

Discrete Applied Mathematics 120 (2002) 55-60

k-Subdomination in graphs

DISCRETE APPLIED MATHEMATICS

Gerard J. Chang^{a, *,1}, Sheng-Chyang Liaw^b, Hong-Gwa Yeh^{c,2}

^aDepartment of Mathematics, National Taiwan University, Taipei 106, Taiwan ^bDepartment of Mathematics, National Central University, Chungli 32054, Taiwan ^cDepartment of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan

Received 1 May 2000; received in revised form 8 July 2000; accepted 3 June 2001

Abstract

For a positive integer k, a k-subdominating function of a graph G = (V, E) is a function $f: V \to \{-1, 1\}$ such that $\sum_{u \in N_G[v]} f(u) \ge 1$ for at least k vertices v of G. The k-subdomination number of G, denoted by $\gamma_{ks}(G)$, is the minimum of $\sum_{v \in V} f(v)$ taken over all k-subdominating functions f of G. In this article, we prove a conjecture for k-subdomination on trees proposed by Cockayne and Mynhardt. We also give a lower bound for $\gamma_{ks}(G)$ in terms of the degree sequence of G. This generalizes some known results on the k-subdomination number $\gamma_{ks}(G)$, the signed domination number $\gamma_s(G)$ and the majority domination number $\gamma_{maj}(G)$. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Domination; k-subdomination; Majority domination; Signed domination; Tree; Leaf

1. Introduction

The concept of domination is a good model for many location problems in operations research. In a graph G = (V, E), the *(open) neighborhood* of a vertex v is the set $N_G(v)$ consisting of all vertices adjacent to v; and the *closed neighborhood* $N_G[v] = N_G(v) \cup \{v\}$. The *degree* of a vertex v is $deg(v) = |N_G(v)|$. A *leaf* is a vertex of degree 1. A *leaf neighbor* is a neighbor that is a leaf. A *dominating set* of G is a subset D of V for which every vertex in V-D is adjacent to some vertex of D; or equivalently, $|N_G[v] \cap D| \ge 1$. The *domination number* $\gamma(G)$ is the smallest cardinality of a dominating set. Alternatively, we can view a dominating set as a *dominating function* which is a function $g: V \to \{0, 1\}$ such that $g(N_G[v]) \ge 1$ for all vertices $v \in V$,

^{*} Corresponding author. Tel.: +886-3-573-1945; fax: +886-3-542-2682.

E-mail addresses: gjchang@math.ntu.edu.tw (G.J. Chang), scliaw@math.ncu.edu.tw (S.-C. Liaw), hgyeh@math.nuk.edu.tw (H.-G. Yeh).

¹ Supported in part by the National Science Council under Grant NSC88-2125-M009-009 and the Lee and MTI Center for Networking Research of NCTU.

² Supported in part by the National Science Council under Grant NSC88-2115-M008-013.

where $g(S) = \sum_{x \in S} g(x)$ for any $S \subseteq V$. In this case, $\gamma(G)$ is the minimum of g(V) taken over all dominating functions of G.

Variations of domination have been defined by replacing $\{0,1\}$ in the above definition by $\{-1,1\}$ or $\{-1,0,1\}$, and requiring the condition $g(N_G[v]) \ge 1$ for different number of vertices. For a positive integer k, a *k*-subdominating function of G = (V, E) is defined in [3] as a function $g: V \to \{-1,1\}$ such that $g(N_G[v]) \ge 1$ for at least k vertices v of G. The *k*-subdomination number of G is

 $\gamma_{ks}(G) = \min\{g(V): g \text{ is a } k \text{-subdominating function of } G\}.$

In the special cases where k = |V| and $k = \lceil |V|/2 \rceil$, $\gamma_{ks}(G)$ is, respectively, the *signed domination number* $\gamma_s(G)$ defined in [4] and the *majority domination number* $\gamma_{maj}(G)$ defined in [2] of *G*. For more study on signed domination and majority domination, see [1,5–13].

Cockayne and Mynhardt [3] proved that for any tree T of n vertices, $\gamma_{ks}(T) \leq 2k + 2 - n$. This upper bound is sharp for $k \leq n/2$ as shown by the example $K_{1,n-1}$. They then gave the following conjecture:

Conjecture. If T is a tree of n vertices and $n/2 < k \le n$, then $\gamma_{ks}(T) \le 2k - n$.

Note that the upper bound in the conjecture is sharp as shown by the same example $K_{1,n-1}$. They gave some partial results which support the conjecture.

Theorem 1 (Cockayne and Mynhardt [3]). Suppose *T* is an *n*-vertex tree rooted at *v*, where deg(*v*) = *s* and *v* has exactly *t* leaf neighbors; say $N(v) = \{w_1, \ldots, w_t, u_1, \ldots, u_{s-t}\}$ such that w_1, \ldots, w_t are leaves and $2 \leq |V(T(u_1))| \leq \cdots \leq |V(T(u_{s-t}))|$, where *T*(*u*) is the subtree of *T* induced by *u* and its descendants. If $r = \lceil s/2+1 \rceil \leq s-t$ and $n \geq k \geq |V(T(u_1))| + \cdots + |V(T(u_r))|$, then $\gamma_{ks}(T) \leq 2k - n$.

Theorem 2 (Cockayne and Mynhardt [3]). For any full m-ary tree of n vertices, $\gamma_{ks}(T) \leq 2k - n$ whenever $2\lceil (m+3)/2 \rceil \leq k \leq n$.

The main result of this paper is to settle the conjecture. We also give a lower bound for $\gamma_{ks}(G)$ in terms of the degree sequence of G. This generalizes some previous results on the k-subdomination number $\gamma_{ks}(G)$, the signed domination number $\gamma_s(G)$ and the majority domination number $\gamma_{maj}(G)$.

2. Upper bound conjecture

We first establish the conjecture given by Cockayne and Mynhardt [3].

Theorem 3. If T is a tree of n vertices and $n/2 < k \leq n$, then $\gamma_{ks}(T) \leq 2k - n$.

Proof. We actually prove the stronger assertion that *T* has a *good k*-subdominating function *g*, which is one such that g(V(T)) = 2k - n and there are exactly *k good vertices* that are vertices *v* with g(v) = 1 and $g(N_G[v]) \ge 1$. Suppose to the contrary that the assertion is not true. Choose a tree *T* with a minimum number of vertices having no good *k*-subdominating function. It is obvious that $k \le n - 1$.

Claim 1. The only neighbor of a leaf in T is of odd degree.

Proof. Assume x is a leaf whose only neighbor y is of even degree. Let tree T' = T - x. Since $(n-1)/2 < k \le n-1$, the tree T' has a good k-subdominating function g' by the choice of T. Extend g' to $g:V(T) \to \{-1,1\}$ by g(v) = g'(v) for all $v \in V(T) - \{x\}$ and g(x) = -1. Then $g(N_T[v]) = g'(N_{T'}[v])$ for all $v \in V(T) - \{x, y\}$ and $g(N_T[y]) = g'(N_{T'}[y]) - 1$. Since y is of even degree in T, we have that $|N_{T'}[y]|$ is even. Consequently, $g'(N_{T'}[y]) \ge 1$ implies $g(N_T[y]) \ge 1$. Therefore, g is a good k-subdominating function of T, a contradiction. \Box

Choose a longest path $P: v_1v_2...v_m$ in T. Note that $m \ge 4$, for otherwise T is a star which certainly has a good k-subdominating function as n/2 < k. Note that v_2 has exactly one non-leaf neighbor v_3 and $2a \ge 2$ leaf neighbors by Claim 1. Also, v_{m-1} has exactly one non-leaf neighbor v_{m-2} and $2b \ge 2$ leaf neighbors. We may assume $a \ge b$, otherwise reverse the path P. Now $m \ge 5$, for otherwise m = 4 which implies that n = 2a + 2b + 2 and k > n/2 = a + b + 1. Choose $S_a \subseteq N(v_2) - \{v_3\}$ and $S_b \subseteq N(v_3) - \{v_2\}$ with $|S_a| \ge a$, $|S_b| \ge b$ and $|S_a| + |S_b| = k - 2$. Then there exists a good k-subdominating function g of T such that g(v) = 1 for $v \in S_a \cup S_b \cup \{v_2, v_3\}$ and g(v) = -1 for all other vertices.

Claim 2. The neighbors of v_3 not in P are leaves, and $m \ge 6$.

Proof. Assume v_3 has a non-leaf neighbor x not in P or m = 5, in which case we set $x = v_4$. Since P is a longest path in T or $x = v_4$ (for m = 5), all neighbors of x are leaves except v_3 . By Claim 1, assume that x has $2c \ge 2$ leaf neighbors. Moreover, we may assume $a \ge c$, for otherwise we just interchange the role of v_2 and x. Let tree $T' = T - (N_T[v_2] \cup N_T[x] - \{v_3\})$ have n' vertices and k' = k - a - c - 1. Then n' = n - 2a - 2c - 2 and k' > n'/2. If k' > n', then $k \ge n - a - c$ and so T has a good k-subdominating function g such that g(v) = 1 for all vertices v except g(v) = -1 for at most a leaf neighbors v of v_2 and at most c leaf neighbors v of x, a contradiction. Now $n'/2 < k' \le n'$. Then T' has a good k'-subdominating function g' by the choice of T. Let S be the vertex set containing v_2 and a + c of its leaf neighbors. Extend g' to $g: V(T) \rightarrow \{-1, 1\}$ by g(v) = g'(v) for all $v \in V(T')$, g(v) = 1 for $v \in S$ and g(v) = -1 for $v \in N_T[x] \cup N_T[v_2] - (S \cup \{v_3\})$. Then $g(N_T[v_1]) = 2$ for $v \in S - \{v_2\}$ and $g(N_T[v_2]) = a + c + 1 - (a - c) + g(v_3) \ge 2$. Also, since $g(v_2) = 1$ and g(x) = -1, we have $g(N_T[v_3]) = g'(N_{T'}[v_3])$ and so $g(N_T[v_1]) = g'(N_{T'}[v_1])$ for all $v \in V(T')$. Therefore, g has k' + a + c + 1 = k good vertices, a contradiction.

Claim 3. The vertex v_3 (respectively, v_{m-2}) has at most one leaf neighbor.

Proof. If v_3 has at least one leaf neighbor, then the number of such leaves is odd by Claim 1. Assume there are three leaves x, y and z in $N_T(v_3) - P$. Let tree $T' = T - (\{x, y, z\} \cup N_T[v_2] - \{v_3\})$ have n' vertices and k' = k - a - 2. Then n' = n - 2a - 4and k' > n'/2. If k' > n', then $k \ge n - a - 1$ and so T has a good k-subdominating function g such that g(v) = 1 for all vertices v except g(x) = -1 and g(v) = -1 for at most a leaf neighbors of v_2 , a contradiction. Now $n'/2 < k' \le n'$. Then T' has a good k'-subdominating function g' by the choice of T. Let S be the vertex set containing v_2 and $a+1-(g'(v_3)+1)/2$ of its leaves. Extend g' to $g:V(T) \to \{-1,1\}$ by g(v)=g'(v)for $v \in V(T')$, $g(x) = g'(v_3)$, g(v) = 1 for $v \in S$, and g(v) = -1 for $v \in \{y,z\} \cup N[v_2] - (S \cup \{v_3\})$. Then $g(N_T[v]) = 2$ for $v \in S$. Since $g(N_T[v_3]) = g'(N_{T'}[v_3]) + g(v_2) + g(x) + g(y) + g(z) = g'(N_{T'}[v_3]) + g'(v_3) - 1$, we have $g(N_T[v_3]) = g'(N_{T'}[v_3]) \ge 1$ and $g(N_T[x]) = 2$ whenever $g'(v_3) = 1$. Therefore, g has $k' + |S| + (g'(v_3) + 1)/2 = k$ good vertices, where $(g'(v_3) + 1)/2$ is for vertex x, a contradiction. \Box

In the remainder, we shall give a good k-subdominating function of T to complete the proof. If v_3 has a unique leaf neighbor x not in P, then set $x' = v_3$; otherwise $N_T(v_3) = \{v_2, v_4\}$, in this case set $x = v_3$ and $x' = v_4$. If v_{m-2} has a unique leaf neighbor y not in P, then set $y' = v_{m-2}$; otherwise $N_T(v_{m-2}) = \{v_{m-1}, v_{m-3}\}$, in this case set $y = v_{m-2}$ and $y' = v_{m-3}$. Let tree $T' = T - ((N_T[v_2] \cup N_T[v_{m-1}] - \{v_3, v_{m-2}\}) \cup \{x, y\})$ have n' vertices and k' = k - a - b - 2. Then n' = n - 2a - 2b - 4 and k' > n'/2.

If k' > n', then $k \ge n - a - b - 1$. For the case of $k \ge n - a - b$, T has a good k-subdominating function g such that g(v) = 1 for all vertices v except g(v) = -1 for at most a leaf neighbors v of v_2 and at most b leaf neighbors v of v_{m-1} . For the case of k = n - a - b - 1, T has a good k-subdominating function g such that g(v) = 1 for all vertices except g(v) = -1 for exactly a - b leaf neighbors v of v_2 and all vertices v in $N[v_{m-1}] - \{v_{m-2}\}$.

Now consider the case when $n'/2 < k' \le n'$. Then T' has a good k'-subdominating function g'. We construct a function g on V(T) as follows. Let g(v) = g'(v) for all $v \in V(T')$. If g'(y') = 1, then set g(y) = i = 1, otherwise set g(y) = -1 and i = 0. Let g(v) = -1 for all $v \in N_T[v_{m-1}] - \{v_{m-2}\}$. If g'(x') = 1, then set g(x) = j = 1, otherwise set g(x) = -1 and j = 0. If i = j = 0 and $v_3 \neq x$, then reset $g(v_3) = g(x) = i = j = 1$. If i = j = 0 and $v_3 = x$, then reset $g(v_3) = i = 1$. Let the g value of v_2 and $a + b + 1 - i - j \le a + b$ leaves of $N_T(v_2)$ be 1 and the other leaves be -1. Since g preserves the property of g' that $g'(N_{T'}[v]) \ge 1$ for those $v \in V(T')$ with g'(v) = 1, and there are a + b + 2 vertices for which v is not in T' or g'(v) = -1, g(v) = 1 and $g(N_T[v]) \ge 1$, g is a good k-subdominating function of T. \Box

We have recently learned from the referee that Cockayne and Mynhardt's conjecture has independently been settled by Kang Li-ying, Shan Er-fang, and Cai Mao-cheng using different techniques.

3. Lower bound

This section establishes a lower bound for $\gamma_{ks}(G)$ in terms of the degree sequence by a simple argument. This generalizes some known results on $\gamma_{ks}(G)$, $\gamma_{maj}(G)$ and $\gamma_s(G)$, whose proofs were more involved.

Theorem 4. If G = (V, E) is a graph of order *n* with degree sequence $d_1 \leq d_2 \leq \cdots \leq d_n$, then

$$\gamma_{ks}(G) \ge -n + \frac{2}{d_n+1} \sum_{j=1}^k \left\lceil \frac{d_j+2}{2} \right\rceil$$

Proof. Suppose g is an optimal k-subdominating function for G, say, $g(N_G[v]) \ge 1$ for k distinct vertices v in $\{v_{j_1}, v_{j_2}, \dots, v_{j_k}\}$. Let f(x) = (g(x) + 1)/2 for all vertices $x \in V$. Then f is a 0–1 valued function. First,

$$\sum_{i=1}^{k} f(N_G[v_{j_i}]) = \sum_{i=1}^{k} \left\lceil \frac{g(N_G[v_{j_i}]) + d_{j_i} + 1}{2} \right\rceil \ge \sum_{i=1}^{k} \left\lceil \frac{d_{j_i} + 2}{2} \right\rceil \ge \sum_{j=1}^{k} \left\lceil \frac{d_j + 2}{2} \right\rceil.$$

On the other hand,

$$\sum_{i=1}^{k} f(N_G[v_{j_i}]) \leq \sum_{j=1}^{n} f(N_G[v_j]) = \sum_{i=1}^{n} (d_i + 1) f(v_i) \leq (d_n + 1) f(V).$$

Therefore, $f(V) \ge 1/(d_n+1)\sum_{j=1}^k \lceil (d_j+2)/2 \rceil$ and so

$$\gamma_{ks}(G) = g(V) = 2f(V) - n \ge -n + \frac{2}{d_n + 1} \sum_{j=1}^{k} \left[\frac{d_j + 2}{2} \right].$$

By setting $d_1 = d_2 = \cdots = d_n = r$ in Theorem 4, we have

Theorem 5 (Hattingh et al. [8]). For every r-regular $(r \ge 2)$ graph G of order n,

$$\gamma_{ks}(G) \ge \begin{cases} k\frac{r+3}{r+1} - n & \text{if } r \text{ odd,} \\ k\frac{r+2}{r+1} - n & \text{if } r \text{ is even.} \end{cases}$$

Moreover, taking k = n and $k = \lceil n/2 \rceil$, respectively, we have the following two theorems.

Theorem 6 (Dunbar et al. [4] and Henning et al. [11]). For every r-regular $(r \ge 2)$ graph G of order n,

$$\gamma_{s}(G) \geq \begin{cases} \frac{2n}{r+1} & \text{if } r \text{ odd,} \\ \frac{n}{r+1} & \text{if } r \text{ is even.} \end{cases}$$

Theorem 7 (Henning [9]). For every r-regular $(r \ge 2)$ graph G of order n,

$$\gamma_{\text{maj}}(G) \geq \begin{cases} \frac{(1-r)n}{2(r+1)} & \text{if } r \text{ odd,} \\ \frac{-m}{2(r+1)} & \text{if } r \text{ is even.} \end{cases}$$

Corollary 8. If G is a graph with n vertices, m edges and maximum degree \triangle , then $\gamma_{ks}(G) \ge k - 2n + \frac{2m + n + k}{\Delta + 1}.$

Proof. According to Theorem 4, we have

$$\begin{aligned} \gamma_{ks}(G) &\ge -n + \frac{2}{d_n + 1} \sum_{j=1}^k \left\lceil \frac{d_j + 2}{2} \right\rceil \ge -n + \frac{2k + \sum_{j=1}^k d_j}{\Delta + 1} \\ &= -n + \frac{2k + 2m - \sum_{j=k+1}^n d_j}{\Delta + 1} \ge -n + \frac{2k + 2m - (n - k)\Delta}{\Delta + 1} \\ &= k - 2n + \frac{2m + n + k}{\Delta + 1}. \quad \Box \end{aligned}$$

Acknowledgements

The authors thank the referees for many useful suggestions.

References

- D.W. Bange, A.E. Barkauskas, L.H. Host, P.J. Slater, Generalized domination and efficient domination in graphs, Discrete Math. 159 (1996) 1–11.
- [2] I. Broere, J.H. Hattingh, M.A. Henning, A.A. McRae, Majority domination in graphs, Discrete Math. 138 (1995) 125–135.
- [3] E.J. Cockayne, C.M. Mynhardt, On a generalization of signed dominating functions of graphs, Ars Combin. 43 (1996) 235–245.
- [4] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater, Signed domination in graphs, Proceedings of the Seventh International Conference on Graph Theory, Combinatorics, Algorithms and Applications, 1994, pp. 311–321.
- [5] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996) 287-293.
- [6] Z. Fűredi, Signed domination in regular graphs and set-systems, J. Combin. Theory Ser. B 76 (1999) 223–239.
- [7] J.H. Hattingh, Majority domination and its generalizations, in: T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in graphs: Advanced Topics, Marcel Dekker, New York, 1998, pp. 91–107.
- [8] J.H. Hattingh, E. Ungerer, M.A. Henning, Partial signed domination in graphs, Ars Combin. 48 (1998) 33–42.
- [9] M.A. Henning, Domination in regular graphs, Ars Combin. 43 (1996) 263-271.
- [10] M.A. Henning, H.R. Hind, Strict majority functions on graphs, J. Graph Theory 28 (1998) 49-56.
- [11] M.A. Henning, P.J. Slater, Inequalities relating domination parameters in cubic graphs, Discrete Math. 158 (1996) 87–98.
- [12] H.G. Yeh, G.J. Chang, Algorithmic aspects of majority domination, Taiwanese J. Math. 1 (1997) 343– 350.
- [13] B. Zelinka, Some remarks on domination in cubic graphs, Discrete Math. 158 (1996) 249-255.