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a b s t r a c t

We introduce a weak order ideal property that suffices for establishing the Evans–Griffith
Syzygy Theorem. We study this weak order ideal property in settings that allow for
comparison between homological algebra over a local ring R versus a hypersurface ring
R̄ = R/(xn). Consequently we solve some relevant cases of the Evans–Griffith syzygy
conjecture over local rings of unramified mixed characteristic p, with the case of syzygies
of prime ideals of Cohen–Macaulay local rings of unramified mixed characteristic being
noted. We reduce the remaining considerations to modules annihilated by ps, s > 0, that
have finite projective dimension over a hypersurface ring.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let R be a commutative ring and let x ∈ R be a non-zerodivisor. Our main objective is to understand how homological
algebra over a ring R̄ = R/(x) relates to that over R, with a focus on establishing relations between order ideals of syzygies
over the two rings. As explained in the final remarks, it is particularly interesting to understand the case when both R and R̄
are regular, with R of mixed characteristic and R̄ ramified or of characteristic p.

For k ≥ 0, we say that an R-module E is a kth syzygy if it arises as the cokernel of the (k+ 1)st differential in a projective
acyclic complex of finitely generated R-modules. In case R is local, it suffices to consider minimal acyclic free resolutions.
We shall often use the notation Syzk(M) for the kth syzygy of an R-moduleM . WhenM has finite projective dimension and,
in addition,M has a finite free resolution then the rank ofM may be defined as the alternating sum of the ranks in any finite
free resolution ofM .

A celebrated homological theorem that yields a tight lower bound on ranks of syzygies was proved by Evans and Griffith
in [10]. In its most general form their theorem states:

Theorem 1.1 (Syzygy Theorem). A finitely generated and finite projective dimension kth syzygy module over a local ring
containing a field, if not free, has rank at least k.

Evans and Griffith gave the original proof of the Syzygy Theorem in [10] in the case of a local integral domain containing
a field. Several different styles of proofs and generalizations have since appeared, the most notable of these being the
characteristic p proof of Hochster and Huneke [15] and the generalization by Bruns [3] in which the minimal free complex
is allowed some positive homology and the domain condition is dropped. Moreover, work of Ogoma [18], Dutta [7] and
Hochster [13] showed that the Syzygy Theorem can be deduced from the Improved New Intersection Theorem and that the
latter is equivalent to the Canonical Element Conjecture respectively. Further progress was made to prove the analogous
result in the graded case in any characteristic in [12] and for mixed characteristic regular local rings of dimension at most
five in [8]. In the local mixed characteristic context the Syzygy Problem is open and we aim here at applying our methods
to settle a few relevant cases.
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Definition 1.2. If E is an R-module and e ∈ E, there is an induced R-homomorphism e : HomR(E, R) → R defined by
e(f ) = f (e) the image of which is the order ideal

OE(e) = {f (e)|f ∈ HomR(E, R) = E∗
}.

The central idea in [10,12,8] and key to the proof of the Syzygy Theorem was to establish first a stronger result, namely
the Order Ideal Theorem for kth syzygies of finite projective dimension. For such a syzygy E, this theorem states that
gradeOE(e) ≥ k, for every minimal generator e ∈ E − mE. For application to establishing the Syzygy Theorem, it was
observed in [12] in the homogeneous setting that having at least one minimal generator satisfying the grade inequality of
the Order Ideal Theoremwould suffice. In this article, we introduce and study this lesser condition under the name of weak
order ideal property for kth syzygies:

Definition 1.3. Let R be a Noetherian local ring and let E be a kth syzygy R-module. We say E satisfies the weak order ideal
property if there exists e ∈ E − mE such that gradeOE(e) ≥ k (or equivalently over an Sk ring R, if htR OE(e) ≥ k).

The paper is structured as follows: we begin by establishing several reductions that can be made for the rank of
syzygies problem in mixed characteristic. In particular we reduce to syzygies of modules annihilated by powers of p and
establish, in the spirit of Bruns’ three-generated ideal theorem, some special classes of three generated ideals that are of
interest (Theorem 2.4). We further reduce under mild hypotheses to syzygies of finite projective dimension modules over a
hypersurface ring S = R/(pn) (Proposition 2.8). In section three we prove that the order ideal property implies the Syzygy
Theorem in this more subtle setting of modules over hypersurface rings (Proposition 3.1). In the fourth and fifth sections we
develop themachinery for comparison of order ideals of syzygymodules over R versus R/(x) or R/(xn). Our approach here is
to study situations in whichwe can achieve the weak order ideal property for R-syzygies given that the Order Ideal Theorem
holds over the respective hypersurface ring. Let E represent a kth syzygy module over R and let E ′ represent the same over
R/(x). A useful comparison ariseswhenever there is a homomorphism E −→ E ′ that remains nontrivial upon tensoringwith
the residue field. The main results in Theorems 4.4 and 5.2 describe two situations when such a conclusion can be achieved.
The sixth section contains results on stronger bounds on ranks of syzygies which can be deduced for modules annihilated
by p and also under the incomparable hypothesis that themodule being resolved is weakly liftable in the sense of Auslander
et al. [2].

A characterization of syzygies can be given in terms of Serre’s property Sk: we say that an R-moduleM satisfies the Serre
condition Sk if for each prime ideal p ∈ Spec R, depthRp

Mp ≥ min(k, dim Rp). Over Sk rings, kth syzygies can simply be
characterized as modules satisfying property Sk. Although we can state many of our results over Sk domains, with respect
to the order ideal techniques employed in [11,12] only the unramified regular local case is most likely to yield positive
results. The final section contains details on the importance of understanding the case where R is assumed to be regular and
unramified.

2. Reductions

2.1. Reduction to modules annihilated by powers of p

Throughout this section R is a local unique factorization domain of mixed characteristic p. In this context, any possible
counterexample to the Syzygy Conjecture can only occur for kth syzygies E with k ≥ 3, since second syzygies of rank one
must be isomorphic to R. Therefore we may deform the initial two terms of any free resolution as long as the third and
higher syzygies remain the same. Moreover, an affirmative answer to the Syzygy Theorem in equal characteristic implies
that E[p−1

] will be R[p−1
] projective for any counterexample E.

We recall the universal pushforward construction (page 49 in [11])

Proposition 2.1. Let E be a kth syzygy over R. Then one can construct an exact sequence of length k of free R-modules

0 → E → Rnk → · · · → Rn1

called the universal pushforward of E. If we further assume that E[p−1
] is R[p−1

]-projective, then all the syzygies of the universal
pushforward sequence become projective upon inverting p.

Proof. Let f1, . . . , fnk generate E∗ and map E
u

→ Rnk via setting u(m) = (f1(m), . . . , fnk(m)). If E is a kth syzygy (k ≥ 1),
this is a monomorphism which gives rise to a dual exact sequence 0 → E → Rnk → C → 0, with C a (k − 1)st syzygy.
If we further assume that E[p−1

] is R[p−1
]-projective, this short exact sequence must become locally split upon inverting

p, yielding that C[p−1
] is also R[p−1

]-projective. Now we may repeat the process as long as C is at least a first syzygy (i.e. k
times) to obtain a long exact sequence of length k in which all the syzygies become projective upon inverting p. �

We further recall the statement of the Bourbaki Theorem (Theorem 2.14 in [11]).

Theorem 2.2 (Bourbaki). Let R be a normal domain and let N be a finitely generated torsion-free R-module. Then there exists a
free submodule F of N such that N/F is isomorphic to an ideal.

We begin with a result allowing us to remove certain associated primes.
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Proposition 2.3. Let R be a local unique factorization domain of mixed characteristic p such that R/(p) is still a unique
factorization domain and suppose E is a kth syzygy of an R-module M where k ≥ 3. If P ∈ AssRM with p ∈ P and ht P ≤ 2, then
E is also a kth syzygy for M ′ where

0 → R/P → M → M ′
→ 0 is exact.

Proof. We shall discuss only the height 2 case since height 1 requires similar arguments. We note that P is necessarily of
the form P = (p, q) where the class of q represents a prime in R̄. We may view a free resolution of M being formed via the
horseshoe lemma as a direct sum of the minimal free resolution for M ′ and the length 2 resolution for R/P . Therefore the
third and higher syzygies ofM are preserved in the resolution ofM ′. �

Theorem 2.4. Let R be a local normal unique factorization domain of mixed characteristic p such that R/(p) is still a unique
factorization domain. Suppose E is a kth syzygy (k ≥ 3) in a finite free resolution F. → M and E[p−1

] is a projective R[p−1
]-

module. Then we may assume that M is any one of the following types:

(1) the module M is annihilated by ps for some s > 0 and htR(annRM) ≥ 3;
(2) the module M ≃ R/I where the ideal I has the property that for P ∈ AssR(R/I) and p /∈ P, htP ≤ 2.
(3) If furthermore Syz2 M = N has the properties rankR N = 2 and N[p−1

] is R[p−1
]-free, then one may take M to be of the form

M ≃ R/(ps, a, b) for some s > 0.

Proof. (1) Applying the universal pushforward construction (Proposition 2.1) and viewing the moduleM being resolved as
the cokernel of the last map of the pushforward complex, we obtain thatM[p−1

] is a projective R[p−1
]-module. In fact, since

it has a finite free resolution, M[p−1
] is stably free (Proposition 19.16 in [9]). Therefore one may augment M by a suitable

free R-module (resulting in a corresponding augmentation of F.) so that M[p−1
] is R[p−1

]-free. It follows that there exists a
free submodule F ofM such that T = M/F is annihilated by ps for some s > 0. Next wemay replaceM by T while preserving
all the kth syzygy modules, for k ≥ 3 and finally we may remove all height one and two associated primes of AnnR T using
the principle embodied in Proposition 2.3.

(2) In this instance we run the universal pushforward construction until obtaining a first syzygy module Z . Here we
employ the Bourbaki Theorem (2.2) to obtain a short exact sequence

0 → G → Z → I → 0

where G is free and I is an ideal having htR I ≥ 2. It follows that pdR[p−1](R/I)[p
−1

] ≤ 2, since Z[p−1
] is R[p−1

] projective.
Thus if P ∈ AssR R/I and p ∉ P then dim RP ≤ 2 and consequently ht(P) ≤ 2.

(3) Assuming now N is the second syzygy of M and N[p−1
] is R[p−1

]-free, one sees that N∗ contains an element e1 such
that N∗/e1R is R-torsion free and the following sequence which maps 1 ∈ R → e1 ∈ N∗ is split exact:

0 → R → N∗
→ J → 0.

Since J[p−1
] ≃ R[p−1

], one has that J is isomorphic to a height two ideal in R that contains a power of p so (ps, a) ⊆ I ,
where (ps, a) is an R-sequence. If we let e2, e3 ∈ N∗ correspond modulo e1R to ps and −a in I respectively, then one obtains
a relation in N∗ of the form

λ1e1 + λ2e2 + λ3e3 = 0

where λ2 = a, λ3 = ps and λ1 = b ∈ R. We set W = Re1 + Re2 + Re3 ⊆ N∗ and observe that N∗/W ≃ I/(a, ps), hence
AssR N∗/W contains no primes of height 1. It follows thatW ∗

≃ N∗∗
≃ N and thatW has a free resolution

0 → R → R3
→ W → 0 (1)

in which 1 ∈ R is sent to an element of R3 of the form ⟨b, a, ps⟩. Thus wemay dualize the short exact sequence (1) and obtain

0 → W ∗
→ R3

→ R → R/(a, b, ps) → 0

where Ext1R(W , R) ≃ R/(a, b, ps). Hence we may continue the free resolution from the second syzygy (N = W ∗) onward as
desired. �

2.2. Reduction to finite projective dimension over a hypersurface ring

Working in slightly greater generality we let x be a non-zerodivisor on R and we let S = R/(xn) and T be an R module
such that xnT = 0. Clearly one may view the R-module T as an S = R/(xn)-module. The first goal of this section is to show
that we may assume pdST < ∞ for the purpose of examining the R-syzygies of T .

The main tool we use in the following is the Auslander–Bridger approximation theorem:

Theorem 2.5 (Auslander–Bridger, Corollary 5.3 in [11]). Let R be a Gorenstein local ring and let M be a finitely generated
reflexive R-module. Then there is a free R-module L of finite rank and a short exact sequence

0 −→ U −→ L


M −→ M ′
−→ 0

satisfying

(1) the sequence is dual exact;
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(2) U is maximal Cohen–Macaulay;
(3) M ′ has finite projective dimension ;
(4) the natural map Ext i(M ′, R) → Ext i(M, R) is an isomorphism for i ≥ 1.

In the following we employ the Auslander–Bridger approximation theorem to reduce to the case of finite resolutions
over a hypersurface ring S.

Proposition 2.6. Let R be a local ring and S = R/(xn). If 0 → M ′
→ M → M ′′

→ 0 is an exact sequence of reflexive S-modules
that is in addition dual exact, then there is a short exact sequence of R-syzygy modules for M ′,M and M ′′ respectively that is in
turn dual exact.

Proof. Consider the following commutative diagram of R-modules with exact rows and columns and for which the middle
row represents a split exact sequence of free R-modules.

0 // Z ′ //

��

Z //

��

Z ′′ //

��

0.

0 // F ′ //

��

F //

��

F ′′ //

��

0.

0 // M ′ // M // M ′′ // 0.

Next recall that if M is an x-torsion module then Ext1R(M, R) ≃ HomS(M, S) which we denote by M+. Applying the functor
HomR(·, R) to the above diagram one obtains a new diagram in which all columns and all but possibly the middle row are
short exact.

0 // (F ′′)∗ //

��

F∗ //

��

(F ′)∗ //

��

0.

0 // (Z ′′)∗ //

��

Z∗ //

��

(Z ′)∗ //

��

0.

0 // (M ′′)+ // M+ // (M ′)+ // 0.

Finally we apply the nine lemma to see that the middle row is also short exact. �

Corollary 2.7. If in addition to the hypotheses of the above proposition we have that pdRM ′
≤ 1 (i.e the module Z ′ is R-free), then

the short exact sequence of syzygies 0 → Z ′
→ Z → Z ′′

→ 0 is split exact.

Proposition 2.8. Let R be a local unique factorization domain, x ∈ R a non-zerodivisor and assume S = R/(xn) is Gorenstein. Let
M be a reflexive S-module and let 0 → U → L


M → M ′

→ 0 represent the Auslander–Bridger approximation sequence for
M. Then the first R-syzygy modules for M and M ′ respectively are stably isomorphic and SyzRj (M) ≃ SyzRj (M

′) for j ≥ 2.

Proof. Noting that pdRU ≤ 1 and applying the preceding corollary one obtains that the first R-syzygy modules for M
and M ′ respectively are stably isomorphic. Furthermore the non-free parts of these syzygies are isomorphic as one has a
cancelation theorem for free direct summands over R, since R ≃ EndRR is a local ring. Thus one can find isomorphisms
SyzRj (M) ≃ SyzRj (M

′) for j ≥ 2. �

This observation allows us to conclude that in order to study R-syzygies of T , we may use the technique described in the
proposition and corollary to replace M = SyzR2(T ) by a finite S-projective dimension reflexive module M ′. Consequently
one may replace T by any S-module T ′ such that M ′

= SyzR2(T
′). Most importantly this yields that such a T ′ will have finite

projective dimension over S.

3. The weak order ideal property implies the Syzygy Theorem

The purpose of this section is to establish that the weak order ideal property suffices for proving the Syzygy Theorem in
the context of modules over hypersurface rings that we have reduced to. Since this idea was first used in the graded setting
in [12] ourwish is to compare and contrast theway inwhich theweak order ideal property can be used to deduce the Syzygy
Theorem in the two contexts:

(1) for syzygies of modules over standard graded rings over a DVR;
(2) for kth syzygies of modules over a local hypersurface ring satisfying Sk .
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Let R be a ring of one of the two types listed above and E a finitely generated kth syzygy of finite projective dimension
over R. Whenever there exists an element e ∈ E such that htOE(e) ≥ k, one obtains a short exact sequence of the form

0 −→ R −→ E −→ E ′
−→ 0

mapping the unit element 1 ∈ R to e ∈ E. It follows easily that E ′ is a (k − 1)st syzygy of finite projective dimension and
that rankR E ′

= rankR E − 1.
The contrast between the two situations appears at this point: in the graded case, one may choose e to be homogeneous

and so E ′ is naturally again a graded R-module and thus the usual induction on rank applies.We now show that the situation
in (2) turns out to be slightly more subtle.

Proposition 3.1. Let E be a finitely generated and finite projective dimension kth R-syzygy of amodule over a hypersurface ring of
the form S = R/(ps), where R is an Sk+1 ring ofmixed characteristic p. If E satisfies theweak order ideal property then rankR E ≥ k.

Proof. Let e be a minimal generator of E with htR OE(e) ≥ k and construct E ′ as the cokernel of the map 1 → e in the way
described above. Should rankR E = k − 1, then E ′ will be a (k − 1)st syzygy of rankR E ′

= k − 2. The key point now comes
into play: the Syzygy Theorem is known to hold locally over R[p−1

], thus both E[p−1
] and E ′

[p−1
] will be R[p−1

]-projective
due to being syzygies of too small rank. This implies that the short exact sequence

0 −→ R[p−1
] −→ E[p−1

] −→ E ′
[p−1

] −→ 0

obtained by tensoring the defining sequence of E ′ with R[p−1
] will be split exact. Lifting the splitting of the first map in the

sequence to an R-module homomorphism proves that pt ∈ OE(e) for some t > 0, hence all minimal primes of OE(e) must
contain p. In the setting considered, one knows via viewing E as a module over R/(p) and applying the Order Ideal Theorem
there that htR̄(OE(e)+ (p))/(p) ≥ k. Therefore one concludes that in fact htR OE(e) ≥ k+1. This stronger conclusion implies
via a standard Sk property argument that E ′ would in fact be a kth syzygy of rank k − 2, therefore necessarily R-free since
the bound predicted by the Syzygy Theorem can fail by at most one (i.e ranks of kth syzygies are known to be at least k − 1
over any local ring, see page 63 in [11]). �

In the same way, when working with a general hypersurface x one needs that the Order Ideal Theorem holds over R/(x)
and locally over R[x−1

] to infer that the weak order ideal property implies the Syzygy Theorem.

Remark 3.2. A partial converse of the above statement holds as well. Let R be any Noetherian ring. If E is a finitely generated
finite projective dimension kth R-syzygy of rank at least kwhich is locally free at any prime of height k−1 and if all (k−1)st
R-syzygies satisfy the weak order ideal property, then E satisfies the weak order ideal property as well.

To see this note that by Bruns’ theorem on basic elements (see Corollary 2.6 in [11]), there is a minimal generator e of E
such that E ′

= E/eR is a (k − 1)st syzygy and the sequence

0 −→ R −→ E −→ E ′
−→ 0

splits in codimension k − 1, which yields htOE(e) ≥ k.

4. Weak Order Ideal Theorem via extension splitting

In this section, let R be a commutative Noetherian local ring of any characteristic. In view of the reduction in Theorem 2.4
(1), we shall work under themore general assumption that a power of a regular element x ∈ R annihilates certain extensions.
In order to ensure that there is a comparison homomorphism that remains nontrivial upon tensoring with the residue field
we shall also need to assume a superficiality condition on the element x.

Definition 4.1. Let R be a ring , I an ideal,M an R-module. We say x ∈ I is a superficial element of I (of order 1) with respect
toM if there exists c ∈ N such that

(In+1M :M x) ∩ IcM = InM, for all n ≥ c.

We say y ∈ I is a superficial element of I of order d with respect toM if there exists c ∈ N such that

(In+dM :M x) ∩ IcM = InM, for all n ≥ c.

An example of a superficial element of order d is y = xd with x a superficial element (of order 1).

Assuming that depthI M ≥ 1, every superficial element of I with respect to M is a non-zerodivisor. If (R,m) is local and
R/mR is an infinite field, then superficial elements ofM with respect to the maximal idealm are abundant, in fact they form
a nonempty Zariski open set in M/mM . Our reference for the stated facts about superficial elements is [16] Section 8.5.
Henceforth we shall consider a local ring R and we shall only use superficial elements with respect to the unique maximal
ideal of R.

The main result of this section is a comparison theorem between the heights of order ideals of consecutive syzygies
modulo a hypersurface. In the following we develop the technical preliminaries needed for our comparison theorem.
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Lemma 4.2. Let (R,m) be a Noetherian local ring and E a finitely generated R-module with minimal presentation

ϵ : 0 −→ Z
ι

−→ F → E → 0,
where F is free and ι(Z) ⊆ mnF . Suppose there exists a superficial element (of order 1) x of m with respect to Z such that xnϵ = 0
(ϵ is viewed as an element of Ext1(E, Z)) and let h : Z → Z be the map defined by multiplication by xn. Then:
(1) There is a map f : F → Z that makes the following diagram commute

0 // Z
ι //

h
��

F //

f}}||
||

||
| E // 0

Z
(2) the image of f is not contained in mZ
(3) the map f induces a map f̄ : E/xnE → Z/xnZ

0 // Z
ι //

h
��

F //

f{{ww
ww

ww
ww

w E //

��

0

Z

π

��

E/xnE

f̄uukkkkkkkkkkkkkk

Z/xnZ

(4) Im(f̄ ) ⊈ m(Z/xnZ).
Proof. (1) Since xnϵ = 0, the bottom row of the following diagram splits:

0 // Z
ι //

h
��

F //

α

��

E // 0

0 // Z // V //
s

hh E // 0

Define f = s ◦ α, where s : V → Z is the splitting map.
(2) Assuming towards a contradiction that the image of f is contained inmZ andunder the hypothesis that the image of ι is

contained inmnF , we obtain Im(h) = Im(ι ◦ f ) ⊆ mn+1Z . Iterating, Im(hk) ⊆ mk(n+1)Z or equivalently xkZ ⊆ mk(n+1)Z, ∀k ∈

N.
Let c be the integer in the definition of the superficial element. We show by induction on i that

xkZ ⊆ mk(n+1)+iZ, ∀k ≥ c, ∀i ∈ N.

The base case (i = 0) is our previous observation that xkZ ⊆ mk(n+1)Z, ∀k ∈ N. Fix i and assume xkZ ⊆ mk(n+1)+iZ, ∀n ≥ c .
Rewriting with k replaced by k + 1, xk+1Z ⊆ m(k+1)(n+1)+iZ, ∀k ≥ c , hence by using the superficiality of x one obtains
xkZ ⊆ (mnk+n+k+i+1Z :Z (x)Z) ∩ mcZ = mnk+n+k+iZ ⊆ mk(n+1)+iZ . Therefore the desired containment holds, leading to the
conclusion

xkZ ⊆

∞
i=0

mk(n+1)+iZ = 0.

This is a contradiction since x is a non-zerodivisor on Z .
(3) Let π be the projection π : Z → Z/xZ . Then π ◦ f |Z = π ◦h = 0, therefore Z is contained in the kernel of π ◦ f , which

induces a map F/Z = E → Z/xZ . Furthermore this map factors through xE yielding f̄ : E/xE → Z/xZ . Since Im(f ) ⊈ mZ it
follows that the image of f̄ is not contained inm(Z/xZ).

(4) is a direct consequence of (2). �

Note that the hypothesis ι(Z) ⊆ mn
RF holds for E a kth syzygy in a minimal free resolution (F., d.) with the matrix of dk+1

having entries in mn
R, in other words when the order ideal OZ (u) is contained in mn for every minimal generator u of Z . The

hypothesis xnϵ = 0 deserves a further analysis. It is equivalent to xn annihilating Ext1R(E, ·) as a functor via the diagram

0 // Z
ι //

·xn
��

F //

��

E //

1E

0

0 // Z // V //
s

hh E // 0

In [12] we find the following useful lemma on comparing heights of order ideals related by taking hypersurface sections.
The statements of [12] Lemma 2 and Corollary 3 are given for R a graded algebra over a DVR in mixed characteristic p and
x = p, but analogous statements hold by the same argument more generally as stated below.
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Lemma 4.3. Let (R,m) be a local ring which satisfies Sk. Let E be a kth syzygy of finite projective dimension. Let x ∈ m, e ∈ E−xE
and set R̄ = R/(x), Ē = E/xE, ē = image of e in Ē. Then

htR(OE(e)) ≥ htR(OE(e) + (x)/(x)) ≥ min(k, htR̄(OĒ(ē))).

Moreover, if x belongs to a minimal associated prime of OE(e), then

htR(OE(e)) ≥ 1 + min(k, htR̄(OĒ(ē))).

The following result establishes a Weak Order Ideal Theorem.

Theorem 4.4 (First Weak Order Ideal Theorem). Let (R,m) be a local ring satisfying Serre’s property Sk. Consider a short exact
sequence 0 −→ Z −→ F → E → 0 with F free. Assume that there exists x ∈ mwith the following properties

(1) x is superficial for m with respect to Z;
(2) xn Ext1R(E, Z) = 0 for some integer n with Z ⊆ mnF ;
(3) htR̄ OZ̄ (ū) ≥ k for any minimal generator ū of Z̄ = Z/xnZ.

Then there exists a minimal generator e of E such that htR OE(e) ≥ k.

Proof. By Lemma 4.2, there is a map f̄ : E/xnE → Z/xnZ with Im(f̄ ) ⊈ m(Z/xnZ). Therefore it is possible to pick a minimal
generator ē of Ē such that ū = f̄ (ē) is still a minimal generator of Z̄ . Thus OZ̄ (ū) ⊆ OĒ(ē), yielding htR̄ OZ̄ (ū) ≤ htR̄ OĒ(ē).
The inequality htR OE(e) ≥ min(k, htR̄ OĒ(ē)) ≥ min(k, htR̄ OZ̄ (ū)) follows now from Lemma 4.3. By the hypothesis,
htR̄ OZ̄ (ū) ≥ k, hence htR OE(e) ≥ k. �

In the applications detailed in the next section this theorem will be used for a Noetherian local ring R of mixed
characteristic p by setting x = p.

4.1. Applications to ranks of syzygies

Our strategy here will be to use theWeak Order Ideal Theorem and the fact that k is a lower bound on the height of order
ideals of minimal generators of kth syzygies in characteristic p to infer the desired lower bound in mixed characteristic.

Since the first Weak Order Ideal Theorem is concerned with elements that annihilate Ext functors, we begin by showing
the inductive behavior of this property.

Lemma 4.5. Let (R,m) be a local ring, let M be a finitely generated R-module and let x ∈ m be a non-zerodivisor on R. If
x Extk+1

R (M, ·) ≡ 0 for a fixed k > 0, then x Extj+1
R (M, ·) ≡ 0 for all j ≥ k.

Proof. If E is a kth syzygy for M , we note that Extk+1
R (M, ·) ≃ Ext1R(E, ·). Since k > 0, one has that x is regular on E and,

further, since x Ext1R(E, ·) ≡ 0 one obtains a pullback diagram in which F is R-free and Z = Syzk+1(M):

0 // Z // Z ⊕ E //

��

E //

·x
��

0

0 // Z // F //

����

E //

����

0

Ē Ē

Homological dimension shifting gives ExtiR(Z ⊕E, ·) ≃ Exti+1
R (Ē, ·) for i > 0, thus x ExtiR(Z ⊕E, ·) ≡ 0 for i > 0 since xĒ = 0.

Our conclusion follows directly from this assertion and xExt1R (E, ·) ≡ 0. �

Theorem 4.6. Let (R,m) be a Cohen–Macaulay local ring. Fix an integer k > 0 and assume a superficial element x of m exists
with respect to all jth R-syzygies with j ≥ k. If every minimal generator of a kth syzygy over R̄ = R/(x) has order ideal of height at
least k and if M is an R-module such that x Extk+1

R (M, ·) ≡ 0, then the Syzygy Theorem holds for every jth syzygy of M with j ≥ k.

Proof. Let E be the jth syzygy of M with j ≥ k. By the previous Lemma, x Extj+1
R (M, ·) ≡ 0 so that x Ext1R(E, Z) = 0 where

0 → Z → F → E → 0 is exact with F free. An application of the Weak Order Ideal Theorem 4.4 and its consequences in
establishing the Syzygy Theorem now yields the desired conclusion. �

Corollary 4.7. With the notation of the previous theorem, if xM = 0 then the Syzygy Theorem holds for all syzygies of M.

In fact, in this special setting where xM = 0 one can obtain a stronger result applying results of Shamash [19] (see also
Proposition 3.3.5 in Avramov’s article [1] for a different proof). Details will be provided in Section 5.

For the main application of this section we specialize to the case of cyclic modules R/Q with Q a prime ideal.
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Theorem 4.8. Let (R,m) be a Cohen–Macaulay local ring. Assume that for every fixed integer k > 2 and for every kth R-syzygy a
superficial element x of m with respect to that syzygy exists and that every minimal generator of a kth syzygy over R̄ = R/(x) has
order ideal of height at least k. Then the Syzygy Theorem holds over R for syzygies of modules of the type R/Q with Q ∈ Spec(R).

Proof. Depending on whether x is contained in Q or not and with notations as in the previous theorem, we have:

(1) if x is not contained in Q , then M is an R̄ module which is a kth syzygy of R/((x) + Q ). The desired conclusion is given
directly by an application of the Syzygy Theorem over R̄.

(2) if x is contained in Q , then we are in the setting of the previous Theorem 4.6. �

We further specialize x to be p, the mixed characteristic in order to prove the Syzygy Theorem holds in the unramified
mixed characteristic setting for syzygies of R/Q with Q a prime ideal. The next theorem and corollary follow verbatim from
the general versions stated before.

Theorem 4.9. Let R be an unramified Cohen–Macaulay local ring of mixed characteristic p and let M be a finitely generated
module such that p Extk+1

R (M, ·) ≡ 0 for some k > 0. Then the Syzygy Theorem holds for all jth syzygies of M with j ≥ k.

Corollary 4.10. The Syzygy Theorem holds for syzygies of modules of the type R/Q with R a regular local ring in unramified mixed
characteristic p and Q ∈ Spec(R).

Our final consideration of this section concerns syzygy modules for cyclic modules of the form R/(a, b, ps). The
significance of this class of cyclic modules has been discussed in Theorem 2.4. Furthermore, the relevance of three generated
ideals in the study of syzygies is well known due to Bruns’ result in [4], which points out that every finite free resolution
over a Cohen–Macaulay ring can be obtained (at least from the third syzygy back) as a resolution of a three-generated ideal.
Therefore all the pathology that can be encountered is already present in the three-generated ideal case.When s = 1 and R is
Cohen–Macaulay and unramified at (p), we have given a proof that the Syzygy Theoremholds over R/(p, a, b) inTheorem4.9.
However, under supplementary hypotheses one can make a statement regarding the entire family:

Proposition 4.11. Let R be a local ring of mixed characteristic p and consider a, b ∈ R.

(1) if the Syzygy Theorem holds for all cyclic modules C such that ps−1C = 0, then the Syzygy Theorem holds for R/(ps, a, b).
(2) the Syzygy Theorem holds for R/(p2, a, b) for R Cohen–Macaulay and unramified at (p).

Proof. We consider the short exact sequence

0 → (p, a, b)/(ps, a, b) → R/(ps, a, b) → R/(p, a, b) → 0.

Forming a free resolution of the middle term by taking the direct sum of free resolutions of the first and third terms shows
that the kth syzygymodules for R/(ps, a, b) and (p, a, b)/(ps, a, b) are identical for k > 3 and differ by a free direct summand
for k = 3. The hypothesis in (1) and the fact that (p, a, b)/(ps, a, b) is annihilated by ps−1 gives the desired conclusion.

Part (2) is an immediate consequence of (1) and the fact that the Syzygy Theorem holds for R/(p, a, b). �

5. Weak Order Ideal Theorem via mapping cone resolutions

A second comparison theorem with respect to a hypersurface arises from a Cartan–Eilenberg construction. We shall
work under assumptions that are reminiscent of the reductions in Theorem 2.4 and Proposition 2.8. Specifically we consider
a local domain R and a non-zerodivisor x ∈ R andwe set S = R/(xn) and study syzygymodules of R-modules T with xnT = 0
and pdS T < ∞. We further recall that in studying the Syzygy Conjecture over R one need only look at kth syzygies with
2 < k < pdRT − 2 since the cases k = 1, 2 are well known and since the case k = pdRT − 2 was examined in [8] Corollary
3.5 with a positive outcome.

5.1. Cartan–Eilenberg construction

Towards establishing the weak order ideal property for R-syzygies, we consider two minimal free resolutions of T . The
first resolution G. → T is taken over the hypersurface ring S and the second one F. → T is an R-free resolution of T . We use
Ki to denote the syzygy modules of G. and Zi to denote the corresponding syzygy modules for F. Applying S ⊗R · to F. yields
a four-term exact sequence:

0 // T
δ // Z1/xnZ1 //

&& &&MMMMMMMMMM F0/xnF0 // T // 0.

K1

OO

If the resolution F. −→ T was minimal to begin with, then there is an inclusion of K1 in F0/xnF0 as in the diagram above.
Since Fi/xnFi has trivial S-homology for i > 1, we can use the S-free resolution and a truncated resolution G. → K1 to build
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a (non-minimal) resolution of Z1/xnZ1 via the standard Cartan–Eilenberg construction [5].

0 // Kk−1 // Lk−1


Zk/xnZk // Kk // 0

0 // G0 //

��

G0


G1 //

��

G1 //

��

0

0 // T // Z1/xnZ1 // K1 // 0

Thus one obtains the short exact sequence of syzygies

0 −→ Kk−1 −→ Lk−1


Zk/xnZk −→ Kk −→ 0, (2)

where Lk−1 is a free S module produced as a result of the non-minimality of the resolution of Z1/xnZ1 in the middle column.
The importance of (2) is related to the induced map Zk/xnZk −→ Kk. Since the Order Ideal Theorem holds for syzygy

modules of finite projective dimension over S, one may achieve a Weak Order Ideal Theorem for the syzygy Zk if it can be
determined that the naturally induced map Zk/xnZk −→ Kk is nonzero after tensoring with the residue field, for then it
will follow that some minimal generator ē of Zk/xnZk (which maps by the induced map to a generator of Kk) has order ideal
OZk/xnZk(ē) of height at least k.

From Lemma 4.3 it follows that htROZq(e) ≥ k. The construction of the above short exact sequence (2) can be further
refined so that we can restrict our attention to the regular hypersurface ring R/(x).

Lemma 5.1. Let R, x and S be as above and let R̄ = R/(x). If T is an S-module such that pdST < ∞, then T/xT ≃ (0 :T x) and
the minimal S-free resolution G. −→ T stays exact after tensoring with R̄, so

pdRT − 1 = pdsT = pdR̄T̄ .

Proof. The four-term exact sequence

0 −→ R̄ −→ S
x

−→ S −→ R̄ −→ 0

demonstrates that R̄ is a kth syzygy over S for arbitrary large k. It follows that TorSj (R̄, T ) ≃ TorSj (xS, T ) = 0 for j > 0 and in
turn that the induced sequence

0 −→ T̄ −→ T
x

−→ T −→ T̄ −→ 0

is exact. Thus T̄ ≃ (0 :T x) and the statement concerning projective dimensions follows from the Auslander–Buchsbaum
formula. �

Theorem 5.2 (Weak Order Ideal Theorem). Let R be a local ring, x a non-zerodivisor, S = R/(xn) with n > 1 and let T be a finite
projective dimension S-module. Assume that the Syzygy Theorem holds over S. Let Kk−1 denote the k − 1st syzygy module for T
over R̄ = R/(x). If rankR̄ Kk−1 ≤ 2k − 1, then the kth syzygy Zk of T over R satisfies the Weak Order Ideal Theorem.

Proof. Reducing the two minimal resolutions of T (G. → T taken over the hypersurface ring S and F. → T taken over R)
mod p one has F̄. → T/pT and Ḡ. → T/pT with H1(F̄.) = T/pT and Ḡ. acyclic. In the following, let K ′

k = Syz R̄k (T/pT ).
Similar to (2), we have a short exact sequence of R̄-modules 0 −→ T/pT −→ Z̄1 −→ K ′

1 −→ 0, and the same mapping
cone construction yields a short exact sequence of syzygy modules

0 −→ K ′

k−1 −→ Lk−1


Z̄k −→ K ′

k −→ 0.

Assume Im(Z̄k → K ′

k) ⊆ mRK ′

k, meaning the induced map Lk−1 −→ K ′

k must be surjective. Consequently we obtain a
commutative diagram

0 // K ′

k+1
//

��

Lk−1 //

��

K ′

k
//

��

0

0 // K ′

k−1
//

��

Lk−1


Z̄k //

��

K ′

k
// 0

Z̄k Z̄k

where the left hand column is induced by the upper right square and is a short exact sequence. Since k+1 < pdR̄T and since
the Syzygy Theoremholds over R̄, we obtain that rankR̄ K

′

k+1 ≥ k+1. Also itmust be the case that rankR̄ Z̄k = rankR Zk ≥ k−1.
Thus rankR̄ K

′

k−1 ≥ k + 1 + k − 1 = 2k. This contradicts one of our assumptions.
We have thus shown that some minimal generator ē of Z̄k must have its image in K ′

k \ mRK ′

k and from here we conclude
that Z̄k and Zk have the weak order ideal property. �
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Remark 5.3. One can use the short exact sequence (2) for a minimal S-resolution of T to reduce the hypotheses of the
theorem to requiring that rankS Kk−1 ≤ 2k − 1, where Kk−1 stands for a minimal k − 1st syzygy of T over S.

There is a large class of modules T to which the above Theorem applies: by a theorem of Bruns ([11] Corollary 3.12) if R̄
is a Cohen–Macaulay local ring of dimension n then there exist ideals I which have free R̄ resolution of the form

0 → R̄ → R̄2n−1
→ R̄2n−3

→ · · · → R̄5
→ R̄3

→ R̄ → R̄/I → 0,

with rankR̄ Syz
R̄
j (R̄/I) = j ≤ 2j − 1. Furthermore, if R is complete regular local of mixed characteristic p, then the Syzygy

Theorem holds over S = R/(pn).

Corollary 5.4. Under the hypotheses of Theorem 5.2, one has rankR Zk ≥ k.

Corollary 5.5. If
βS

k−1 − βS
k

 < k − 1, then Z̄q has the weak order ideal property.

Proof.
βS

k−1 − βS
k

 represents the positive difference between the ranks of the modules Kk−1 and Kk over S. �

6. Strong Syzygy Theorems

In this section we point out a stronger lower bound for ranks of syzygies of modules over a local ring (R,m) annihilated
by an element x ∈ m−m2. This result was obtained by Shamash 1 in [19] and also Avramov in [1]. Free of any assumptions on
the annihilator of the module, we show that the same strengthened theorem holds for syzygies of weakly liftable modules.

6.1. Strong Syzygy Theorem via homotopy splitting

We begin by casting some known results on resolutions over hypersurface rings of type R/(x), x ∈ m−m2 in the light of
the ranks of syzygies problem.

Theorem 6.1 (Strong Syzygy Theorem). Let (R,m) be a local ring and M an R-module annihilated by x ∈ m − m2. Set R̄ = R/x
and assume that the syzygy theorem holds over R̄. Then

(1) 0 → SyzR̄k−1(M) → SyzRk(M) → SyzR̄k(M) → 0 for 2 ≤ k ≤ pdM − 1,
(2) βR

k (M) = β R̄
k−1(M) + β R̄

k (M) for 2 ≤ k ≤ pdM − 1,
(3) rank Syzk(M) ≥ 2k − 1 for 1 ≤ k ≤ pd(M) − 3,

where the Betti number βk(M) is the rank of the kth free module in a minimal resolution of M (over R or R̄ respectively according
to the superscript).

For (1) and (2) see Section 2 of Shamash’s paper [19] or Proposition 3.3.5 and the subsequent remarks in Avramov’s
lecture [1]. Part (3) follows from (1) and the additional assumption that the Syzygy Theorem holds over R̄.

Remark 6.2. We note that the stronger bound on ranks of syzygies in Theorem 6.1 requires hypotheses that are quite a bit
more restrictive than the ones in Theorem 4.6. Indeed one can easily construct examples of modules M (even cyclic ones)
where x ∈ m − m2 is such that xM ≠ 0 but x ExtkR(M, ·) ≡ 0 for some k > 0. If R is regular local with dim R > 3, let
0 → F → K → I → 0 be a Bourbaki (see Theorem 2.2) exact sequence in which K is a second syzygy of the residue field
R/m. Then htI = 2 since K is not free, so that x(R/I) ≠ 0 for any x ∈ m − m2. Moreover, since the syzygies of R/I are the
same as the syzygies of the residue field appropriately shifted in homological degree, if follows that m ExtkR(R/I, ·) ≡ 0 for
k ≥ 2.

6.2. Strong Syzygy Theorem via weak lifting

In the following we derive the strong bound on ranks of syzygies of the Strong Syzygy Theorem under different
hypotheses.

Let R −→ S be a ring homomorphism and letM ′ be an S-module. An R-moduleM is called a lifting ofM ′ ifM ′
= M ⊗R S

and TorRi (S,M) = 0 for i ≥ 1. When S = R/(x) where x is a non-zerodivisor in R, a situation which will be our main
focus, then the latter condition for lifting simply says that xmust be a non-zerodivisor onM . In this case we reformulate the
definition above as

Definition 6.3. Let R be a ring, let x be a non-zerodivisor and not a unit and R̄ = R/(x). Let M̄ be a R̄-module of finite type.
We call a R-module M of finite type a lifting of M̄ if

(1) x is not a zerodivisor onM and
(2) M̄ ≃ M/xM .

In [2] Auslander et al. introduce the concept of weakly liftable modules.

1 We wish to thank Sankar Dutta for introducing us to Shamash’s article.
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Definition 6.4. Let R → S be a ring homomorphism. An S-moduleM is said to weakly lift (or be weakly liftable) to R if it is
a direct summand of a liftable module.

Questions about lifting can be traced back to Grothendieck who formulated the following lifting problem: suppose that
(R,m) is a complete regular local ring and that x ∈ m−m2 so that R̄ = R/(x) is again regular. If M̄ is a R̄-module of finite type,
does M̄ lift to R? It is known by the work of Hochster [14] that the answer to this problem is negative. Explicit conditions for
cyclic modules to be liftable and weakly liftable respectively can be found in Dao’s recent article [6].

In deformation theory a lift from R/I i to R is called an ith infinitesimal deformation. Auslander, Ding and Solberg show
that weak lifting is equivalent to lifting to the first infinitesimal deformation.
Proposition 6.5 (Proposition 3.2 in [2]). Let R be a ring, let x be a non-zerodivisor and not a unit and R̄ = R/(x). Let M be a
R̄-module of finite type. A necessary condition for M to weakly lift is the splitting of the following extension:

0 −→ M
δ

−→ SyzR1 M −→ SyzR̄1 M −→ 0.
We observe that if weak lifting occurs, the lower bound on the ranks of syzygies given by the Syzygy Theorem can be

strengthened.
Proposition 6.6 (Strong Syzygy Theorem). Let (R,m) be a local ring, R̄ = R/(x) and let M be a weakly liftable R̄ module such
that the Syzygy Theorem holds for syzygies of M. Then

(1) the sequence 0 → SyzR̄k−1(M) → SyzRk(M) → SyzR̄k(M) → 0 is split exact for 2 ≤ k ≤ pdM − 1,
(2) βR

k (M) = β R̄
k−1(M) + β R̄

k (M) for 2 ≤ k ≤ pdM − 1,
(3) rank Syzk(M) ≥ 2k − 1 for 2 ≤ k ≤ pd(M) − 2

where the Betti number βk(M) is the rank of the kth free module in a minimal resolution of M (over R or R̄ respectively according
to the superscript).

Proof. From the previous lemma, Z̄1 = M̄⊕SyzR̄1(M̄). A similar relation holds (withM replaced by Zk−1) for Zk = SyzR1(Zk−1):

Z̄k = Z̄k−1 ⊕ SyzR̄1(Z̄k−1) = Z̄k−1 ⊕ SyzR̄k(M̄).

It follows that
rankR Zk = rankR̄ Z̄k = rankR̄ Z̄k−1 + rankR̄ Syz

R̄
k(M̄) ≥ (k − 1) + k = 2k − 1,

where the bounds on the ranks of the two summands stem from the original Syzygy Theorem. �

Note that the hypotheses of 6.1 and 6.6 are incomparable, in particular in 6.6 we do not require the element x to lie
outside the square of the maximal ideal.
Remark 6.7. This observation yields a crude obstruction to lifting modules, at least in case that the lifting occurs modulo an
element ofm2, as rank Syzk(M) < 2k − 1 will guarantee thatM does not lift.

The consequences of the decomposition of syzygy modules under similar hypotheses in the context of Poincare series
have been studied in thorough detail by O’Carroll–Popescu [17].

6.3. Strong Syzygy Theorem via a four-term exact sequence

Let (R,m) be a regular local ring and let E be a finitely generated, torsion free R-module. One can always find x ∈ m−{0}
such that E[x−1

] is R[x−1
]-free. This observation is equivalent to the requirement that E contains a free submodule F such

that xs(E/F) = 0. In this section we consider the impact of the additional requirement x ∈ m − m2 when E is a kth syzygy
module.
Proposition 6.8. Let (R,m) be a local ring and suppose that there exists an element x of m − m2 such that the Syzygy Theorem
holds over R̄ = R/(x). Suppose further that E is a non-free kth syzygy module over R such that E contains a free submodule F with
xs(E/F) = 0 for s ≫ 0. If the quotient module M = E/F has the property M/xM ≃ (0 :M x), then rankR E ≥ 2k − 1.
Proof. Our assumptions onM yield a four-term exact sequence where ·̄ indicates quotient modules modulo (x).

0 → M̄
δ

→ F̄ → Ē → M̄ → 0.
Our strategy is to argue that M̄ and Z are, as R̄-modules, kth and (k − 1)st syzygies respectively. A consequence of this is

rankR E = rankR̄ Ē = rankR̄ M̄ + rankR̄ Z ≥ k + (k − 1) = 2k − 1.

To verify the syzygy property for M̄ and Z , we use the fact that being a kth R-syzygy is equivalent to having Serre’s
property Sk. Towards this end, let P ∈ Spec(R) be such that x ∈ P . In case EP is a free RP -module (or equivalently ĒP is a
free R̄P -module), one easily analyzes the four-term sequence to see that both M̄P and ZP will be R̄P -free, thus both will be
Cohen–Macaulay modules over R̄P . Thus it remains to consider the situation in which depthR EP ≥ k (so depth ĒP ≥ k − 1),
while depthRP M̄P < k. An application of the depth lemma ([11], Lemma 1.1) yields the contradiction.

depthR̄P M̄P = 1 + depthR̄P ZP ≥ 1 + 1 + depthR̄P M̄P = 2 + depthR̄P M̄P

when applied to the four-term sequence. �
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Corollary 6.9. Let R and x be as in the previous proposition and suppose E is a non-free kth syzygy module over R such that
xs Ext1R(E, ·) ≡ 0, for s ≫ 0. If 0 → Z → F → E → 0 is short exact with F free then rankR(E ⊕ Z) ≥ 2k − 1.
Proof. From the information given one may construct a pushout diagram with exact rows and columns:

0 // Z //

·xs

��

Z ⊕ E //

��

E // 0

0 // Z //

����

F //

����

E // 0

Z/xsZ Z/xsZ

We apply the preceding proposition to the middle column (hereM = Z/xsZ). �

Corollary 6.10. Let R be amixed characteristic local ring unramified at (p) and let E be a non-free kth syzygy (k ≥ 1). If E contains
a free submodule F such that p(E/F) = 0, then rankR(E) ≥ 2k − 1.
Proof. Let M = E/F . Since pM = 0, one has M/pM ≃ (0 :M p) ≃ M and the previous result yields the desired
conclusion. �

7. Final remarks on order ideals

Let R denote either an N-graded ring in which R0 is a DVR with maximal ideal generated by p or a regular local ring
of mixed characteristic p. Suppose that E represents a kth syzygy over R having finite projective dimension. A well-known
reduction employed in Section 2 is that if E is a potential counterexample to the Syzygy Theorem then E[p−1

]will necessarily
be R[p−1

]-projective (in fact E[p−1
] will be R[p−1

]-free in the graded case (see [12], Lemma 7)). Having this property leads
one to look for minimal generators e such that ps ∈ OE(e) for positive integers s ≫ 0, since the Syzygy Theorem can be
easily proven as a consequence of this fact (see [12], Proposition 5 and Theorem 6).

In the graded case such a conclusion is achieved in [12]. If R = R0 ⊕ R1 ⊕ · · · is a standard graded Noetherian ring in
which R0 is a DVR having maximal ideal generated by p, Ri are finitely generated torsion free R0-modules and E is a finitely
generated graded R-module such that E[p−1

] is R[p−1
] projective, then E[p−1

] is R[p−1
] free ([12], Lemma7) and furthermore

some minimal homogeneous generator e ∈ E has the desired property ps ∈ OE(e) for s ≫ 0 ([12], Theorem 8).
In contrast to the graded case, in the regular local ramified case one cannot hope to establish the Syzygy Theorem in

this manner. To illustrate, let R be a regular local ring of mixed characteristic p and suppose that p ∈ m2
R and dim R ≥ 2.

Let E = mR. Then E[p−1
] = R[p−1

], however no minimal generator e will have the property ps ∈ OE(e) for s ≫ 0. In fact
OmR(e) = eR for every e ∈ mR as a result of the fact that all homomorphismsmR → R are given by R-multiples of the natural
inclusion.

Even in the unramified setting one can construct examples where the order ideals of minimal generators do not contain
any power of p. Consider I = (x2 + y2 + p2, px, py) an ideal of the local ring R = V [[x, y]], V a DVR, p ∈ mV . It is easy to
check that p3 ∈ mRI (p3 = p(x2 + y2 + p2) − px(x + y) − py(y − x)), but p2 /∈ I because such a statement would imply that
p ∈ (x, y), a contradiction. As remarked in the previous paragraph, order ideals of minimal generators must be principal and
the computations above show that no power of p can be contained in any such order ideal.

The state of affairs in the unramified regular local case is left to be considered with respect to the described techniques.
For this reason we have assumed throughout that R is regular local of mixed characteristic p such that R̄ = R/(p) is again a
regular local ring and we have considered what properties can be derived about order ideals in this context.
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