DISCRETE
APPLIED
MATHEMATICS

k-Subdomination in graphs

Gerard J. Chang ${ }^{\text {a, }, * 1}$, Sheng-Chyang Liaw ${ }^{\text {b }}$, Hong-Gwa Yeh ${ }^{\text {c, }}{ }^{2}$
${ }^{a}$ Department of Mathematics, National Taiwan University, Taipei 106, Taiwan
${ }^{\mathrm{b}}$ Department of Mathematics, National Central University, Chungli 32054, Taiwan
${ }^{\mathrm{c}}$ Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan

Received 1 May 2000; received in revised form 8 July 2000; accepted 3 June 2001

Abstract

For a positive integer k, a k-subdominating function of a graph $G=(V, E)$ is a function $f: V \rightarrow\{-1,1\}$ such that $\sum_{u \in N_{G}[0]} f(u) \geqslant 1$ for at least k vertices v of G. The k subdomination number of G, denoted by $\gamma_{k s}(G)$, is the minimum of $\sum_{v \in V} f(v)$ taken over all k-subdominating functions f of G. In this article, we prove a conjecture for k-subdomination on trees proposed by Cockayne and Mynhardt. We also give a lower bound for $\gamma_{k s}(G)$ in terms of the degree sequence of G. This generalizes some known results on the k-subdomination number $\gamma_{k s}(G)$, the signed domination number $\gamma_{s}(G)$ and the majority domination number $\gamma_{\text {maj }}(G)$. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Domination; k-subdomination; Majority domination; Signed domination; Tree; Leaf

1. Introduction

The concept of domination is a good model for many location problems in operations research. In a graph $G=(V, E)$, the (open) neighborhood of a vertex v is the set $N_{G}(v)$ consisting of all vertices adjacent to v; and the closed neighborhood $N_{G}[v]=N_{G}(v) \cup\{v\}$. The degree of a vertex v is $\operatorname{deg}(v)=\left|N_{G}(v)\right|$. A leaf is a vertex of degree 1. A leaf neighbor is a neighbor that is a leaf. A dominating set of G is a subset D of V for which every vertex in $V-D$ is adjacent to some vertex of D; or equivalently, $\left|N_{G}[v] \cap D\right| \geqslant 1$. The domination number $\gamma(G)$ is the smallest cardinality of a dominating set. Alternatively, we can view a dominating set as a dominating function which is a function $g: V \rightarrow\{0,1\}$ such that $g\left(N_{G}[v]\right) \geqslant 1$ for all vertices $v \in V$,

[^0]where $g(S)=\sum_{x \in S} g(x)$ for any $S \subseteq V$. In this case, $\gamma(G)$ is the minimum of $g(V)$ taken over all dominating functions of G.

Variations of domination have been defined by replacing $\{0,1\}$ in the above definition by $\{-1,1\}$ or $\{-1,0,1\}$, and requiring the condition $g\left(N_{G}[v]\right) \geqslant 1$ for different number of vertices. For a positive integer k, a k-subdominating function of $G=(V, E)$ is defined in [3] as a function $g: V \rightarrow\{-1,1\}$ such that $g\left(N_{G}[v]\right) \geqslant 1$ for at least k vertices v of G. The k-subdomination number of G is

$$
\gamma_{k s}(G)=\min \{g(V): g \text { is a } k \text {-subdominating function of } G\}
$$

In the special cases where $k=|V|$ and $k=\lceil|V| / 2\rceil, \gamma_{k s}(G)$ is, respectively, the signed domination number $\gamma_{\mathrm{s}}(G)$ defined in [4] and the majority domination number $\gamma_{\mathrm{maj}}(G)$ defined in [2] of G. For more study on signed domination and majority domination, see [1,5-13].

Cockayne and Mynhardt [3] proved that for any tree T of n vertices, $\gamma_{k s}(T) \leqslant 2 k+$ $2-n$. This upper bound is sharp for $k \leqslant n / 2$ as shown by the example $K_{1, n-1}$. They then gave the following conjecture:

Conjecture. If T is a tree of n vertices and $n / 2<k \leqslant n$, then $\gamma_{k s}(T) \leqslant 2 k-n$.
Note that the upper bound in the conjecture is sharp as shown by the same example $K_{1, n-1}$. They gave some partial results which support the conjecture.

Theorem 1 (Cockayne and Mynhardt [3]). Suppose T is an n-vertex tree rooted at v, where $\operatorname{deg}(v)=s$ and v has exactly t leaf neighbors; say $N(v)=\left\{w_{1}, \ldots, w_{t}\right.$, $\left.u_{1}, \ldots, u_{s-t}\right\}$ such that w_{1}, \ldots, w_{t} are leaves and $2 \leqslant\left|V\left(T\left(u_{1}\right)\right)\right| \leqslant \cdots \leqslant\left|V\left(T\left(u_{s-t}\right)\right)\right|$, where $T(u)$ is the subtree of T induced by u and its descendants. If $r=\lceil s / 2+1\rceil \leqslant s-t$ and $n \geqslant k \geqslant\left|V\left(T\left(u_{1}\right)\right)\right|+\cdots+\left|V\left(T\left(u_{r}\right)\right)\right|$, then $\gamma_{k s}(T) \leqslant 2 k-n$.

Theorem 2 (Cockayne and Mynhardt [3]). For any full m-ary tree of n vertices, $\gamma_{k s}(T) \leqslant 2 k-n$ whenever $2\lceil(m+3) / 2\rceil \leqslant k \leqslant n$.

The main result of this paper is to settle the conjecture. We also give a lower bound for $\gamma_{k s}(G)$ in terms of the degree sequence of G. This generalizes some previous results on the k-subdomination number $\gamma_{k s}(G)$, the signed domination number $\gamma_{\mathrm{s}}(G)$ and the majority domination number $\gamma_{\text {maj }}(G)$.

2. Upper bound conjecture

We first establish the conjecture given by Cockayne and Mynhardt [3].
Theorem 3. If T is a tree of n vertices and $n / 2<k \leqslant n$, then $\gamma_{k s}(T) \leqslant 2 k-n$.

Proof. We actually prove the stronger assertion that T has a good k-subdominating function g, which is one such that $g(V(T))=2 k-n$ and there are exactly k good vertices that are vertices v with $g(v)=1$ and $g\left(N_{G}[v]\right) \geqslant 1$. Suppose to the contrary that the assertion is not true. Choose a tree T with a minimum number of vertices having no good k-subdominating function. It is obvious that $k \leqslant n-1$.

Claim 1. The only neighbor of a leaf in T is of odd degree.

Proof. Assume x is a leaf whose only neighbor y is of even degree. Let tree $T^{\prime}=T-$ x. Since $(n-1) / 2<k \leqslant n-1$, the tree T^{\prime} has a good k-subdominating function g^{\prime} by the choice of T. Extend g^{\prime} to $g: V(T) \rightarrow\{-1,1\}$ by $g(v)=g^{\prime}(v)$ for all $v \in V(T)-\{x\}$ and $g(x)=-1$. Then $g\left(N_{T}[v]\right)=g^{\prime}\left(N_{T^{\prime}}[v]\right)$ for all $v \in V(T)-\{x, y\}$ and $g\left(N_{T}[y]\right)=g^{\prime}\left(N_{T^{\prime}}[y]\right)-1$. Since y is of even degree in T, we have that $\left|N_{T^{\prime}}[y]\right|$ is even. Consequently, $g^{\prime}\left(N_{T^{\prime}}[y]\right) \geqslant 1$ implies $g\left(N_{T}[y]\right) \geqslant 1$. Therefore, g is a good k-subdominating function of T, a contradiction.

Choose a longest path $P: v_{1} v_{2} \ldots v_{m}$ in T. Note that $m \geqslant 4$, for otherwise T is a star which certainly has a good k-subdominating function as $n / 2<k$. Note that v_{2} has exactly one non-leaf neighbor v_{3} and $2 a \geqslant 2$ leaf neighbors by Claim 1. Also, v_{m-1} has exactly one non-leaf neighbor v_{m-2} and $2 b \geqslant 2$ leaf neighbors. We may assume $a \geqslant b$, otherwise reverse the path P. Now $m \geqslant 5$, for otherwise $m=4$ which implies that $n=2 a+2 b+2$ and $k>n / 2=a+b+1$. Choose $S_{a} \subseteq N\left(v_{2}\right)-\left\{v_{3}\right\}$ and $S_{b} \subseteq N\left(v_{3}\right)-\left\{v_{2}\right\}$ with $\left|S_{a}\right| \geqslant a,\left|S_{b}\right| \geqslant b$ and $\left|S_{a}\right|+\left|S_{b}\right|=k-2$. Then there exists a good k-subdominating function g of T such that $g(v)=1$ for $v \in S_{a} \cup S_{b} \cup\left\{v_{2}, v_{3}\right\}$ and $g(v)=-1$ for all other vertices.

Claim 2. The neighbors of v_{3} not in P are leaves, and $m \geqslant 6$.
Proof. Assume v_{3} has a non-leaf neighbor x not in P or $m=5$, in which case we set $x=v_{4}$. Since P is a longest path in T or $x=v_{4}$ (for $m=5$), all neighbors of x are leaves except v_{3}. By Claim 1, assume that x has $2 c \geqslant 2$ leaf neighbors. Moreover, we may assume $a \geqslant c$, for otherwise we just interchange the role of v_{2} and x. Let tree $T^{\prime}=T-\left(N_{T}\left[v_{2}\right] \cup N_{T}[x]-\left\{v_{3}\right\}\right)$ have n^{\prime} vertices and $k^{\prime}=k-a-c-1$. Then $n^{\prime}=n-2 a-2 c-2$ and $k^{\prime}>n^{\prime} / 2$. If $k^{\prime}>n^{\prime}$, then $k \geqslant n-a-c$ and so T has a good k-subdominating function g such that $g(v)=1$ for all vertices v except $g(v)=-1$ for at most a leaf neighbors v of v_{2} and at most c leaf neighbors v of x, a contradiction. Now $n^{\prime} / 2<k^{\prime} \leqslant n^{\prime}$. Then T^{\prime} has a good k^{\prime}-subdominating function g^{\prime} by the choice of T. Let S be the vertex set containing v_{2} and $a+c$ of its leaf neighbors. Extend g^{\prime} to $g: V(T) \rightarrow\{-1,1\}$ by $g(v)=g^{\prime}(v)$ for all $v \in V\left(T^{\prime}\right), g(v)=1$ for $v \in S$ and $g(v)=-1$ for $v \in N_{T}[x] \cup N_{T}\left[v_{2}\right]-\left(S \cup\left\{v_{3}\right\}\right)$. Then $g\left(N_{T}[v]\right)=2$ for $v \in S-\left\{v_{2}\right\}$ and $g\left(N_{T}\left[v_{2}\right]\right)=a+c+1-(a-c)+g\left(v_{3}\right) \geqslant 2$. Also, since $g\left(v_{2}\right)=1$ and $g(x)=-1$, we have $g\left(N_{T}\left[v_{3}\right]\right)=g^{\prime}\left(N_{T^{\prime}}\left[v_{3}\right]\right)$ and so $g\left(N_{T}[v]\right)=g^{\prime}\left(N_{T^{\prime}}[v]\right)$ for all $v \in V\left(T^{\prime}\right)$. Therefore, g has $k^{\prime}+a+c+1=k$ good vertices, a contradiction.

Claim 3. The vertex v_{3} (respectively, v_{m-2}) has at most one leaf neighbor.

Proof. If v_{3} has at least one leaf neighbor, then the number of such leaves is odd by Claim 1. Assume there are three leaves x, y and z in $N_{T}\left(v_{3}\right)-P$. Let tree $T^{\prime}=T-\left(\{x, y, z\} \cup N_{T}\left[v_{2}\right]-\left\{v_{3}\right\}\right)$ have n^{\prime} vertices and $k^{\prime}=k-a-2$. Then $n^{\prime}=n-2 a-4$ and $k^{\prime}>n^{\prime} / 2$. If $k^{\prime}>n^{\prime}$, then $k \geqslant n-a-1$ and so T has a good k-subdominating function g such that $g(v)=1$ for all vertices v except $g(x)=-1$ and $g(v)=-1$ for at most a leaf neighbors of v_{2}, a contradiction. Now $n^{\prime} / 2<k^{\prime} \leqslant n^{\prime}$. Then T^{\prime} has a good k^{\prime}-subdominating function g^{\prime} by the choice of T. Let S be the vertex set containing v_{2} and $a+1-\left(g^{\prime}\left(v_{3}\right)+1\right) / 2$ of its leaves. Extend g^{\prime} to $g: V(T) \rightarrow\{-1,1\}$ by $g(v)=g^{\prime}(v)$ for $v \in V\left(T^{\prime}\right), g(x)=g^{\prime}\left(v_{3}\right), g(v)=1$ for $v \in S$, and $g(v)=-1$ for $v \in\{y, z\} \cup N\left[v_{2}\right]-$ $\left(S \cup\left\{v_{3}\right\}\right)$. Then $g\left(N_{T}[v]\right)=2$ for $v \in S$. Since $g\left(N_{T}\left[v_{3}\right]\right)=g^{\prime}\left(N_{T^{\prime}}\left[v_{3}\right]\right)+g\left(v_{2}\right)+g(x)+$ $g(y)+g(z)=g^{\prime}\left(N_{T^{\prime}}\left[v_{3}\right]\right)+g^{\prime}\left(v_{3}\right)-1$, we have $g\left(N_{T}\left[v_{3}\right]\right)=g^{\prime}\left(N_{T^{\prime}}\left[v_{3}\right]\right) \geqslant 1$ and $g\left(N_{T}[x]\right)=2$ whenever $g^{\prime}\left(v_{3}\right)=1$. Therefore, g has $k^{\prime}+|S|+\left(g^{\prime}\left(v_{3}\right)+1\right) / 2=k$ good vertices, where $\left(g^{\prime}\left(v_{3}\right)+1\right) / 2$ is for vertex x, a contradiction.

In the remainder, we shall give a good k-subdominating function of T to complete the proof. If v_{3} has a unique leaf neighbor x not in P, then set $x^{\prime}=v_{3}$; otherwise $N_{T}\left(v_{3}\right)=\left\{v_{2}, v_{4}\right\}$, in this case set $x=v_{3}$ and $x^{\prime}=v_{4}$. If v_{m-2} has a unique leaf neighbor y not in P, then set $y^{\prime}=v_{m-2}$; otherwise $N_{T}\left(v_{m-2}\right)=\left\{v_{m-1}, v_{m-3}\right\}$, in this case set $y=v_{m-2}$ and $y^{\prime}=v_{m-3}$. Let tree $T^{\prime}=T-\left(\left(N_{T}\left[v_{2}\right] \cup N_{T}\left[v_{m-1}\right]-\left\{v_{3}, v_{m-2}\right\}\right) \cup\{x, y\}\right)$ have n^{\prime} vertices and $k^{\prime}=k-a-b-2$. Then $n^{\prime}=n-2 a-2 b-4$ and $k^{\prime}>n^{\prime} / 2$.

If $k^{\prime}>n^{\prime}$, then $k \geqslant n-a-b-1$. For the case of $k \geqslant n-a-b, T$ has a good k-subdominating function g such that $g(v)=1$ for all vertices v except $g(v)=-1$ for at most a leaf neighbors v of v_{2} and at most b leaf neighbors v of v_{m-1}. For the case of $k=n-a-b-1, T$ has a good k-subdominating function g such that $g(v)=1$ for all vertices except $g(v)=-1$ for exactly $a-b$ leaf neighbors v of v_{2} and all vertices v in $N\left[v_{m-1}\right]-\left\{v_{m-2}\right\}$.

Now consider the case when $n^{\prime} / 2<k^{\prime} \leqslant n^{\prime}$. Then T^{\prime} has a good k^{\prime}-subdominating function g^{\prime}. We construct a function g on $V(T)$ as follows. Let $g(v)=g^{\prime}(v)$ for all $v \in V\left(T^{\prime}\right)$. If $g^{\prime}\left(y^{\prime}\right)=1$, then set $g(y)=i=1$, otherwise set $g(y)=-1$ and $i=0$. Let $g(v)=-1$ for all $v \in N_{T}\left[v_{m-1}\right]-\left\{v_{m-2}\right\}$. If $g^{\prime}\left(x^{\prime}\right)=1$, then set $g(x)=j=1$, otherwise set $g(x)=-1$ and $j=0$. If $i=j=0$ and $v_{3} \neq x$, then reset $g\left(v_{3}\right)=g(x)=i=j=1$. If $i=j=0$ and $v_{3}=x$, then reset $g\left(v_{3}\right)=i=1$. Let the g value of v_{2} and $a+b+1-$ $i-j \leqslant a+b$ leaves of $N_{T}\left(v_{2}\right)$ be 1 and the other leaves be -1 . Since g preserves the property of g^{\prime} that $g^{\prime}\left(N_{T^{\prime}}[v]\right) \geqslant 1$ for those $v \in V\left(T^{\prime}\right)$ with $g^{\prime}(v)=1$, and there are $a+b+2$ vertices for which v is not in T^{\prime} or $g^{\prime}(v)=-1, g(v)=1$ and $g\left(N_{T}[v]\right) \geqslant 1$, g is a good k-subdominating function of T.

We have recently learned from the referee that Cockayne and Mynhardt's conjecture has independently been settled by Kang Li-ying, Shan Er-fang, and Cai Mao-cheng using different techniques.

3. Lower bound

This section establishes a lower bound for $\gamma_{k s}(G)$ in terms of the degree sequence by a simple argument. This generalizes some known results on $\gamma_{k s}(G), \gamma_{\text {maj }}(G)$ and $\gamma_{\mathrm{s}}(G)$, whose proofs were more involved.

Theorem 4. If $G=(V, E)$ is a graph of order n with degree sequence $d_{1} \leqslant d_{2} \leqslant$ $\cdots \leqslant d_{n}$, then

$$
\gamma_{k s}(G) \geqslant-n+\frac{2}{d_{n}+1} \sum_{j=1}^{k}\left\lceil\frac{d_{j}+2}{2}\right\rceil .
$$

Proof. Suppose g is an optimal k-subdominating function for G, say, $g\left(N_{G}[v]\right) \geqslant 1$ for k distinct vertices v in $\left\{v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{k}}\right\}$. Let $f(x)=(g(x)+1) / 2$ for all vertices $x \in V$. Then f is a $0-1$ valued function. First,

$$
\sum_{i=1}^{k} f\left(N_{G}\left[v_{j_{i}}\right]\right)=\sum_{i=1}^{k}\left\lceil\frac{g\left(N_{G}\left[v_{j_{i}}\right]\right)+d_{j_{i}}+1}{2}\right\rceil \geqslant \sum_{i=1}^{k}\left\lceil\frac{d_{j_{i}}+2}{2}\right\rceil \geqslant \sum_{j=1}^{k}\left\lceil\frac{d_{j}+2}{2}\right\rceil .
$$

On the other hand,

$$
\sum_{i=1}^{k} f\left(N_{G}\left[v_{j_{i}}\right]\right) \leqslant \sum_{j=1}^{n} f\left(N_{G}\left[v_{j}\right]\right)=\sum_{i=1}^{n}\left(d_{i}+1\right) f\left(v_{i}\right) \leqslant\left(d_{n}+1\right) f(V)
$$

Therefore, $f(V) \geqslant 1 /\left(d_{n}+1\right) \sum_{j=1}^{k}\left\lceil\left(d_{j}+2\right) / 2\right\rceil$ and so

$$
\gamma_{k \mathrm{~s}}(G)=g(V)=2 f(V)-n \geqslant-n+\frac{2}{d_{n}+1} \sum_{j=1}^{k}\left\lceil\frac{d_{j}+2}{2}\right\rceil .
$$

By setting $d_{1}=d_{2}=\cdots=d_{n}=r$ in Theorem 4, we have
Theorem 5 (Hattingh et al. [8]). For every r-regular $(r \geqslant 2)$ graph G of order n,

$$
\gamma_{k s}(G) \geqslant \begin{cases}k \frac{r+3}{r+1}-n & \text { if } r \text { odd } \\ k \frac{r+2}{r+1}-n & \text { if } r \text { is even } .\end{cases}
$$

Moreover, taking $k=n$ and $k=\lceil n / 2\rceil$, respectively, we have the following two theorems.

Theorem 6 (Dunbar et al. [4] and Henning et al. [11]). For every r-regular $(r \geqslant 2)$ graph G of order n,

$$
\gamma_{\mathrm{s}}(G) \geqslant \begin{cases}\frac{2 n}{r+1} & \text { if } r \text { odd } \\ \frac{n}{r+1} & \text { if } r \text { is even } .\end{cases}
$$

Theorem 7 (Henning [9]). For every r-regular $(r \geqslant 2)$ graph G of order n,

$$
\gamma_{\mathrm{maj}}(G) \geqslant \begin{cases}\frac{(1-r) n}{2(r+1)} & \text { if } r \text { odd }, \\ \frac{-r n}{2(r+1)} & \text { if } r \text { is even. } .\end{cases}
$$

Corollary 8. If G is a graph with n vertices, m edges and maximum degree \triangle, then

$$
\gamma_{k s}(G) \geqslant k-2 n+\frac{2 m+n+k}{\Delta+1} .
$$

Proof. According to Theorem 4, we have

$$
\begin{aligned}
\gamma_{k \mathrm{~s}}(G) & \geqslant-n+\frac{2}{d_{n}+1} \sum_{j=1}^{k}\left[\frac{d_{j}+2}{2}\right] \geqslant-n+\frac{2 k+\sum_{j=1}^{k} d_{j}}{\Delta+1} \\
& =-n+\frac{2 k+2 m-\sum_{j=k+1}^{n} d_{j}}{\Delta+1} \geqslant-n+\frac{2 k+2 m-(n-k) \Delta}{\Delta+1} \\
& =k-2 n+\frac{2 m+n+k}{\Delta+1} .
\end{aligned}
$$

Acknowledgements

The authors thank the referees for many useful suggestions.

References

[1] D.W. Bange, A.E. Barkauskas, L.H. Host, P.J. Slater, Generalized domination and efficient domination in graphs, Discrete Math. 159 (1996) 1-11.
[2] I. Broere, J.H. Hattingh, M.A. Henning, A.A. McRae, Majority domination in graphs, Discrete Math. 138 (1995) 125-135.
[3] E.J. Cockayne, C.M. Mynhardt, On a generalization of signed dominating functions of graphs, Ars Combin. 43 (1996) 235-245.
[4] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater, Signed domination in graphs, Proceedings of the Seventh International Conference on Graph Theory, Combinatorics, Algorithms and Applications, 1994, pp. 311-321.
[5] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996) 287-293.
[6] Z. Fűredi, Signed domination in regular graphs and set-systems, J. Combin. Theory Ser. B 76 (1999) 223-239.
[7] J.H. Hattingh, Majority domination and its generalizations, in: T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in graphs: Advanced Topics, Marcel Dekker, New York, 1998, pp. 91-107.
[8] J.H. Hattingh, E. Ungerer, M.A. Henning, Partial signed domination in graphs, Ars Combin. 48 (1998) 33-42.
[9] M.A. Henning, Domination in regular graphs, Ars Combin. 43 (1996) 263-271.
[10] M.A. Henning, H.R. Hind, Strict majority functions on graphs, J. Graph Theory 28 (1998) 49-56.
[11] M.A. Henning, P.J. Slater, Inequalities relating domination parameters in cubic graphs, Discrete Math. 158 (1996) 87-98.
[12] H.G. Yeh, G.J. Chang, Algorithmic aspects of majority domination, Taiwanese J. Math. 1 (1997) 343350.
[13] B. Zelinka, Some remarks on domination in cubic graphs, Discrete Math. 158 (1996) 249-255.

[^0]: * Corresponding author. Tel.: +886-3-573-1945; fax: +886-3-542-2682.

 E-mail addresses: gjchang@math.ntu.edu.tw (G.J. Chang), scliaw@math.ncu.edu.tw (S.-C. Liaw), hgyeh@math.nuk.edu.tw (H.-G. Yeh).
 ${ }^{1}$ Supported in part by the National Science Council under Grant NSC88-2125-M009-009 and the Lee and MTI Center for Networking Research of NCTU.
 ${ }^{2}$ Supported in part by the National Science Council under Grant NSC88-2115-M008-013.

