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Abstract

For a positive integer k, a k-subdominating function of a graph G=(V,E) is a function
fV—={=11} such that 3 . .. f(u)>1 for at least k vertices v of G. The k-
subdomination number of G, denoted by y4(G), is the minimum of 37 _, f(v) taken over
all k-subdominating functions f* of G. In this article, we prove a conjecture for k-subdomination
on trees proposed by Cockayne and Mynhardt. We also give a lower bound for y4(G) in terms
of the degree sequence of G. This generalizes some known results on the k-subdomination num-
ber i(G), the signed domination number y,(G) and the majority domination number ym,(G).
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The concept of domination is a good model for many location problems in op-
erations research. In a graph G =(V,E), the (open) neighborhood of a vertex v is
the set Ng(v) consisting of all vertices adjacent to v; and the closed neighborhood
Ng[v]=Ng(v) U {v}. The degree of a vertex v is deg(v) = |[Ng(v)|. A leaf is a vertex
of degree 1. A leaf neighbor is a neighbor that is a leaf. A dominating set of G is
a subset D of V' for which every vertex in V-D is adjacent to some vertex of D; or
equivalently, |Ng[v]ND| = 1. The domination number y(G) is the smallest cardinality
of a dominating set. Alternatively, we can view a dominating set as a dominating func-
tion which is a function ¢g: ¥ — {0,1} such that g(Ng[v]) = 1 for all vertices ve V,
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where g(S)=>_, .¢g(x) for any S C V. In this case, 7(G) is the minimum of g(V)
taken over all dominating functions of G.

Variations of domination have been defined by replacing {0,1} in the above defi-
nition by {—1,1} or {—1,0, 1}, and requiring the condition g(Ng[v]) = 1 for different
number of vertices. For a positive integer k, a k-subdominating function of G=(V,E)
is defined in [3] as a function g: ¥ — {—1,1} such that g(Ng[v]) = 1 for at least k
vertices v of G. The k-subdomination number of G is

1ks(G)=min{g(¥): g is a k-subdominating function of G}.

In the special cases where k=|V| and k = [|V|/2], yxs(G) is, respectively, the signed
domination number y,(G) defined in [4] and the majority domination number yum,i(G)
defined in [2] of G. For more study on signed domination and majority domination,
see [1,5-13].

Cockayne and Mynhardt [3] proved that for any tree T of n vertices, yis(7T) < 2k +
2 — n. This upper bound is sharp for £ < n/2 as shown by the example K, ,_;. They
then gave the following conjecture:

Conjecture. If T is a tree of n vertices and n/2 < k < n, then y(7T) < 2k — n.

Note that the upper bound in the conjecture is sharp as shown by the same example
Ki ,—1. They gave some partial results which support the conjecture.

Theorem 1 (Cockayne and Mynhardt [3]). Suppose T is an n-vertex tree rooted at v,
where deg(v)=s and v has exactly t leaf neighbors; say N(@)={wi,...,wy,
Uly...,Us—¢} such that wy,...,w; are leaves and 2 < |V (T(uy))| < -+ < [V (T(us—1))],
where T(u) is the subtree of T induced by u and its descendants. If r = [s/24+1] < s—t
and n =z k = |\V(Tw)| + -+ [V(T(w))|, then y5(T) < 2k —n.

Theorem 2 (Cockayne and Mynhardt [3]). For any full m-ary tree of n vertices,
es(T) < 2k — n whenever 2[(m +3)/2] <k < n.

The main result of this paper is to settle the conjecture. We also give a lower bound
for y;5(G) in terms of the degree sequence of G. This generalizes some previous results

on the k-subdomination number y;s(G), the signed domination number ys(G) and the
majority domination number ypi(G).

2. Upper bound conjecture
We first establish the conjecture given by Cockayne and Mynhardt [3].

Theorem 3. If T is a tree of n vertices and n/2 < k < n, then y(T) < 2k — n.
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Proof. We actually prove the stronger assertion that 7 has a good k-subdominating
function g, which is one such that g(V(7T))=2k — n and there are exactly k good
vertices that are vertices v with g(v)=1 and g(Ng[v]) = 1. Suppose to the contrary
that the assertion is not true. Choose a tree 7 with a minimum number of vertices
having no good k-subdominating function. It is obvious that £ <n — 1.

Claim 1. The only neighbor of a leaf in T is of odd degree.

Proof. Assume x is a leaf whose only neighbor y is of even degree. Let tree 7/ =T —
x. Since (n — 1)/2 <k <n — 1, the tree T’ has a good k-subdominating function
g’ by the choice of T. Extend ¢’ to g:V(T) — {—1,1} by g(v)=g'(v) for all
veV(T)— {x} and g(x)= — 1. Then g(Nr[v])=g'(N7/[v]) for all ve V(T) — {x, y}
and g(N7[¥])=¢'(N7/[¥]) — 1. Since y is of even degree in T, we have that |[N7/[y]|
is even. Consequently, ¢'(N7:[y]) = 1 implies g(Nr[y]) = 1. Therefore, g is a good
k-subdominating function of 7, a contradiction. [J

Choose a longest path P: vjvy...v, in T. Note that m > 4, for otherwise T is a
star which certainly has a good k-subdominating function as n/2 < k. Note that v,
has exactly one non-leaf neighbor v; and 2a > 2 leaf neighbors by Claim 1. Also,
vy—1 has exactly one non-leaf neighbor v,_, and 2b > 2 leaf neighbors. We may
assume a > b, otherwise reverse the path P. Now m > 5, for otherwise m =4 which
implies that n=2a+2b+2 and k >n/2=a+ b+ 1. Choose S, C N(v;) — {v3} and
Sp C N(v3) — {v2} with |S,| = a, |S,| = b and |S,| + |Sp| =k — 2. Then there exists a
good k-subdominating function g of T such that g(v)=1 for v€ S, US, U {vs,v5} and
g(v)= —1 for all other vertices.

Claim 2. The neighbors of vy not in P are leaves, and m = 6.

Proof. Assume v; has a non-leaf neighbor x not in P or m=35, in which case we
set x=uv4. Since P is a longest path in 7 or x=uv4 (for m=35), all neighbors of x
are leaves except v3. By Claim 1, assume that x has 2¢ > 2 leaf neighbors. Moreover,
we may assume a = ¢, for otherwise we just interchange the role of v, and x. Let
tree 7/=T — (Nr[v,] U Nr[x] — {v3}) have n’ vertices and k' =k —a — ¢ — 1. Then
n=n—2a—2c—2and k' >n'/2. If k' > n', then k > n—a—c and so T has a good
k-subdominating function g such that g(v)=1 for all vertices v except g(v)= — 1 for
at most a leaf neighbors v of v, and at most ¢ leaf neighbors v of x, a contradiction.
Now n'/2 < k' <n'. Then T’ has a good k’-subdominating function g’ by the choice
of T. Let S be the vertex set containing v, and a + ¢ of its leaf neighbors. Extend
g to g:V(T) — {—1,1} by g(v)=g'(v) for all veV(T'), g(v)=1 for ve€S and
g(v)=—1 for v € Ny[x]UNr[v,] — (SU{v3}). Then g(Nr[v])=2 for veS — {v,} and
g(N7r[r2]))=a+c+1—(a—c)+g(v3) = 2. Also, since g(r,)=1 and g(x)=—1, we
have g(Nr[v3]) =¢'(Nr/[v3]) and so g(Nr[v]) =g'(Nz/[v]) for all v€ V(T"). Therefore,
g has kK’ +a+ c+ 1=k good vertices, a contradiction. [
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Claim 3. The vertex vs (respectively, v,,_,) has at most one leaf neighbor.

Proof. If v; has at least one leaf neighbor, then the number of such leaves is odd
by Claim 1. Assume there are three leaves x, y and z in Np(vs) — P. Let tree
T'=T—({x, y,z}UNr[v2]—{v3}) have n’ vertices and k' =k—a—2. Then n' =n—2a—4
and k' > n'/2. If k' > n’, then k >n —a — 1 and so T has a good k-subdominating
function g such that g(v) =1 for all vertices v except g(x)=—1 and g(v)=—1 for at
most a leaf neighbors of v,, a contradiction. Now n’/2 < k' < n’. Then T’ has a good
k’-subdominating function g’ by the choice of T. Let S be the vertex set containing v,
and a+1—(g'(v3)+1)/2 of its leaves. Extend ¢’ to g: V(T) — {—1,1} by g(v)=4'(v)
for ve V(T'), g(x)=g¢'(v3), g(v)=1 for ve S, and g(v)=—1 for v€{y,z} UN[v;] —
(SU{vs}). Then g(Nr[v])=2 for v€S. Since g(Nr[v3]) =g (N1 [v3])+g(v2) +g(x) +
9(y) + g(z)=¢'(Nr:[v3]) + ¢'(v3) — 1, we have g(Nr[vs])=g'(Nr/[v3])>1 and
g(N7[x]) =2 whenever ¢'(v3) = 1. Therefore, g has k' + |S| + (¢'(v3) + 1)/2 =k good
vertices, where (¢'(v3) + 1)/2 is for vertex x, a contradiction. [J

In the remainder, we shall give a good k-subdominating function of 7 to complete
the proof. If v; has a unique leaf neighbor x not in P, then set x’ =uvj;; otherwise
Nr(v3)={vp,v4}, in this case set x =v; and x’ = v4. If v,_, has a unique leaf neighbor
y not in P, then set )’ =uv,_5; otherwise Nr(vy—2)={vm—1,0m—3}, in this case set
Y =Um-2 and yl =vu-3. Let tree T'=T— ((NT[UZ] UNr[vm—1]— {1)3, vm—Z}) U {xa y})
have n’ vertices and X' =k —a— b —2. Then ' =n—2a —2b —4 and k' > /2.

If X >n', then k 2n—a— b — 1. For the case of k >n—a — b, T has a good
k-subdominating function g such that g(v)=1 for all vertices v except g(v)= — 1 for
at most a leaf neighbors v of v, and at most b leaf neighbors v of v,,_;. For the case
of k=n—a—>b—1, T has a good k-subdominating function g such that g(v)=1 for
all vertices except g(v) = — 1 for exactly a — b leaf neighbors v of v, and all vertices
v in N[Umfl] - {0”1,2}.

Now consider the case when n'/2 <k’ < n’. Then T’ has a good k’-subdominating
function g’. We construct a function g on V(T) as follows. Let g(v)=g'(v) for all
veV(T"). If ¢'(y')=1, then set g(y)=i=1, otherwise set g(y)=— 1 and i =0. Let
g(v)=—1 for all v&€ Nr[vy—1]— {vm—2}. If ¢'(x') =1, then set g(x)=j =1, otherwise
set g(x)=—1and j=0. If i=;j=0 and v; #x, then reset g(v3)=gx)=i=j=1. If
i=j=0 and v;=x, then reset g(v;)=i=1. Let the g value of v; and a + b+ 1 —
i—j<a+ b leaves of Ny(vy) be 1 and the other leaves be —1. Since g preserves
the property of ¢’ that ¢’(Nr:[v]) = 1 for those v € V(T') with ¢’(v)=1, and there are
a+ b+ 2 vertices for which v is not in 77 or ¢'(v)=— 1, g(v)=1 and g(Nr[v]) = 1,
g is a good k-subdominating function of 7. [

We have recently learned from the referee that Cockayne and Mynhardt’s conjecture
has independently been settled by Kang Li-ying, Shan Er-fang, and Cai Mao-cheng
using different techniques.
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3. Lower bound

This section establishes a lower bound for y;5(G) in terms of the degree sequence
by a simple argument. This generalizes some known results on y;s(G), Ymsj(G) and
15(G), whose proofs were more involved.

Theorem 4. If G=(V,E) is a graph of order n with degree sequence di < d, <
-<d,, then

k

2 dj+2
> - ’ :
() n+dn+1j§_ﬂ 5 }

Proof. Suppose ¢ is an optimal k-subdominating function for G, say, g(Ng[v]) = 1 for
k distinct vertices v in {v;,,vy,,...,0; }. Let f(x)=(g(x) + 1)/2 for all vertices x € V.
Then f is a 0-1 valued function. First,

k

k k
g(Nglv;]) +dj, + 1 dj, +2 dj+2
i) = = - = - .
;f(NG[vj,]) ; { > z]j 5 ,2_1: 5
On the other hand,

k n n
> SNGlo D <Y fWNlyD) =Y (di+1)f(0) < (dy+ 1) [ (V).
i=1 j=1 i=1

Therefore, f(V) > 1/(d,+ 1) Y, [(d; +2)/2] and so

2 N [di+2
yks(G>:g(V):2f(V)—n>—n+dn+1; [ it }

By setting dy =d,=---=d,=r in Theorem 4, we have

Theorem 5 (Hattingh et al. [8]). For every r-regular (r = 2) graph G of order n,

Vk(G)>{k:ﬁ_n if r odd,
S =

Jor2

1 —n if ris even.

Moreover, taking k =n and k= [n/2], respectively, we have the following two the-
orems.

Theorem 6 (Dunbar et al. [4] and Henning et al. [11]). For every r-regular (r = 2)
graph G of order n,

2n .
(G) > { 2 if 7 odd,

o7 U ris even.
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Theorem 7 (Henning [9]). For every r-regular (r = 2) graph G of order n,
(1=r)n .
o U rodd,

—n

20+1)

Vmaj(G) = . .
if ris even.

Corollary 8. If G is a graph with n vertices, m edges and maximum degree /\, then
2m+n+k

> —
s(G) =k —2n+ A+

Proof. According to Theorem 4, we have

k k
2 d;+2 2k+357_,d;
G)>=— J > — e it
7s(6) ”+dn+1jzm 2} (R
2k +2m—>"_, , d; —(n—
. Dkl iy He2m (=4
441 441
2 k
441
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