lead to patient hospital-
ization, immobilization and often slow recovery [2–4].

Recently, increased attention has been attributed to the importance
of microRNAs (miRNAs), small non-coding RNAs that regulate gene
expression [5], in the context of bone formation [6,7] aswell as bonedis-
ease [8]. For example, severalmiRNAswere shown to silence osteogenic
inhibitors during stemcell differentiation into osteocytes [9], tomediate
BMP-2 dependent osteoblast proliferation and differentiation [10], or
contribute to the regulation of WNT-signaling [11]. In vivo, the
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relevance of miRNA for bone remodeling was shown in studies of mice
with conditional knockout of Dicer in osteoclasts, which results in the
ablation of mature miRNA production in these cells. Compared to con-
trol strains, these mice exhibited significantly decreased number of os-
teoclasts and therefore bone resorption [12]. In addition, circulating
miRNAs have been identified as biomarkers for a variety of diseases, in-
cluding age-associated diseases [13]. In particular, a series of very recent
publications has identified differences in tissue and circulating miRNAs
in the serum of aged individuals [14] as well as fracture patients with
low versus normal bone mineral density [15] or altered BMD levels
without fractures [16].

Data exist, which show that circulating miRNAs can be taken up
by cells and thereby influence the recipient cell's behavior in the con-
text of diverse biological functions [17,18]. Therefore, based on the
importance of miRNAs for bone homeostasis and their extracellular
shuttling, we hypothesized that circulating miRNAs have the poten-
tial to be not only surrogate biomarkers (byproducts) of bonemetab-
olism, but actually markers with functional relevance to osteogenic
and/or osteoclast differentiation. As a consequence such circulating
miRNAs might find future applications as therapeutic targets in
order to influence bone metabolism, similar to recently established
drug targets derived from important signaling pathways such as
WNT or RANKL [19,20].

In order to explore this hypothesis, we first quantified the levels of
175 circulating miRNAs in serum samples from post-menopausal
women with recent femoral-neck fractures, validated the most promis-
ing candidates in an independent validation cohort, and selected a set of
the here identified as well as previously published circulating miRNAs
for functional characterization in the context osteogenic differentiation
of mesenchymal stem cells in vitro.

Materials and methods

Study population

Ethical approval for the analysis of human samples according to the
Declaration of Helsinki was granted by the Upper Austrian ethics
committee, and informed consent was obtained from all participants
in this study. Serum samples were obtained from 37 female post-
menopausal subjects, of which 19 had recently sustained osteoporotic
fractures at the femoral neck (ICD Codes S72.0 and S72.1). Osteoporotic
fractures were defined by being caused by low-impact trauma and pa-
tients' age N 65 years. All subjects were of white Caucasian descent
and were not undergoing chronic treatment with substances known
to affect bone metabolism such as anti-resorptive or bone anabolic
drugs or glucocorticoids. Patients with pathologic fractures were
excluded. High-trauma fractures were excluded similar to pathologic
fractures — defined as fractures due to local tumors or tumor-like le-
sions. Blood samples were drawn between 8:00 am and 10:00 am and
routinely tested for 25-OH Vitamin D3, and parathyroid hormone
(PTH). Bone mineral density (BMD) by DXA scans at the femoral neck
and calculated T-scores were only available for half of the patients,
and therefore not included in the analysis.

Cell culture

Subculturing
Subcutaneous adipose tissue was obtained under written consent

from patients during tumescence liposuction under local anesthesia at
the Red Cross Upper Austria. ASCs were isolated from 2 donors as
described before [21], termed HUF803 and HUF851, and cultivated in
DMEM-low glucose/HAM's F-12 (GE-Healthcare) supplemented with
4 mM L-glutamine, 10% fetal calf serum (FCS, Sigma) and 1 ng/mL
recombinant human basic fibroblast growth factor (rhFGF, R&D Sys-
tems) at 37 °C, 5% CO2 and 95% air humidity. Cells were passaged once
or twice a week at a split ratio of 1:4.
MicroRNA transfection
ASCs were transfected by electroporation using the Neon Transfec-

tion System (Life Technologies) according to the manufacturer's in-
struction. Briefly 100,000 ASCs were mixed with 10 μL buffer and 1 μL
of 10 μM miRNA. Subsequently electroporation (1400 V, 10 ms pulse
width and 3 pulses) was performed. Three days after transfection, dif-
ferentiation was started.

Osteogenic differentiation
For osteogenic differentiation transfected ASCs were seeded at a

density of 2 × 103 cell per well. 72 h after seeding cell growth medium
of ASCs was aspired and cells were cultivated in osteogenesis induction
medium DMEM-low glucose (GE-Healthcare), 10% FCS (Sigma), 4 mM
L-glutamine, 10 nM dexamethasone, 150 μM ascorbate-2-phosphate,
10 mM β-glycerol phosphate and 10 nM vitamin-D3.

Alkaline phosphatase assay (ALP assay)
Quantification of alkaline phosphatase activity was performed using

2 different donors of ASCs and 3 independent replicate wells each. In
order to quantify the activity of alkaline phosphatase, osteogenesis me-
dium was aspirated and cells were lysed in 100 μL ALP lysis buffer
(0.25% v/v Triton X-100 in 0.5 M 2-amino-2-methyl-1-propanol
(Sigma-Aldrich), 2.0 mMmagnesium chloride (VWR)) 7 days after in-
duction of osteogenesis. Subsequently the cell lysate was centrifuged
for 10 min at 13,000 ×g and 50 μL ALP Buffer A (0.5 M 2-amino-2-
methyl-1-propanol (Sigma-Aldrich)), 2.0 mM magnesium chloride
(VWR), and p-nitrophenylphosphate disodiumhexahydrate (Sigma-Al-
drich) were added to the supernatant per sample before it was incubat-
ed for 20min at room temperature. Finally 50 μL 0.2MNaOHwas added
to stop the reaction and absorption wasmeasured at 405 nm relative to
620 nm.

Alizarin staining
Quantification of calcium deposition by Alizarin staining was per-

formed using 2 ASC donors and 8 replicate wells each. Cells were fixed
for 1 h in 70% ethanol at −20 °C. After rinsing, cells were stained for
20 min with 40 mM Alizarin Red solution (Sigma). Subsequently cells
were washed with PBS until all traces of unbound dye were removed.
For quantification Alizarin was extracted for 30 min using 200 μL 0.1 M
HCL/0.5% SDS solution. The extracted dye was quantified at 425 nm.

RNA isolation
Serum samples were collected by centrifugation at room temperature

at 2000 ×g for 15 min after incubation at room temperature for 30 min,
and frozen at −80 °C for long term storage. Upon RNA isolation, serum
was thawed at 37 °C, centrifuged at 12,000 ×g for 5 min and 200 μL
serum was homogenized in 750 μL Qiazol containing 35 fmol synthetic
cel-miR-39-3p spike-in control. RNA isolation was performed using chlo-
roform extraction and ethanol precipitation following by purification
using the miRNeasy isolation kit (Qiagen, Germany) with the following
modifications from the standard protocol: 200 μL plasma was homoge-
nized in 750 μL Qiazol. Exactly 500 μL aqueous phase was taken and gly-
cogen (Ambion, TX) was added to a final concentration of 50 μg/mL and
precipitated with 750 μL 100% ethanol. Columns were washed three
times with RPE buffer and plasma-RNA was eluted once in 30 μL
nuclease-free water and stored at −80 °C. Quantitation of cel-miR-39-
3p by quantitative PCR was performed to ensure equal purification effi-
ciencies for all samples (Supporting Fig. 1A), and hemolysiswas identified
using a difference between miR-23a and miR-451a of 7 as cut-off [22].

RNA isolation from cells was performed by Trizol/chloroform extrac-
tion and isopropanol precipitation using glycogen as a carrier at 1 μg/μL
(Thermo Scientific). RNA pellets were washed twice with 70% EtOH, air-
dried and resuspended in 50 μL of nuclease-freewater. RNAconcentration
was analyzed photometrically at 260 nm as well as purity at 260/280 nm
and 260/230 nm using a NanoDrop (Thermo Fisher).
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microRNA qPCR analysis from cellular total RNA

Twomicroliters of total RNAwas diluted to 5 ng/μL and reverse tran-
scribed using the Universal cDNA Synthesis Kit II together with UniSp6
spike-in control to monitor the presence of enzyme inhibitors. Real-
time qPCR reactions were performed in 10 μL reaction volumes in trip-
licates using SYBR Green Mix (Exiqon, Denmark) and commercially
available LNA-enhanced miRNA primer assays (Exiqon, Denmark) and
assays for U6 and 5S rRNA as reference RNAs, respectively. PCR condi-
tions were 95 °C for 10 min, 45 cycles of denaturation (95 °C, 10 s)
and annealing/elongation (60 °C, 60 s), and melting curve analysis on
an LC 480 (Roche). Cp-values were calculated using the 2nd derivative
method and ddCt analysis was performed to calculate log2-fold differ-
ences between control- and miRNA-transfected samples.

microRNA qPCR analysis from serum total RNA

Real-time quantitative PCR (RT-qPCR) analysis of circulating
microRNAs was performed as previously reported [23]. In brief, screen-
ing of miRNA expression was conducted using 384-well serum/plasma
focus panels (Cat# 203842, Exiqon, Denmark), which cover 175 distinct
human miRNAs that have been repeatedly found to circulate in serum
or plasma. First, 4 μL of isolated RNAwas reverse transcribed in 20 μL re-
actions using the miRCURY LNA Universal RT reaction kit. UniSp3 and
UniSp6 are synthetic controls that were added at this step and subse-
quently analyzed to detect presence of enzyme inhibitors (Supporting
Fig. 1B). RT-reactions were diluted 50-fold prior to qPCR analysis and
each miRNA was assayed once per sample in a 10 μL reaction using
the Roche LC 480 Real-Time PCR System (Roche, Germany).

qPCR data analysis

Melting curve analysiswas performed andmiRNA PCR reactionswith
more than one peakwere excluded from the analysis. Amplification effi-
ciencies were calculated using algorithms similar to the linreg software
package. Efficiencies ranged between 1.8 and 2.1 for most miRNAs. Indi-
vidual reactions that gave efficiencies b 1.6 were excluded from the data
set. Background levels for eachmiRNAwere generated by assaying a “no
template” cDNA synthesis control on a full serum/plasma focus panel
plate. The majority of miRNA assays did not yield any signal and back-
ground Cp was set to 42. We required every miRNA assay to exhibit
signals N 5 Cps lower than the background value to be included in the
analysis. Normalization of Cp-values was performed based on the aver-
age Cp of the miRNA assays detected across all 14 samples (114 sam-
ples). Normfinder software was used to confirm that the stability of the
average Cp was higher than the stability of any individual miRNA assay
in the data set [24]. The following equation was used for normalization:
normalized Cp (dCp) = average Cp (114 assays) − assay Cp (sample).
This results in a delta Cp (dCp) value, which is a relative log2-
transformed measure for expression where higher values indicate a
higher concentration and lower dCp values indicate lower concentration
in plasma. All relevant raw and normalized data have been submitted to
NCBI's gene expression omnibus under the guidelines for minimal infor-
mation about qPCR experiments [25], and can be accessed under the
number GSE60230.

Statistical analysis

Quantitative PCR data
Hierarchical clustering using Euclidean distance and complete link-

age was performed in R using the “heatmap.2” function of the ggplot2
package. For the analysis of differentially regulated circulating miRNAs
normal distributionwas confirmed using Shapiro–Wilk test in GraphPad
Prism 5.0. Subsequently, two-sided t-tests were performed and p-values
were adjusted for multiple testing using Benjamini–Hochberg's method
for false-discovery rate calculation.
Markers of osteogenic differentiation
Statistical analysis of ALP and Alizarin quantitation between miRNA

transfected and control samples was determined using the Holm–Sidak
method,with alpha=5.000%. Each comparisonwas analyzed individu-
ally, without assuming a consistent SD.

Results

Donor and sample characteristics

In order to discover changes in circulating miRNA levels in post-
menopausalwomen suffering from low-trauma fractures at the femoral
neck, 37 serum donors were recruited (Table 1), 19 of which were ob-
tained from patients with recent fractures The majority of subjects
were free of co-morbidities (21 subject, 56.8%), while 7 subjects (4 con-
trols, 3 fracture, 18.9% total) were diagnosed with type-2 diabetes,
which was the most frequently observed co-morbidity.

Serum samples were taken within 14 days after surgery. During the
discovery phase 14 samples (7 fracture, 7 controls) could be analyzed.
For this purpose, post-menopausal women were selected with similar
distribution of age, vitamin D, and PTH. Differences were observed for
BMD at the femoral neck (not significant) and body mass index (BMI,
significant). The validation set consisted of 23 female post-menopausal
samples (12 fracture, 11 controls) with similar distribution of age, BMI,
vitamin D, and PTH levels between the control and fracture group. How-
ever, compared to the discovery group, age was significantly higher in
the validation group (Table 1).

Discovery sample analysis

For the discovery study sample and RNA quality were checked at
several stages during the analysis process. Cel-miR-39-3p was spiked
prior to RNA isolation and analyzed by qPCR to ensure consistent RNA
isolation (Supporting Fig. 1a). In addition, two synthetic spike-in
controls, UniSp3 and UniSp6, were added to the isolated RNA in order
to test for the presence of enzyme inhibitors (Supporting Fig. 1b). The
uniform Cp values obtained for all spike-ins confirmed successful RNA
isolation, reverse transcription and qPCR. Based on a recent study by
Blondal et al., the degree of contamination with erythrocyte RNA was
assessed by computing a hemolysis index (difference between miR-
23a-3p and miR-451a-5p), which is known to be highly present in
erythrocytes [22]. The results indicated relatively strong hemolysis
(index = 7) in five samples (Supporting Fig. 1c). Therefore we set
out to identify those miRNAs that are most affected by hemolysis by
correlating Cp-values to the hemolysis index across all 14 samples
(Supporting Fig. 2) using Pearson correlation. In total 10 miRNAs with
a Pearson correlation coefficient (PCC) N 0.9 (including miR-451a)
were identified and removed from the data set. Thus, a total of 165
miRNAs remained in the data-set.

Distribution of missing signals indicates no complete gain/loss of circulating
miRNAs in fracture patients

Out of 165 miRNAs, 114 (69%) gave valid signals (above back-
ground) in all 14 samples (Supporting Fig. 3a). In cases where signals
were found to be below background it cannot be discerned if this failure
to detect specific miRNAs (“NA-values”) is due to very low serum con-
centration,whichwould be of biological relevance, or if it is due to tech-
nical reasons. Therefore, the number and distribution of NA-valueswere
analyzed in detail: out of 165 features, 10 gave valid signals in less than
7 (b50%) of samples, which were removed from further analyses since
no differences in distribution between fracture and control samples
were observed (Supporting Fig. 3a). The remaining 41 features, which
gave valid signals in ≥50% of samples, but showed at least one missing
value were analyzed in detail for their distribution of valid values
(Supporting Fig. 3b). Two miRNAs, hsa-miR-1 and hsa-miR-154,



Table 1
Descriptive data of study participants.

Discovery Validation

Control SEM Fracture SEM Control SEM Fracture SEM

Number of samples 7 – 7 – 11 – 12 –
Age (years) 71.0 ±2.3 72.4 ±3.2 81.5 ±1.5 77.8 ±1.4
BMI (kg/m2)a 29.6 ±1.3 23.35 ±1.3 24.4 ±0.9 23.9 ±1.3
Vitamin D (μg/L) 20.1 ±4.2 15.0 ±2.4 18.4 ±3.3 19.0 ±3.9
PTH (ng/L) 42.4 ±3.9 55.2 ±15.7 63.9 ±7.2 46.3 ±6.1
Time between surgery and sampling (days) – – 11.3 ±1.2 14.0 ±1.6

Data are expressed as mean.
Control = study participants who have not sustained femoral fractures.
Fracture = study participants who have sustained femoral fractures and undergone surgery.

a p-Value b 0.05, discovery study.
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showed differences of more than 30% in the number of valid signals.
However, the present values for both miRNAs showed no differences
between fracture and control samples.

Altogether, 155 miRNAs that gave valid signals in more than 50% of
the samples were subject to statistical data analysis.

Biostatistical analysis identifies 6 differentially expressed circulating
miRNAs in patients with femoral neck fractures

Differential expression analysis was performed based on global-
mean normalized delta-Cp values to identify circulating miRNAs that
are deregulated in serum upon the recent occurrence of femoral neck
fractures in post-menopausal women. Therefore, normal distribution
of dCp-values was confirmed by Shapiro–Wilkinson test, and subse-
quently Student's t-test was performed using multiple testing correc-
tions of p-values according to Benjamini–Hochberg (control of false-
discovery rate, FDR). The number of up- and down-regulated miRNAs
between fracture and control samples was generally balanced with a
total of 6 miRNAs that exhibited significant regulation based on the ad-
justed p-value cut-off 0.05 (Fig. 1a): three up-regulated miRNAs (miR-
10a-5p, miR-10b-5p, miR-22-3p) and three down-regulated miRNAs
(miR 133b, miR-328-3p, let-7g-5p). All 155 miRNAs were ranked ac-
cording to their adjusted p-value and using an initial FDR-threshold of
0.2, twenty-one miRNAs were identified (Table 2), with a potential of
4 false-positive miRNAs (i.e., 20% out of 21 miRNAs).
Fig. 1.Differential expression analysis of circulatingmiRNAs. (a) Volcano plot depicting the log2
The adjustedp-value threshold of 0.05 is indicated as a dotted line, and all significantly regulated
miRNAs (sorted according to adjusted p-values) across all 14 samples. Hierarchical lustering w
In order to assess the discriminatory power by unsupervised cluster-
ing, dCp values of the top-10 regulated miRNAs with an FDR below 0.1
(less than 1 false-positive miRNA), were used for heatmap analysis
and hierarchical clustering based on the Euclidean distance metric
(Fig. 1b). The results indicate that together, the top-10 regulated
miRNAs are sufficient for 100% correct classification of fracture and con-
trol samples, as can be seen by the sample dendrogram in Fig. 1b.

Validation of differentially present miRNAs in an independent cohort

In order to validate the results obtained from the discovery study, a
validation cohort comprising 23 samples (Table 1) was analyzed using
specific primers for the 6 differentially regulated miRNAs. In addition,
sample and data quality control was performed similarly to the discov-
ery data set using spike-in and endogenous controls (Supplemental
Fig. 4), which confirmed successful RNA isolation and cDNA synthesis
as well as absence of hemolysis for all samples.

Figs. 2(a–f) present the data obtained for the additional fracture pa-
tients (n = 12) compared to control patients (n = 11) analyzed by
parametric student's t-tests: the previously observed regulation of
miR-10a/b-5p andmiR-133b could not be confirmed, while fold chang-
es formiR-22-3p,miR-328-3p and let-7g-5p reached significance. In the
case of miR-22-3p, which was found to be moderately up-regulated in
the discovery cohort, significant down-regulation by more than 70%
was observed in the validation cohort.
fold change (fracture vs control) against the adjusted p-value of all 155 analyzedmiRNAs.
miRNAs are labeledwith their names. (b) Heatmapdepicting the expression of the top-10
as performed using Euclidean distance and complete linkage.



Table 2
Discovery study — list of miRNAs with altered levels between fracture and control patients (top 20 miRNAs sorted by adj. p-value).

Rank miRNA ID Presence call Fracture Control Effect size Statistics

Mean dCp SD dCp Mean dCp SD dCp log2 FC
(ddCp)

Linear FC Two-sided parametric t-test
p-value

BH adjusted p-value
(FDR)

1 hsa-miR-10a-5p 12 −4.10 0.40 −5.05 0.25 0.952 1.935 0.001 0.0012
2 hsa-miR-10b-5p 14 −2.51 0.41 −3.52 0.41 1.012 2.017 0.001 0.0017
3 hsa-miR-22-3p 14 0.19 0.28 −0.18 0.18 0.376 1.298 0.017 0.0228
4 hsa-miR-133b 14 −4.63 1.04 −3.16 1.00 −1.472 0.360 0.028 0.0344
5 hsa-miR-328-3p 14 −2.30 0.53 −1.68 0.37 −0.625 0.649 0.034 0.0412
6 hsa-let-7g-5p 14 1.25 0.27 1.55 0.19 −0.309 0.807 0.041 0.0480
7 hsa-miR-320b 14 3.03 0.34 2.73 0.14 0.301 1.232 0.067 0.0771
8 hsa-miR-106a-5p 14 2.54 0.37 2.88 0.21 −0.334 0.794 0.078 0.0861
9 hsa-miR-22-5p 14 −1.84 0.25 −2.24 0.46 0.402 1.321 0.086 0.0915
10 hsa-miR-18a-5p 14 −1.67 0.25 −1.32 0.39 −0.344 0.788 0.092 0.1007
11 hsa-miR-143-3p 14 −0.18 0.49 0.33 0.50 −0.509 0.703 0.101 0.1092
12 hsa-miR-30a-5p 13 −3.81 0.54 −4.54 0.79 0.723 1.651 0.109 0.1160
13 hsa-miR-376a-3p 14 −2.44 0.70 −3.21 0.86 0.766 1.701 0.116 0.1171
14 hsa-miR-17-5p 14 −1.20 0.31 −0.91 0.28 −0.289 0.819 0.117 0.1255
15 hsa-miR-103a-2-5p 12 −4.53 0.29 −4.91 0.40 0.381 1.302 0.129 0.1372
16 hsa-miR-320a 14 3.06 0.37 2.81 0.14 0.249 1.189 0.148 0.1571
17 hsa-miR-324-5p 14 −2.57 0.66 −2.13 0.28 −0.442 0.736 0.157 0.1634
18 hsa-miR-127-3p 14 −3.26 0.98 −4.10 0.97 0.835 1.783 0.163 0.1725
19 hsa-miR-18b-5p 14 −0.85 0.32 −0.61 0.27 −0.244 0.844 0.177 0.1859
20 hsa-miR-21-5p 14 5.04 0.23 4.90 0.10 0.145 1.106 0.186 0.1890
21 hsa-miR-378 14 −1.02 0.41 −1.39 0.51 0.372 1.294 0.189 0.1980

Cp, cycle threshold from qPCR; dCp, delta-Cp = global mean normalized Cp value.
ddCp, delta–delta-Cp value = difference in normalized dCp values between both groups.
BH, Benjamini–Hochberg, FDR, false discovery rate; SD, standard deviation.
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Screening of microRNA function using an in vitro assay for osteogenic
differentiation

As a next stepwe not only compared the here identified differentially
circulating miRNAs from discovery and validation experiments with
published work describing functions for these miRNAs in relation to
bone metabolism, but also compared them to the 2 so far published ex-
amples of circulating miRNAs in the context of osteoporosis [15,16]
Fig. 2.miRNA validation in an independent sample subset. (a–f) Scatterplots depicting the norm
12 facture samples. Y-axis labels presenting normalized Cp-values were inverted in order to all
depictmean and SEMvalues. Percent fold change in the fracture group is given togetherwith p-v
values N 0.05.
(Table 3). Importantly, the design of both published studieswas different
from the design of the here presented study: Seeliger et al. [15] profiled
serum levels of a total of 83 miRNAs in subjects with osteoporotic frac-
ture (BMD T-score b −2.5) to fractured non-osteoporotic subjects
(BMD T-score N 1.0). This allows correlation of circulating miRNA levels
to manifest osteoporosis (i.e., with fractures) while it does not allow
the assessment that recent fractures have on circulating miRNA levels.
On the other hand, Li et al. [16] correlate the levels of three pre-
alized Cp-values of selectedmiRNAs in the validation cohort consisting of 11 controls and
ow intuitive interpretation of up- and down-regulation. Lines overlapping the data points
alues calculated fromparametric student's t-test analysis. n.s. (not significant) indicates p-



Table 3
Circulating microRNAs in osteoporosis and osteoporotic fractures.

miRNA ID Original
source

Experimental setting Observed effect Published main effects in the context
of bone metabolism in vitro

References Selected
miRNAs

let-7g-5p This study Low trauma fracture vs control Down-regulated Promotes osteogenic differentiation Wei, et al. [27] √
miR-100-5p Seeliger et al. Osteoporotic Fx vs non-osteoporotic Fx Up-regulated Inhibits osteogenic differentiation Zeng, et al. [28] √
miR-10b-5p This study Low trauma fracture vs control Up-regulateda Is up-regulated during osteogenic

differentiation
Trompeter, et al. [9] √

miR-122a Seeliger et al. Osteoporotic Fx vs non-osteoporotic Fx Up-regulated No data available
miR-124a Seeliger et al. Osteoporotic Fx vs non-osteoporotic Fx Up-regulated Inhibits osteoclast differentiation

via NFATc1
Lee et al. [29]

miR-125b Seeliger et al. Osteoporotic Fx vs non-osteoporotic Fx Up-regulated Inhibits osteogenic differentiation Mizuno et al. [30]
miR-133b This study Low trauma fracture vs control Down-regulateda Inhibits osteogenic differentiation

via Runx2
Li et al. [10]

Li et al. Low BMD vs normal BMD Up-regulated
miR-148a-3p Seeliger et al. Osteoporotic Fx vs non-osteoporotic Fx Up-regulated Promotes osteoclast differentiation

via MAFB
Cheng et al. [31] √

miR-21-5p Seeliger et al. Osteoporotic Fx vs non-osteoporotic Fx Up-regulated Promotes osteogenic differentiation
and impairs adipogenic differentiation

Trohatou, et al. [32] √
Li et al. Low BMD vs normal BMD Down-regulated
This study Low trauma fracture vs control Up-regulateda

miR-22-3p This study Low trauma fracture vs control Down-regulated Is up-regulated during osteogenic
differentiation

Trompeter, et al. [9] √

miR-23a-3p Seeliger et al. Osteoporotic Fx vs non-osteoporotic Fx Up-regulated Inhibits osteogenic differentiation
via SATB2

Hassan, et al. [33]

miR-24-3p Seeliger et al. Osteoporotic Fx vs non-osteoporotic Fx Up-regulated Inhibits osteogenic differentiation
via SATB2

Hassan, et al. [33] √

miR-328-3p This study Low trauma fracture vs control Down-regulated No data available √
miR-93-5p Seeliger et al. Osteoporotic Fx vs non-osteoporotic Fx Up-regulated Attenuates osteoblast mineralization Yang, et al. [34]

Fx, fracture; BMD, bone mineral density.
a Regulation observed but not validated.
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selected miRNAs (miR-21-5p, miR-146a-5p, miR-133b) in 120 post-
menopausal women without fracture to normal, osteopenic or osteopo-
rotic bone mineral density.

Based on an extended literature search, we found that the majority
of circulating miRNAs had been previously characterized in vitro for
their effects on bone formation and resorption, with the exception of
miR-328-3p and miR-122. We selected 8 miRNAs from this list
(Table 3), which were either not characterized at this point (miR-328-
3p), only described in the context of osteoclast formation (miR-148a-
3p) or transcriptomic analyses (miR-10b-5p, miR-22-3p), or chosen
randomly from the list of knownmodulators of osteogenesis as controls
(let-7 g-5p, miR-100-5p, miR-21-5p, miR-24-3p).

Seven miRNA mimics or inhibitors were transfected into adipose
tissue-derived mesenchymal stem cells from two different female do-
nors (HUF803 and HUF851), and tested for their effects on osteogenic
differentiation using alkaline phosphatase (ALP) expression and cellular
calcium deposition as relevant endpoints. Mesenchymal character of
the ASCs was confirmed by flow cytometric analysis (see Supporting
Fig. 5a) for the presence of MSC surface markers (C73+, CD90+,
CD105+) and absence of hematopoietic markers (CD14−, CD34−,
CD45−). In addition, the potential for osteogenic differentiation was
confirmed by analysis of Runx2, Osteonectin, Osteocalcin, as well as
ALP on day 7 after induction of osteogenic differentiation as well as cal-
cium deposition by Alizarin Red staining after 21 days (Supporting
Figs. 5b and c), albeit differences in the intensity of induction of these
markers were observed depending on the donor.

The robustness as well as validity of the assay testing for the influ-
ence of miRNAs on osteogenic differentiation was confirmed by analyz-
ing overexpression of hsa-miR-637, which was previously shown to
impair proliferation and differentiation of hMSCs [26]. Indeed, transfec-
tion of miR-637 into ASCs resulted in significant miRNA overexpression
(Figs. 3a/b) relative to a negative-control small RNA control. In conse-
quence, reduced osteogenic differentiation in both primary ASC strains,
as indicated by alkaline phosphatase activity on day 7 (Fig. 3c) and in-
tracellular Ca2+ incorporation after 21 days were observed (Fig. 3d
and Supporting Fig. 6 for representative images of Alizarin stainings).

Following the standard procedure developed for miR-637, qPCR
analysis confirmed overexpression or knockdown of the selected
miRNAs (Figs. 3a/b). The level of overexpression that could be achieved
was dependent on the endogenous expression level, which was lowest
for miR-637 (highest overexpression) and highest for miR-21-5p (low-
est overexpression). ALP and Ca2+ deposition data confirmed the previ-
ously published effects for miR-100-5p in both donors, whereas the
effects of let-7g-5p, miR-21-5p and miR-24-3p were donor dependent.
Overexpression of miR-148a-3p, which was previously described to
promote osteoclast differentiation, also promoted osteogenic differenti-
ation. From the candidates that were derived from this study and had
not previously been studied, miR-10b-5p significantly impaired ALP ac-
tivity and reduced Ca2+ deposition after 21 days compared to the con-
trol. The effects observed for miR-22-3p were not consistent between
donors andmiR-328-3p knockdown reduced the activity of ALP signifi-
cantly, but not Ca2+ deposition.

Discussion

Several studies have shown that specific patterns of circulating
miRNAs in plasma or serum correlate to the presence and progression
of pathological conditions [13,35]. In this study we set out to compare
the levels of secreted miRNAs in post-menopausal women suffering
from recent osteoporotic femoral neck fractures to gender- and age-
matched controls. This was done based on the hypothesis that the recent
nature of fractures (b2weeks prior to sampling) is likely to be reflected in
the serum levels of mature miRNAs, and might be a response that is rel-
evant to bone healing, specifically to bone formation. The exploratory
analysis of 175miRNAs identified several up- or down-regulatedmiRNAs
in patients suffering from recent osteoporotic fractures. The list of differ-
entially expressedmiRNAs includedmiR-10a-5p,miR-10b-5p,miR-133b,
miR-22-3p, miR-328-3p, and let-7g-5p, of which the latter three were
confirmed in an independent set of samples as a validation cohort, de-
spite the relatively small sample size.

Limitations of the study

The fact that the serum level changes of miR-10a/b and miR-133b
could not be confirmed in the validation cohort might be a consequence
of the low sample size, which often presents limitations in exploratory
studies, as well as differences in clinical parameters between the co-
horts. In the case of this study, the mean age of patients recruited for



Fig. 3. In vitro transfection of miRNAmimics or inhibitors. Adipose tissue-derived stem cells (ASCs) from two female donors (HUF803 and HUF851)were transfectedwithmimics of miR-
637 as positive control (637), miR-10b-5p (10b), miR-21-5p (21), miR-22-3p (22), miR-24-3p (24), miR-100-5p (100), miR-148a-3p (148a) or inhibitor against miR-328-3p (a-328). For
control purposes, a non-targeting RNA control (NC) was transfected, and successful miRNA overexpression or knockdown was monitored by qPCR using RNU6 (a) or 5 s rRNA (b) as ref-
erence genes. (c) Alkaline phosphatase (ALP) activity was assayed (n = 3) on day 7. Linear fold changes compared to negative control transfections are shown. (d) Mineralization of
transfected ASCs was evaluated by Alizarin Red staining 21 days after differentiation (n= 7). Linear fold changes compared to negative control transfections are shown. Dotted lines in-
dicate the reference level (fold change=1). Data are presented asmean fold change± SD compared to control transfected cells (n= 3 for ALP, n= 8 for Alizarin Red staining). Statistical
significance determined using the Holm–Sidak method, with alpha = 5.000% indicated by an asterisk (*).
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the discovery and validation study (71 years and 80 years, respectively)
presents a second limitation. It has previously been reported that ex-
pression of certain miRNAs is altered during cellular senescence and
aging [36,37]. One of themost prominent circulatingmiRNAs in the con-
text of aging is miR-21-5p [14]. Indeed, although the levels of miR-21-
5p did not change in response to recent osteoporotic fractures, it was
significantly induced in the validation cohort compared to the discovery
cohort, which might be related to elevated age and/or inflammation
(Supporting Fig. 7). Further evaluation of current literature showed
that miR-10a is also modulated in aging and inflammation of the endo-
thelium in vitro and in vivo, whichmay significantly influencemiR-10a
serum levels [38,39]. For miR-22-3p, for which a stronger down-
regulation in the validation group than in the discovery group was ob-
served, an up-regulation during cellular senescence has been observed
in human dermal fibroblasts, renal proximal tubular epithelial cells
and CD8+T-cell population [36]. As a consequence, it cannot be exclud-
ed that age-dependent effects might have limited the reproducibility of
the discovery data in the validation cohort.

Besides age differences between the discovery and validation cohort,
which might have compromised the validation results, also technical
bias cannot be entirely excluded as source of variation. For the discovery
study, global mean normalization was performed since this value was
identified to show least variance across all samples [24]. For the
validation study, however, the approach of selecting a stable reference
value was not possible, due to the low number of analyzed genes and
the lack of robust reference miRNA for serum analysis. Consequently,
data were processed using the results from spike-in controls to adjust
for technical bias. This difference in normalization strategy might influ-
ence correlations between the discovery and validation data.

In general, blood-circulatingmiRNAs represent a complex readout of
the physiological or pathophysiological processes in an organism. An in-
terpretation of observed changes in circulatingmiRNAs is often difficult,
since the majority of circulating miRNAs is expressed ubiquitously and
cannot be precisely matched to a certain tissue. However, tissue-
specific miRNAs have been identified [40,41] and shown to contain
valuable information about localized aberrant tissue functions and pro-
posed as novel markers of organ toxicity [42]. In the case of themiRNAs
reported in this study, let-7g-5p, miR-10a/b and miR-22-3p are ubiqui-
tously expressed, thus, it is not clear whether the changes reported in
this study are due to aberrant expression in bone tissue. However,
miR-133b was previously reported to be highly enriched in skeletal
and heart muscle tissue [43], while miR-328 is enriched in brain tissue
[44]. In addition, some of the here identifiedmiRNAs also impact osteo-
genic differentiation, a sign that they might be causally related to pro-
cesses that occurred at the time of blood sampling at around 2 weeks
after fracture, such processes including bone healing.
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CirculatingmiRNAs in patients with osteoporotic fracturesmight contribute
to the molecular control of bone formation and resorption

Many of the here identified miRNAs have a ‘track record’ in the con-
text of bone metabolism: miR-10b-5p and miR-22-3p were recently de-
scribed by Trompeter et al. to be up-regulated in “unrestricted somatic
stem cells” (USSC) on day 7 during osteogenic differentiation [9]. The au-
thors also reported data from target validation experiments of genes that
are relevant to osteogenic differentiation using luciferase 3′UTR reporter
assays: overexpression of miR-10a-5p results in the down-regulation of
CTNNBIP1, a negative regulator of WNT. Overexpression of miR-22-3p
inhibited CDK6, an antagonist of BMP-2 signaling. Also Eguchi et al. re-
port in their recent work data from a detailed characterization of
miRNA transcription in mesenchymal stem cells undergoing osteogenic
differentiation [45]. In contrast to Trompeter et al., they observed a
down-regulation of miR-10b-5p and miR-22-3p during the differentia-
tion, and consequently ascribed both miRNAs a role as stemness marker
or negative modulator of osteogenic differentiation. This observation
was confirmed in our experimental setting for miR-10b-5p. However,
such controversies in data clearly demonstrate that miRNA function is
highly cell type specific, as their activity strongly depends on the host
cell transcriptome. In addition, donor dependent effects of miRNAs on
osteogenic differentiation might be relevant. This can for example be
caused by polymorphisms in miRNA binding sites, as shown by Lei
et al. in the case of FGF-2 [46]. Also in the case of CDK6 several 3′ UTR
single-nucleotide polymorphisms have been reported [47], which re-
main to be studied in the context of miRNA binding sites.

Although the down-regulation of miR-133b in serum of fracture pa-
tients could not be confirmed during validation, expression levels of this
miRNA inmonocytes has been previously described as potentialmarker
for bone disorders [48]. As part of the miR-206–miR-133b cluster, the
skeletal muscle specific expression of this miRNA [40] and its impor-
tance for muscular tissue development has been well established [49].
Reduced serum levels ofmiR-133bmight correlate with a loss inmuscle
tissue activity, which, however, might only be observed in specific frac-
ture patients but not all. This could explain why levels of circulating
miR-133b did not reach significance during validation.

Transcription of miR-328-3p is found in many human tissues and
has been shown to become de-regulated in different types of cancer
[50], potentially affecting WNT-signaling via repression of the WNT-
inhibitor SFRP-1 [51]. Recently, it was shown that miR-328 targets the
expression of CD44 in macrophages [52]. CD44 is also expressed in
bone, especially high in osteocytes [53], where it helps extracellular
binding to collagen. Here we show that the repression of miR-328-3p
in ASCs significantly reduced ALP activity during osteogenic differentia-
tion but did not affect calcium deposition.

Finally, the down-regulation of hsa-let-7g-5p is of interest, since
the let-7 family of miRNAs is generally known to be almost silent in
stem cells or progenitor cells, and to increasewith cell differentiation
in almost any type of somatic cell [54]. Indeed, it was reported that
let-7 levels are increased during osteogenic lineage commitment of
mesenchymal stem cells [55], and that ectopic expression of let-7 en-
hances osteoblast formation in vitro and in vivo by targeting HMGA2
[27]. Our in vitro data confirmed these effects in both donors on the
level of ALP expression and in one donor on the level of Alizarin
staining.

In summary, this study has expanded the knowledge of circulating
miRNAs in the context of osteoporosis and osteoporotic fractures. For
the majority of circulating miRNAs that responded to fractures, a link
to specific functions in bone metabolism was found, or established as
part of in vitro experiments in this study. This underlines the robustness
of these results and indicates that these miRNAs might well be studied
for their therapeutic activity in animal models of osteoporosis. In addi-
tion, once the detailed mechanisms of their mode-of-action have been
established, the analysis of these circulatingmiRNAs could complement
existing bone turnover markers currently usedwithin clinical studies to
“measure” bone metabolism, bone healing, or efficacy of anti-
osteoporotic treatments [56].

However, in order to define a concise clinical value of circulating
miRNAs for the management of bone diseases, it is essential to analyze
circulating miRNAs at baseline of prospective studies with fractures as
end-points, or alternatively to study sample collectives from non-
recent osteoporotic fractures to characterize a high-risk population
but without detecting immediate consequences of bone regeneration.
These prospective and retrospective studies will give insights into
whether specific miRNAs signatures might also be helpful in improving
current strategies for osteoporotic patient stratification according to
their fracture risk [57].
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