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A considerable body of evidence exists implicating high levels of free saturated fatty acids in beta pancreatic cell
death, although the molecular mechanisms and the signaling pathways involved have not been clearly defined.
The membrane protein caveolin-1 has long been implicated in cell death, either by sensitizing to or directly in-
ducing apoptosis and it is normally expressed in beta cells. Here, we tested whether the presence of caveolin-1
modulates free fatty acid-induced beta cell death by reexpressing this protein in MIN6 murine beta cells lacking
caveolin-1. Incubation ofMIN6with palmitate, but not oleate, induced apoptotic cell death that was enhanced by
the presence of caveolin-1.Moreover, palmitate induced de novo ceramide synthesis, loss ofmitochondrial trans-
membrane potential and reactive oxygen species (ROS) formation in MIN6 cells. ROS generation promoted
caveolin-1 phosphorylation on tyrosine-14 that was abrogated by the anti-oxidant N-acetylcysteine or the incu-
bation with the Src-family kinase inhibitor, PP2 (4-amino-5-(4-chlorophenyl)-7(dimethylethyl)pyrazolo[3,4-d]
pyrimidine). The expression of a non-phosphorylatable caveolin-1 tyrosine-14 to phenylalaninemutant failed to
enhance palmitate-induced apoptosis while for MIN6 cells expressing the phospho-mimetic tyrosine-14 to
glutamic acidmutant caveolin-1 palmitate sensitivitywas comparable to that observed forMIN6 cells expressing
wild type caveolin-1. Thus, caveolin-1 expression promotes palmitate-induced ROS-dependent apoptosis in
MIN6 cells in a manner requiring Src family kinase mediated tyrosine-14 phosphorylation.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Free fatty acids have been directly implicated in beta pancreatic cell
dysfunction and death [1,2] and this has been suggested to contribute to
beta cell death observed in type 2 diabetes mellitus (T2DM) [3–5].
Available evidence attributes the deleterious effects of lipotoxicity to in-
creased levels in particular of saturated free fatty acids (FFAs), especially
palmitate, rather than unsaturated FFAs, like oleate. Instead, unsaturat-
ed fatty acids are thought to protect against the deleterious effects of
saturated FFAs [2,6,7], although the molecular mechanisms and the sig-
naling pathways involved have not been clearly defined. A number of
unication, Center forMolecular
Diseases (ACCDiS), Facultad de
Santiago, Chile. Tel./fax: +56 2
studies point towards reactive oxygen species (ROS) as being important
mediators of lipotoxicity in beta cells [8–12]. Also, palmitate is a precur-
sor for the de novo synthesis of ceramide, considered a lipid second
messenger of cell death and implicated in lipotoxicity [13]. Thus, identi-
fying important players normally expressed in beta cells that regulate
these pro-apoptotic pathways is of considerable interest.

Caveolin-1 (CAV1) is a 178-amino acid member of a family of three
proteins CAV1, CAV2 and CAV3 [14]. Two CAV1 isoforms exist, the full
length version CAV1α, and a shorter CAV1β variant, which lacks the
first 32 amino acid residues [15], including an important tyrosine phos-
phorylation site for Src family kinases [16,17]. CAV1 is present at many
locations within the cell, including the plasma membrane, secretory
vesicles, Golgi, mitochondria and the endoplasmic reticulum [18,19].
At the plasma membrane, CAV1 is associated with microdomains
termed “lipid rafts” and membrane invaginations called “caveolae”,
both of which are membrane structures, rich in cholesterol and
sphingolipids, important for vesicle trafficking and signal transduction
[20].
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CAV1 has long been implicated in cell death, either by sensitizing to
or directly inducing apoptosis. Specifically, CAV1 is known to regulate
the cell cycle [21] and cellular senescence [22], to act as a tumor sup-
pressor [18,23] and function as a modulator of cell death [24]. A variety
of signaling pathways have been linked to such functions of CAV1, in-
cluding mitochondrial permeabilization, caspase activation and inhibi-
tion of pro-survival mechanisms, including Ras/Raf/ERK, PI3K/Akt and
Wnt/β-catenin signaling pathways [25–27]. Nonetheless, pro-survival
effects of CAV1 have also been reported (reviewed in [24]), suggesting
that the relationship between CAV1 and cell fate is complex and
context-dependent.

The CAV1α isoform is phosphorylated on tyrosine-14 by the Src
family tyrosine kinases Src, Abl or Fyn [16,17,28]. This phosphorylation
has been observed in response to oxidative stress and is also suggested
to represent a marker for stress [29–31] associated with enhanced sen-
sitivity to cell death [32,33]. Accordingly, CAV1 expression has previous-
ly been associated with sensitivity to different apoptosis-inducing
cytotoxic stimuli [34–37]. Although CAV1 is normally present in beta
cells [38] where it participates in the regulation of insulin secretion
[38,39], no study to date has associated CAV1 expressionwith enhanced
sensitivity to lipotoxicity in beta cells. Here, we investigated the role of
CAV1 in palmitate-induced cell death in the murine MIN6 beta cell
model. We provide evidence indicating that palmitate exposure en-
hances ceramide synthesis, ROS generation and mitochondrial damage,
which together favor beta cell apoptosis in amanner that is enhanced by
phosphorylation of CAV1 on tyrosine-14.

2. Materials and methods

2.1. Materials

Dulbecco's Modified Eagle's Medium (DMEM), 2-mercaptoethanol,
HEPES, and trypsin-EDTA were from GIBCO (Invitrogen, Carlsbad, CA).
Fetal calf serum was from Biological Industries (Kibbutz Beit Haemek,
Israel) and Isopropyl β-D-1-thiogalactopyranoside (IPTG) from US
Biological (Swampscott, MA). Propidium iodide (PI), fatty acid-free bo-
vine serum albumin (BSA), sodium palmitate, oleic acid, tiron, trolox,
Oil Red O, rhodamine, dihydrorhodamine, myriocin, fumonisin B1,
sodium fluoride, NP-40 (Igepal CA-630), leupeptin, antipain,
benzamidine, PMSF (phenylmethylsulfonyl fluoride) and Na3VO4

(sodium orthovanadate) were purchased from Sigma-Aldrich (St.
Louis, MO). C2-ceramide, C2-dihydroceramide and the Src inhibitor
PP2 ((4-amino-5-(4-chlorophenyl)-7(dimethylethyl)pyrazolo[3,4-d]
pyrimidine)) were from Enzo life Sciences International (Plymouth
Meeting, PA). NAC (N-acetyl cysteine) was from Merck (Darmstadt,
Germany). The transfection reagent Superfect and plasmid extraction
kit were from Qiagen (Valencia, CA). The transfection reagent Fugene
was from Roche Diagnostics. Rabbit polyclonal antibodies anti-
caveolin-1 (Transduction Laboratories, Lexington, KY) and anti-actin
(R&D Systems, Minneapolis, MN) as well as the mouse monoclonal an-
tibodies anti-pY14-caveolin-1 (Transduction Laboratories, Lexington,
KY), anti-caveolin-1 (Transduction Laboratories, Lexington, KY), goat
anti-rabbit, goat anti-mouse and donkey anti-guinea pig IgG antibodies
coupled to horseradish peroxidase (HRP) were from Bio-Rad Laborato-
ries (Hercules, CA), Sigma-Aldrich (St. Louis, MO) and Jackson
ImmunoResearch (West Grove, PA), respectively. The EZ-ECL chemilu-
minescent substrate was from Biological Industries (Kibbutz Beit,
Haemek, Israel) and the BCA protein determination kit was from Pierce
(Rockford, IL).

2.2. Cell culture

MIN6 cells were cultured in DMEM High (4.5 g glucose/l) supple-
mented with 10% fetal calf serum, antibiotics (10,000 U/ml penicillin,
10 μg/ml streptomycin) and 50 μmol/l of 2-mercaptoethanol at 37 °C
in humidified 5% CO2. For all experiments evaluating the effect of fatty
acid exposure, MIN6 cells were serum-deprived for 12 h and incubated
in mediumwithout 2-mercaptoethanol. B16F10 cell line, a mouse mel-
anoma cell line (ATCC, #CRL6475), was used as a negative control for in-
sulin expression in western blot assays. B16F10 were maintained in
RPMI 1640 medium supplemented with 10% FBS and antibiotics.

2.3. Stable transfection of MIN6 cells

The plasmids pLacIOP and pLacIOP-caveolin-1 used herewere previ-
ously described [40]. MIN6 cells were grown to 60–80% confluence in
10 cm plates and then incubated with the transfection reagents
Superfect or Fugene, following the manufacturer's instructions. After
24 h, cells were plated in DMEM high glucose with 10% serum, contain-
ing hygromycin (750 μg/ml) and cultured for 3 weeks to yield stably
transfected MIN6 (Mock) and MIN6 (Cav-1) cells.

2.4. Animals

Male C57BL/6J mice (8–12 weeks old) were obtained from the
Animal Facility at the Faculty of Medicine, Universidad de Chile. Room
temperature was kept constant at 21 °C, and light was maintained on
a 12:12 h light–dark cycle, with free access to food and water. The Bio-
ethics Committee for Animal Research, Faculty ofMedicine, Universidad
de Chile, approved all experimental protocols used in this work.

2.5. Mice pancreatic islet isolation

The pancreas extracted from male mice was digested with liberase
to isolate the islets of Langerhans as previously described [41]. Islets
were picked by hand under a dissecting microscope, and rinsed three
times in Hank's solution.

2.6. Immunofluorescence staining

The paraffin-embedded tissues were processed and incubated with
anti-insulin (1/200) and anti-caveolin-1 antibodies (1/200). Anti-
guinea pig FITC and Alexa Fluor 546 anti-rabbit IgG were used as sec-
ondary antibodies (1/200). The cross sections of pancreatic tissue
were 5 μm thick.

2.7. Site directed mutagenesis of CAV1

The Y14F and Y14Emutationswere introduced by double PCR, using
the primers 5′-cct ctt tac cgt tcc cat cc-3′ (sense) and 5′-gaa cgg taa aga
ggt gcc c-3′ (antisense) and 5′-ggg cac ctc gag acc gtt ccc-3′ (sense) and
5′-cat ggg aac ggt ctc gag gtg-3′ (antisense), respectively. The design of
primers includes the sequence overlapping the region containing the
tyrosine-14 codon. External primers used to amplify the full-length
CAV1 sequence were: 5′-ccg agc gcg gcc gcc atg tct ggg ggc aaa tac-3′
(sense) and 5′-tat ctg gcg gcc gct tat gtt tct ttc tgc atg ttg-3′ (antisense),
both harboringNotI sites. The final PCR product from a double PCR reac-
tion was then cloned into pPCR-Script amp+. Positive colonies were
identified and sequenced in both directions. The CAV1-encoding se-
quence with the Y14F and Y14E mutations was sub-cloned from
pPCR-Script amp+ into the multiple cloning site of pLacIOP, following
digestion with NotI. Correct orientation of the insert was determined
by PCR using an external anti-sense primer targeting the vector (5′-ttg
tct cct tcc gtg ttt ca-3′) in combination with the sense primer used to
generate the Y14F and Y14E mutations.

2.8. Fatty acid solutions

To expose MIN6 cells to the fatty acids palmitate and oleate, these
fatty acids were prepared in stock solutions containing 1800 mmol/l
of palmitate or oleate in 90% ethanol. These solutions were incubated
at 70 °C for 30 min vortexing repetitively during this period and then
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diluted to 20 mmol/l in 5.5% fatty acid-free BSA dissolved in PBS and
sterilized by filtration through a 0.22 μmMillipore filter. These solutions
were stored at −20 °C until utilization in experiments. Aliquots were
only thawed once. As a control, a “vehicle solution” with BSA alone
was prepared by diluting a 90% ethanol solution 90× in 5.5% fatty
acid-free BSA dissolved in PBS.

2.9. Annexin V binding assay

Free fatty acid-induced apoptosis was evaluated by flow cytometry
(BD FACSCanto instrument) using the Annexin V–Propidium iodide
Apoptosis Detection Kit No. 1 (BD Pharmingen).

2.10. Viability assays with propidium iodide

Cell viability was generally analyzed using a simple flow cytometry
procedure, as previously described [42,43]. In this assay, after setting
the baseline to exclude cell debris, cells impermeable to PI (10 μg/ml)
were considered as viable and two populations of PI-permeable cells
were distinguished, based on fluorescence intensity: apoptotic cells,
with hypodiploid DNA content, and necrotic cells, with intact DNA.
The window utilized to define normal DNA content was obtained
using cells permeabilized with methanol and stained with PI. To assess
the viability in the presence of free fatty acids, C2-ceramide or hydrogen
peroxide, MIN6 cells were serum-starved for 12 h and then incubated
with either vehicle solution alone or in the presence of increasing con-
centration solutions for 16 h (C2-ceramide or hydrogen peroxide) or
24h (palmitate or oleate). For de novo ceramide synthesis inhibition ex-
periments, transfected MIN6 cells were pre-incubated for 1 h with
fumonisin B1 (50 μM) or myriocin (100 nM) and then, free fatty acids
were added. Similarly, for viability assays with anti-oxidants, MIN6
cells were pre-incubated with NAC (3 mM), for 1 h and then incubated
with (B) palmitate (2 mM) or with (C) C2-ceramide (200 μM) for 24 h
and viability was evaluated by flow cytometry following PI staining, as
indicated. Finally, to assess viability in the presence of PP2, MIN6 cells
were pre-incubated with the Src-family kinase inhibitor PP2 (10 μM)
for 1 h, incubated with palmitate for 24 h, stained with PI and evaluated
by flow cytometry.

2.11. Caspase 3 activity assay

Caspase activity in cell lysates was determined by quantifying
DEVDase activity in MIN6 cells exposed to free fatty acids. Cells were
lysed in HEPES 250 mM, pH 7.4, 25 mM CHAPS and 25 mM DTT and
DEVDase activity was determined by the release of the fluorescent dye
7-amino-4-trifluoromethylcoumarin (AFC) from the caspase-3 substrate
Asp-Glu-Val-Asp-AFC (Enzo Life Sciences) in a Synergy Neo Multi-Mode
plate reader (Biotek). A unit of enzymatic activity was defined as 1 μmol
of substrate transformed per minute, per mg protein extract [44].

2.12. Western blotting

Cells grown to 80% confluencewerewashed twicewith cold PBS and
lysed in 0.2 mM HEPES (pH 7.4) buffer containing 0.1% SDS, phospha-
tase inhibitors (1 mM Na3VO4), as well as a protease inhibitor cocktail
(10 mg/ml benzamidine, 2 mg/ml antipain, 1 mg/ml leupeptin, 1 mM
PMSF). Protein concentration was determined using the BCA
assay. Total protein extracts (30 μg/lane) were separated by SDS-
polyacrylamide gel electrophoresis (SDS-PAGE). Separated proteins
were then transferred to nitrocellulose membrane. Blots were blocked
with 5% milk in 0.1% Tween–PBS and then probed with anti-actin
(1:5000), anti-caveolin-1 (1:5000) or anti-insulin (1:5000) polyclonal
antibodies or blocked with 5% Gelatin in 0.1% Tween–PBS for incuba-
tions with anti-pY14-caveolin-1 (1:3000) monoclonal antibody.
Bound antibodies were detected with HRP-conjugated secondary anti-
bodies and the EZ-ECL system.
2.13. Ceramide levels

The ceramide levels from stably transfected MIN6 were determined
using the diacylglycerol assay. Briefly, MIN6 cells were incubated with
free fatty acids for 16 h and then lipids were extracted as previously de-
scribed [45]. These extracts were prepared for the determination of cer-
amide by the diacylglycerol kinase assay [46] using brain ceramide
(Avanti Polar Lipids, Alabaster, AL) as a standard. In this assay, lipid ex-
tracts were incubated with Escherichia coli 1,2-diacylglycerol kinase
(DAG kinase) in the presence of gamma 32P-ATP (100,000 cpm/nmol,
Sigma-Aldrich) at 25 °C for 30min. This reaction that converts ceramide
to 32P ceramide-phosphate was terminated by the addition of 0.5 ml
ice-cold chloroform–methanol (1:2 vol/vol). The lipids were extracted
with 0.5 ml chloroform and 0.5 ml 1 mM NaCl, centrifuged at
14,000 ×g for 3 min and the upper aqueous phase was discarded. The
lower organic phase was washed sequentially with 1% perchloric acid,
0.3 ml chloroform–methanol (1:2 vol/vol), 0.2 ml chloroform and
0.2 ml of water. The organic phase was dried under N2 and re-
suspended in chloroform–methanol (95:5 vol/vol), spotted onto silica
Gel 60 TCL plates, and developed in a solvent mixture of chloroform–

acetone–methanol–acetic acid–water (10:4:3:2:1 vol/vol). The TCL
plates were revealed with photographic film to identify the radioactive
bands that were then scraped into vials containing liquid scintillation
fluid and radioactivity of the samples was quantified in a scintillation
counter (Beckman Coulter LS 5000TA, Mississauga, ON, Canada). The
radioactivity was normalized to the total amount of phosphorus in
samples as previously described [47].

2.14. Flow cytometry assay for ROS production

Dihydrorhodamine 123 (DHR-123, 1 μM), a fluorescence probe that
is sensitive to oxidative stress, was added to cell suspensions 30 min
prior to completing the experiment. After the indicated periods of free
fatty acid, or C2-ceramide exposure, cells were washed with PBS to re-
move excess probe. The fluorescence of cells was analyzed by flow cy-
tometry as described [42].

2.15. Analysis of mitochondrial transmembrane potential

To detect changes in transmembrane mitochondrial potential, the
cationic voltage-sensitive probe rhodamine 123 was used. This probe
reversibly accumulates in the mitochondria [48]. Stably transfected
MIN6 cells were incubated with palmitate (2 mM), oleate (2 mM), C2-
ceramide (200 μM) or DH-C2-ceramide (200 μM) for 4 h as indicated
in the figure legends. Cells were labeled with 1 μM(final concentration)
of rhodamine 123 at 37 °C in cell medium for 1 h before terminating the
experiment. Afterwashingwith ice cold PBS, the sampleswere analyzed
by flow cytometry using excitation and emission wavelengths of
500 and 536 nm, respectively. The results were expressed as histogram
profiles showing two cell populations. Reduced fluorescence levels are
indicative of cells with decreased mitochondrial membrane potential.

2.16. Src family kinase inhibition assays

To inhibit CAV1 phosphorylation on tyrosine-14, MIN6 cells were
pre-incubated with the Src-family kinase inhibitor PP2 (10 μM), a con-
centration known to lead to significant inhibition of pSrc-Y416
[49–51], before incubation with either H2O2 (positive control), vehicle
alone (negative control) or with palmitate (2 mM), oleate (2 mM) or
C2-ceramide (200 μM) for 4 h. Then, the levels of CAV1 phosphorylated
on tyrosine-14, CAV1 and β-actin were evaluated by western blotting.

2.17. Nuclear fragmentation assay

ConfluentMIN6 cell monolayers were grown on 12mm-glass cover-
slips in 24-well plates, serumdeprived and then exposed to palmitate or
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oleate for 24 h, fixedwith 4% paraformaldehyde in 100mMPIPES buffer
pH 6.8, containing 40 mM KOH, 2 mM EGTA and 2 mM MgCl2 for
30 min. Cells were then washed three times with washing solution
(50 mM Tris buffer pH 7.6 containing 0.15 NaCl and 0.1% sodium
azide) and permeabilizedwith 0.1% Triton X-100 for 10min. To identify
the nuclei, cells were stained with PI (10 μg/ml) for 5 min. Coverslips
were washed and mounted on microscope slides with 10% Mowiol-
2.5% 1,4-Diazabicyclo [2.2.2] octane and samples were visualized by
fluorescence microscopy (LSM Microsystems Pascal 5 confocal micro-
scope, Carl Zeiss, Thornwood, NY) upon excitation at 543 mm using a
570 nm emission filter. The nuclei that were reduced in size and/or
fragmented were interpreted as representing apoptotic nuclei.
2.18. Lipid droplets

To visualize intracellular lipid inclusions called “lipid droplets”,
MIN6 cells were incubated in 24-well plates with palmitate or oleate
(1 or 2 mM) for 16 h and then washed with PBS, fixed with 60%
A

B

C
IPTG (1mM)

MIN6

WT Mock Cav-1 Islet B16

1.0           1.1          1.3         0.9    

0.0            0.0          1.0           2.5*

MIN6(Mock) MIN6(Cav-1

+               +

Insulin                          Caveolin

Fig. 1. Caveolin-1 expression in stably transfected MIN6 cells and isolated mouse islets. (A) MI
containing pLacIOP–Cav-1 (Cav-1) vector to express caveolin-1 were incubated in DMEM high
and actin (control)was analyzed bywestern blotting. Representative blots are shown. Numeric
ized to actin (n=3; *p b 0.05 comparisonMIN6 (Mock) vsMIN6 (Cav-1) byWilcoxon test). (B)
cells comparedwith caveolin-1 expression in isolatedmouse islets. Themousemelanoma deriv
migrating slightly slower than insulin was detected in all lanes. (C) Localization of caveolin-1 an
section stained for caveolin-1 (red) and insulin as a marker for pancreatic β-cells (green) is sh
Langerhans islet. Scale bar 20 μm.
isopropanol for 5 min and then stained with Oil Red O reagent, as de-
scribed previously [52]. In brief, coverslips were incubated with 0.22%
Oil Red O solution for 10 min at room temperature. Coverslips were
then washed four times and stained with hematoxylin to visualize the
cells and mounted on microscope slides with 10% Mowiol-2.5% 1,4-
Diazabicyclo [2.2.2] octane. The stained cells were observed and record-
ed photographically. Lipid droplets observed were quantified using the
Image J1.40 software (Wayne Rasband National Institutes of Health,
USA) by calculating the percentage of lipid droplet area compared to
the total cell area.
2.19. Statistical analysis

Results were compared statistically assuming non-parametric distri-
bution. For paired data, the Wilcoxon test was used. For unpaired data,
the Mann–Whitney test was employed. Also, for time-course experi-
ments, 2-Way ANOVA with post-hoc multiple comparison analysis
was employed. The method employed for analysis is specifically
β-actin

Insulin

Caveolin-1

F10

     

         

IPTG (1 mM)

)

Caveolin-1

Insulin

β-actin

-1                    Merge

N6 cells stably transfected with the empty vector pLacIOP (Mock) or the caveolin-1 cDNA
glucose with or without IPTG (1 mM) for 24 h. Then, the expression of caveolin-1, insulin
al values below the bandswere obtained by scanning densitometric analysis and standard-
Expression of caveolin-1 inwild type (WT) and stably transfectedMIN6 (Mock and Cav-1)
ed cell line B16F10was used as a negative control for insulin. Note that a non-specific band
d insulin inmouse pancreas. A representative confocal image of a mouse pancreatic tissue
own. The merged image shown to the right (Merge) identifies caveolin-1 and insulin in a
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indicated in the respective figure legends. All groups analyzed were av-
eraged from three or more independent experiments. p b 0.05was con-
sidered significant.

3. Results

3.1. Characterization of stably transfected MIN6 cells

TheMIN6 cells have beenwidely used previously as a beta pancreat-
ic cell model of cell in various studies. Characterization of available
MIN6 cells by western blotting revealed essentially undetectable levels
of CAV1 (Fig. 1A). Hence, MIN6 cells were stably transfected with either
the IPTG-inducible vector pLacIOP alone or encoding CAV1 (pLacIOP-
cav-1), to yield MIN6 (Mock) and MIN6 (Cav-1) cells, respectively.
CAV1 expression was substantially enhanced in MIN6 (Cav-1) cells
(Fig. 1A). Also, we observed a significant increase in CAV1 levels when
MIN6 (Cav-1) cells were incubated with IPTG for 24 h. For all subse-
quent experiments, 1 mM IPTG was added to the medium of MIN6
(Mock) and (Cav-1) cells. CAV1 expression was also observed in
mouse (C57BL/6J) pancreatic islet extracts (Fig. 1B). In agreement
with this, CAV1was also detected inmouse pancreatic Langerhans islets
by confocal microscopy where the protein colocalized to a considerable
extent with insulin-containing granules (Fig. 1C).

3.2. Free fatty acids induced beta cell death

To determine whether the presence of CAV1 affects the susceptibil-
ity of MIN6 cells to free fatty acid-induced cell death, a simple flow
cytometry assay was employed, based on propidium iodide cell
Fig. 2.Caveolin-1 expression enhancedpalmitate-induced cell death.MIN6 (Mock) andMIN6 (C
or in the presence of increasing concentrations of the free fatty acids palmitate or oleate for 24
mined by flow cytometric analysis following PI staining in (A) MIN6 (Mock) and (B) MIN6 (Cav
iments, and significant differences are indicated (*p b 0.05; **p b 0.01; with respect to vehicle,
permeability [42,43]. Indeed, palmitate, but not oleate induced, pre-
dominantly apoptotic cell death (Fig. 2A) that was more pronounced
with palmitate (*p b 0.05). Importantly, CAV1 expression in MIN6
cells enhanced palmitate-induced apoptosis in a manner that was al-
ready significantwith 1mMpalmitate (Fig. 2B, *p b 0.05). No significant
changes in the necrotic sub-population were detected. To confirm that
this simple cytometry assay was indeed quantifying apoptosis in MIN6
cells, several additional approaches were employed. Nuclear shrinkage
and DNA fragmentation are established hallmarks of apoptosis. Thus,
nuclear fragmentation was evaluated in transfectedMIN6 cells exposed
to free fatty acids for 24 h. As expected, palmitate (2 mM) induced nu-
clear fragmentation (arrows) that was more pronounced in MIN6
(Cav-1) than MIN6 (Mock) cells. In contrast, oleate treatment had no
significant effect on nuclear morphology (Fig. 3A). These findings are
in agreement with the flow cytometry results, given that we detected
significant differences between MIN6 (Mock) and MIN6 (Cav-1) in the
presence of 2mMpalmitate (##p b 0.01),with 37.5 and 51.6% of nuclear
fragmentation, respectively (Fig. 3B).

In the same way, we evaluated apoptosis by quantifying caspase 3
activity using a commercially available DEVDase assay (Fig. 3C). A sig-
nificant increase in caspase 3 activity (***p b 0.001) was observed only
in MIN6 (Cav-1) cells exposed to 2 mM palmitate for 24 h (Fig. 3C).
This increase was statistically different from the levels presented in
MIN6 (Mock) at the same palmitate concentration (#p b 0.05). No sig-
nificant increments in caspase 3 activity were observed with 2 mM ole-
ate (p N 0.05). Finally, another classic criteria employed to detect
apoptosis is by observing phosphatidylserine (PS) exposure on the cell
surface. Thus we additionally quantified PS accumulation using Alexa
Fluor 488-conjugated annexin V. Indeed, palmitate, but not oleate,
av-1)were serum-starved for 12h and then incubatedwith either vehicle (5.5% BSA) alone
h. Then, viability (white bars), apoptosis (gray bars) and necrosis (black bars) were deter-
-1) cells. The results shown were averaged (Mean ± SEM) from four independent exper-
Wilcoxon test).
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induced the accumulation of Annexin V-positive cells (Fig. 3D and E) in
a concentration-dependentmanner. Importantly, in this assay CAV1 ex-
pression in MIN6 cells enhanced palmitate-induced apoptosis (Fig. 3D,
annexin V positive population) in amanner that was already significant
with 0.5 mM palmitate (Fig. 2B, #p b 0.05). No changes in the necrotic
sub-population were detected by these criteria (Fig. 3).

In summary, these results obtained using a variety of different tech-
niques strongly suggest that palmitate, but not oleate, induced apopto-
sis in MIN6 cells in a manner that was potentiated by the presence of
CAV1. Also, these observations validated the results obtained using the
simpler PI-staining assay (see Fig. 2), by corroborating that largely
palmitate-induced apoptotic cell deathwas being detected. This simpler
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Fig. 3. Caveolin-1 expression enhanced palmitate-induced nuclear fragmentation and apoptosis
mitate or oleate (2 mM) for 24 h, fixed, permeabilized, stained with PI and analyzed by fluor
(boxed) are shown at higher magnification. Magnification bar, 20 μm. (B) Hypodiploid nuclei
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assay was then employed to quantify cell death apoptosis in all subse-
quent experiments.

3.3. Palmitate incubation induced ceramide formation

Previous reports have shown that palmitate incubation leads to for-
mation of ceramide, a known lipid second messenger associated with
cell death [53]. For this reason, we evaluated the levels of ceramide in
MIN6 (Mock) and MIN6 (Cav-1) cells exposed to palmitate, using the
diacylglycerol kinase assay. Because the incubation with 2 mM palmi-
tate induced excessive death after 24 h (N60% Fig. 2), palmitate expo-
sure was reduced to 16 h to permit determining ceramide levels. As
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. (A)MIN6 cells were grown on glass coverslips, serum deprived and then exposed to pal-
escence microscopy. Fragmented nuclei are indicated (arrows). Some fragmented nuclei
were counted from images obtained and expressed as nuclear fragmentation (%), that is,
s shown were averaged from three independent experiments (Mean ± SEM; ##p b 0.01;
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p b 0.01; ###p b 0.001 MIN6 (Mock) vs MIN6 (Cav-1)).
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shown, ceramide levels increased when MIN6 cells were incubated
with palmitate (Fig. 4A), and this increase was significant in the pres-
ence of 2 mM palmitate (Fig. 4B; *p b 0.05). No significant differences
were observed between MIN6 (Mock) and MIN6 (Cav-1), suggesting
that enhanced ceramide synthesis from palmitate did not explain how
CAV1 promoted palmitate induced cell-death. As expected, oleate treat-
ment did not lead to significant changes in ceramide levels (Fig. 4B). To
link palmitate-mediated effects in MIN6 cells to the de novo ceramide
synthesis pathway, cells were pre-incubated with the de novo pathway
inhibitors fumonisin B1 (50 μM)ormyriocin (100 nM) for 30min before
adding palmitate for 16 h, and then ceramide levels were determined.
Both fumonisin B1 and myriocin pre-treatment resulted in a significant
decrease in ceramide levels (Fig. 4C; **p b 0.01). We then evaluated
whether the deleterious effects induced by palmitate in MIN6
cells could be prevented by pre-incubation with de novo ceramide
synthesis inhibitors (Fig. 4D). Indeed, in the presence of these in-
hibitors, MIN6 viability following incubation with palmitate improved,
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Fig. 4.Palmitate induceddenovo ceramide synthesis inMIN6 cells.MIN6 (Mock) andMIN6 (Cav
with palmitate or oleate for 16 h. Then, lipids were extracted and ceramide levels were quanti
after TLC are shown. (A). DG: diacylglycerol, Cer: ceramide, TX-100: Triton. (B) The bands co
methods. Values shown were averaged from three independent experiments (Mean ± SEM; *
deprived for 12 h and then pre-incubated with inhibitors of de novo ceramide synthesis, fum
alone or together with palmitate (2 mM) for another 24 h. Then, cells were either utilized for
determine viability by flow cytometry analysis (D). Values shownwere averaged from three in
with respect to palmitate (2 mM) in the absence of inhibitor).
suggesting that de novo ceramide synthesis contributes to palmitate-
induced cell death.

3.4. Caveolin-1 enhanced C2-ceramide and hydrogen peroxide-induced cell
death in beta cells

To implicate directly ceramide synthesis following palmitate expo-
sure, we evaluated whether CAV1 sensitized cells to ceramide-induced
cell death. To this end, we incubated MIN6 (Mock) and MIN6 (Cav-1)
cells with different C2-ceramide concentrations for 16 h. As shown
(Fig. 5A), CAV1 expression sensitized cells to C2-ceramide-induced ap-
optosis at concentrations of 100 μMor higher (#p b 0.05). Deleterious ef-
fects of ceramide have previously been associated with ROS formation
[42,54], so we evaluated whether CAV1 expression enhanced hydrogen
peroxide-induced beta cell death. As shown, CAV1 presence decreased
MIN6 viability compared to MIN6 (Mock) cells at or beyond 300 μM of
hydrogen peroxide (Fig. 5B; #p b 0.05). These results suggest that
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Fig. 5. Caveolin-1 expression enhanced C2-ceramide and hydrogen peroxide-induced cell
death. MIN6 (Mock) andMIN6 (Cav-1) cells were serumdeprived for 12 h and exposed to
increasing concentrations of either C2-ceramide (A) or hydrogen peroxide (B) for 16 h.
The cells were harvested, stained with PI and viability was evaluated by flow cytometry.
The results shown were averaged from four independent experiments (Mean ± SEM;
*p b 0.05; **p b 0.01; ***p b 0.001. Comparisons with respect to concentration zero;
#p b 0.05; ##p b 0.01;Wilcoxon test for intragroup comparison andMann–Whitney for in-
tergroup comparison).

700 S. Wehinger et al. / Biochimica et Biophysica Acta 1852 (2015) 693–708
CAV1 sensitizes beta cell to death downstream of ceramide synthesis at
the level of ROS production, but onlywhen ceramide concentrations are
high.

3.5. Palmitate and C2-ceramide induced ROS production in MIN6 cells was
prevented by antioxidants

To assess whether CAV1 enhances ROS production, MIN6 cells were
exposed to palmitate (2 mM) or C2-ceramide (200 μM) and ROS were
measured by flow cytometry using DHR123 as a fluorescent probe. Pal-
mitate and C2-ceramide both increased ROS levels (Fig. 6B and C, re-
spectively) and in both cases the increase was significant at 4 h post-
incubation. Neither the free fatty acid vehicle (BSA 5.5%) nor oleate
(2 mM) induced any appreciable changes in ROS levels (Fig. 6A and D,
respectively). Importantly, CAV1 expression did not produce changes
in ROS generation, which suggests that the mechanism leading to
CAV1 enhanced death in the presence of palmitate is located down-
stream of ROS generation induced by palmitate and its product, cer-
amide in MIN6 cells.

To evaluate the importance of ceramide generation in the ROS incre-
ment induced by palmitate, MIN6 (Mock) and MIN6 (Cav-1) cells were
pre-incubatedwith the ceramide synthesis inhibitormyriocin (100 nM)
for 1 h and then the cells were exposed to palmitate (2mM). Addition of
myriocin reduced ROS production induced by palmitate and the pres-
ence of CAV1 did not alter this observation (Fig. 7A, *p b 0.05). To assess
whether the increase in ROS generation was responsible for loss of via-
bility upon exposure to palmitate, MIN6 cells were pre-incubated with
the antioxidant: NAC (3 mM) for 1 h and then palmitate (2 mM) or
C2-ceramide (200 μM)were added for 24 and16h, respectively. This re-
duction in exposure time for C2-ceramide to 16 h was necessary due to
the greater toxicity to cells (Fig. 5). A significant increase in viability of
cells exposed to palmitate was observed with NAC in MIN6 (Mock)
and MIN6 (Cav-1) (*p b 0.05 and **p b 0.01) (Fig. 7B and C). These ob-
servations suggest that CAV1 enhanced death occurs downstream of
ROS production likely due to localized ceramide accumulation and
ROS formation as a consequence.

3.6. Palmitate and C2-ceramide exert mitochondrial damage in MIN6 cells

Because abnormal mitochondrial function is an important source of
ROS [55,56], we evaluated mitochondrial membrane potential using
rhodamine 123 (1 μM final concentration), which increases fluores-
cence upon incorporation into the membrane of functional mitochon-
dria and decreases fluorescence if the membrane potential is lost [42,
48]. We observed an increase in the percentage of MIN6 cells lacking
fluorescence by roughly 50%when theywere incubatedwith either pal-
mitate (2mM) or C2-ceramide (200 μM) for 4 h (Fig. 8A). Alternatively,
neither oleate (2mM) nor the biologically inactive C2-ceramide analog,
C2-dihydroceramide (200 μM) leads to noticeable changes compared to
the vehicle alone (5.5% BSA). In time-course assays incubation with
palmitate (2 mM) up to 6 h leads to a time-dependent decrease in the
percentage of fluorescence positive MIN6 (Mock) and MIN6 (Cav-1)
cells, and the decrease was significant at 4 h post-incubation (Fig. 8B;
*p b 0.05). No significant differences between Min6 (Mock) and MIN6
(CAV-1) cells were observed. It should be noted that loss of mitochon-
drial membrane potential, correlated well with the ROS increase ob-
served previously (Fig. 6). Thus both, palmitate and C2-ceramide
induced loss of mitochondrial membrane potential (MMP), suggestive
of mitochondrial damage in MIN6 cells, but in neither case did the
presence of CAV1 alter loss of MMP.

3.7. Palmitate and C2-ceramide induced CAV1 phosphorylation on
tyrosine-14 was blocked by the Src-family kinase inhibitor PP2

So far, our results reveal that palmitate induced ceramide synthesis,
an increase in ROS generation andmitochondrial damage inMIN6 cells,
but that CAV1 did not appear to alter any of these processes, although
the presence of the protein did enhance apoptosis caused by palmitate.
Given that oxidative stress is associated with CAV1 phosphorylation on
residue tyrosine-14 by Src family kinases [30,31] and that this phenom-
enon has been associated with enhanced sensitivity to cell death [32,
33], we evaluated whether palmitate exposure induced phosphoryla-
tion of CAV1 on tyrosine-14 (Fig. 9). MIN6 (Cav-1) cells were incubated
with palmitate (2 mM) for up to 10 h and CAV1 phosphorylation on
tyrosine-14 was evaluated with a specific antibody (see Materials and
methods). As a positive control, cells were exposed to hydrogen perox-
ide (5 mM final) for 30 min. Palmitate incubation induced transient
CAV1 phosphorylation, starting 2 h post-incubation, reaching a peak
at 4 h and decreasing thereafter (Fig. 9A). Again, CAV1 phosphorylation
correlated well with ROS generation induced by palmitate (Fig. 6). To
test whether CAV1 phosphorylation was dependent on Src family ki-
nase activity, MIN6 (Cav-1) cells were pre-incubated with the inhibitor
PP2 (10 μM) for 30 min, prior to the incubation with palmitate (2 mM)
or C2-ceramide (200 μM). Both palmitate- and C2-ceramide-induced
CAV1 phosphorylation on tyrosine-14 were inhibited in the presence
of PP2 (Fig. 9B). Taken together, these results suggest that palmitate
and C2-ceramide induce CAV1 phosphorylation on tyrosine-14 in a
Src-family kinase dependent manner by increasing oxidative stress in
MIN6 cells.

3.8. CAV1 phosphorylation on tyrosine-14 is required to promote
palmitate-induced cell death in MIN6 cells

To further examine whether Y14-phosphorylation of CAV1 by Src
family kinases was necessary to promote palmitate-induced cell death,
MIN6 (Mock) and MIN6 (Cav-1) cells were pre-incubated with or
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Fig. 7. Palmitate induced-ROS generation was dependent on ceramide synthesis and cytotoxicity was partially inhibited by NAC. (A) MIN6 (Mock) and MIN6 (Cav-1) cells were serum
deprived for 12 h and pre-incubated with the ceramide synthesis inhibitor myriocin (Myr: 100 nM) for 1 h. Then cells were exposed to either vehicle (5.5% BSA) alone or together
with palmitate (2 mM) for 16 h to determine DHR123 fluorescence (ROS formation). MIN6 (Mock) and (Cav-1) cells were pre-incubated with the anti-oxidant NAC (3 mM) for 1 h
and then incubated with (B) palmitate (2 mM) for 24 h, or with (C) C2-ceramide (200 μM) for 16 h. Viability was evaluated by flow cytometry following PI staining. The values shown
are averages (Mean ± SEM) from three independent experiments. Statistically significant differences in viability obtained using the Wilcoxon test for intragroup comparison and
Mann–Whitney for intergroup comparison tests are indicated (*p b 0.05; **p b 0.01; with respect to palmitate (2 mM); #p b 0.05 (Mock) vs (Cav-1)).
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values shown are equivalent to the percentage of fluorescence negative cells that had lost their mitochondrial membrane potential. Images show representative results for MIN6 (Cav1)
cells (Mean± SEM; n= 3). (B) MIN6 (Mock) and (Cav-1) were incubated with either vehicle (5.5% BSA) alone or together with palmitate (2 mM) for up to 6 h. After the indicated time
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without PP2 (10 μM) for 1 h and then exposed to palmitate (2 mM) for
24 h (Fig. 10). An increase in the viable population was observed when
MIN6 (Cav-1) cells were pre-incubated with PP2 (Fig. 10A). Important-
ly, this was not observed in MIN6 (Mock) cells and the differences in
MIN6 (Mock) and MIN6 (Cav-1) viability in the presence of palmitate
(#p b 0.05), disappeared with PP2. These results suggest that CAV1-
enhanced cell death in the presence of palmitate was dependent on
the activity of Src family kinases. In light of these results, we then eval-
uated the importance of CAV1 tyrosine-14 phosphorylation. To this end,
MIN6 cells were stably transfected with either the phosphorylation-
deficient CAV1 mutant (Y14F) or a phosphomimetic CAV1 variant
(Y14E) (Fig. 10B). Then, the viability of cells expressing CAV1 wild
type or the mutant proteins was evaluated in the presence of palmitate
(2 mM), C2-ceramide (200 μM) or oleate (2 mM) (Fig. 10C). For MIN6
(Y14F) cells a decreased sensitivity to palmitate and C2-ceramide was
observed, similar to that obtained with MIN6 (Mock) cells. On the
other hand, for the cells expressing the phosphomimetic mutant ver-
sion of CAV1, MIN6 (Y14E), enhanced sensitivity to palmitate and C2-
ceramide, similar to that observed with MIN6 (Cav-1), was observed.
As expected, oleate induced no significant changes in viability, in com-
parison with vehicle. Taken together, these results suggest that CAV1
phosphorylation on tyrosine-14 is required to enhance cytotoxicity of
palmitate and C2-ceramide in MIN6 cells.

4. Discussion

Our results identifying palmitate as an inducer of apoptosis are in
agreement with numerous previous reports. The novelty of this study
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Fig. 9. Palmitate and C2-ceramide induced phosphorylation of caveolin-1 on tyrosine-14. (A) MIN6(Cav-1) cells were serum-deprived for 12 h and exposed to either vehicle (5.5% BSA)
alone or together with palmitate (2 mM) for up to 10 h. Then, cell extracts were prepared and analyzed by western blotting for levels of caveolin-1, β-actin and phosphorylation of cav-
eolin-1 on tyrosine-14. As a positive control for caveolin-1 phosphorylation, cells were incubated with H2O2 (5mM final concentration) for 30min. Blots are representative of results ob-
tained in three independent assays. Numerical values below the bands were obtained by scanning densitometry analysis after standardizing to actin. (B) Graph depicting pY14-Cav-1
levels from (A). Values for the control without palmitate were considered as 1.0 (*p b 0.05, **p b 0.01 with respect to control; Wilcoxon test). (C) MIN6(Cav-1) cells were pre-incubated
or not with the Src kinase-inhibitor PP2 (10 μM) before incubationwith either H2O2 (positive control), vehicle alone (negative control) or togetherwith palmitate (2mM), oleate (2mM)
or C2-ceramide (200 μM) for 4 h. Then, the levels of caveolin-1 phosphorylated on tyrosine-14 (pY14-caveolin-1), caveolin-1 and β-actin were evaluated by western blotting. Blots are
representative of results obtained in three independent assays. Numerical values below the bands were obtained by scanning densitometric analysis after standardizing to actin.
(D) Graph depicting pY14-Cav-1 levels from (C). Control with only the vehicle (BSA) was considered as 1.0 (*p b 0.05, **p b 0.01 with respect to control; Wilcoxon test).
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resides in showing that CAV1 expression in beta pancreatic cells renders
themmore sensitive to this stress situation and is followed by the iden-
tification of the mechanism involved. An important limiting factor in
our study is the fact that we used only one beta cell line. Although
MIN6 is a widely used and accepted in vitro model for beta cells, assays
in other beta cell lines and primary beta cells are needed to confirm our
results.

4.1. Levels of CAV1 in MIN6

Our results showed essentially undetectable levels of CAV1 in MIN6
cells (Fig. 1A), although this protein is normally present in pancreatic
beta cells and previous reports show that MIN6 expresses detectable
levels of CAV1 [38]. This discrepancy could be explained by the fact
that the cells we used were acquired with a high passage (over thirty)
and so they may have been subject to a selection process in which
CAV1 expression was a disadvantage or simply was not required for es-
sential cell function. Indeed, as we previously discussed, CAV1 expres-
sion is associated with cell cycle arrest and senescence [22] and in the
present study, we corroborate the notion that CAV1 potentiates death
responses triggered by stress conditions.

4.1. Fatty acid-induced cell death and lipid droplet formation

Over a decade ago, Shimabukuro et al. demonstrated that palmitate
exposure induced apoptosis in cultured islets from Zucker diabetic fatty
rats in a manner that was dependent on de novo ceramide synthesis
from free fatty acids [57]. Additional studies went on to show that
high levels and or prolonged exposition to free fatty acids, particularly
saturated fatty acids like palmitate, induced apoptotic cell death. This
phenomenon is not restricted to beta pancreatic cells, but is also ob-
served in hepatocytes [58], vascular endothelial cells [59], skeletal mus-
cle cells [59], cardiomyocytes [60], as well as other cell types [61,62]. In
the current study, we show that palmitate exposure induced significant
apoptosis in MIN6 cells after 24 h (Fig. 2), in agreement with previous
studies, in which palmitate was shown to be toxic at 0.5 and 1 mM [2,
7]. In our study, a tendency towards decreased viability was observed
between 0.5mMand 2.0mM. These concentrations lie within the phys-
iologically relevant range for free fatty acids that have been suggested to
potentiallymimic lipotoxicity in the context of type 2 diabetes [57]. No-
tably, in our experiments, oleate had no significant effect on MIN6 cell
viability. Although, oleate induced-cell death has been reported, the
majority of studies conclude that saturated fatty acids (like palmitate)
aremore cytotoxic than the unsaturated fatty acids [7,63]. Interestingly,
however, some studies even suggest that oleate can protect against del-
eterious effects of saturated free fatty acids [13]. One possible explana-
tion suggests that the excess oleate, in contrast to palmitate, is readily
stored as triglycerides in lipid droplets in cells [64,65]. Consistent with
this possibility, we observed abundant formation of lipid droplets in
MIN6 cells exposed to oleate, but not with palmitate (Supplementary
Fig. 1). Importantly, the toxic effects of palmitate were enhanced in
MIN6 (Cav-1) cells with augmented CAV1 expression compared to
MIN6 (Mock) cells (Figs. 2, 3). CAV1 expression has been previously as-
sociated with lipid droplet formation [66] and enhanced sensitivity to
different cytotoxic stimuli [34–37]. Moreover, while CAV1 plays a phys-
iologically relevant, beneficial role in insulin secretion in beta cells [38],
it is also known to participate in pathological processes in these cells, in-
cludingmetabolic dysfunction induced by interleukin 1-beta [67]. Thus,
the role of this protein in beta cells appears to be rather ambiguous.
Here, for the first time, we show that CAV1 expression enhances beta
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Fig. 10. Y14-phosphorylation was required for caveolin-1 to promote palmitate and C2-
ceramide-induced cell death. (A) MIN6(Mock) and (Cav-1) cells were serum-deprived
for 12 h, pre-incubated with or without PP2 (Src inhibitor; 10 μM) for 1 h and then incu-
bated with either vehicle (5.5% BSA) alone or together with palmitate (2 mM) for 24 h.
Then, viability was evaluated by flow cytometry following staining with PI. Data shown
are averages (Mean ± SEM) obtained from three independent experiments (*p b 0.05;
**p b 0.01 with respect to palmitate (2 mM); #p b 0.05 (Mock) vs (Cav-1)).
(B) Generation of MIN6 expressing non-phosphorylatable Cav-1. MIN6 cells were stably
transfected with a plasmid encoding non-phosphorylatable caveolin-1 (Y14F) or
phosphomimetic caveolin-1 (Y14E). Wild type caveolin-1, caveolin-1 (Y14E) and caveo-
lin-1 (Y14F) expressing cells, were incubatedwith either vehicle alone (control) or togeth-
er with palmitate (palm: 2 mM) or C2-ceramide (C2-cer: 200 μM) for 4 h. Then, protein
extracts were prepared and analyzed by western blotting to evaluate protein levels of β-
actin, caveolin-1 and pY14-caveolin-1. The results shown are representative of three inde-
pendent experiments. (C) MIN6 (Mock), MIN6(Cav-1), MIN6(Y14F) and MIN6(Y14E)
cells were serum-deprived for 12 h and then incubated with either vehicle alone or to-
gether with palmitate (palm: 2 mM), oleate (ole: 2 mM) or C2-ceramide (C2-cer:
200 μM) for 24 h. Then, cells were stained with PI and the viability was analyzed by
flow cytometry. Results were averaged (Mean ± SEM) from three independent experi-
ments. Statistical differences are indicated (*p b 0.05 with respect to vehicle; #p b 0.05
(Mock) vs (Cav-1) vs (Y14F)).

704 S. Wehinger et al. / Biochimica et Biophysica Acta 1852 (2015) 693–708
pancreatic cell sensitivity to free fatty acids, particularly palmitate, al-
though lipid droplet formation did not appear to be involved.

4.2. Palmitate-induced cell death and ceramide formation

Palmitate-associated deleterious effects and the connection to cer-
amide synthesis have been extensively documented in the literature.
Ceramide is generated in cells by at least three different pathways: en-
zymatic breakdown of sphingomyelin, reacylation of sphingosine in
the “salvage” pathway and de novo synthesis. In the latter case, palmi-
tate is a precursor for ceramide synthesis [68]. Ceramide generation is
often associated with cellular responses to stress situations [69]. Alter-
natively, ceramide reportedly modulates many cell functions, including
those related to the regulation of metabolism, suggesting a possible
function in obesity, diabetes and cardiovascular disease [53]. Enhanced
ceramide production via the de novo pathway has been associated with
cell death in hepatocytes [70] and also in beta pancreatic cells [71–75].
Importantly, we observed increased ceramide levels in MIN6 cells incu-
bated with palmitate that were prevented by de novo ceramide synthe-
sis inhibitors (Fig. 4C) and these inhibitors also reduced cell death
followingpalmitate exposure (Fig. 4D). This suggests that ceramide syn-
thesis may be responsible for palmitate-induced MIN6 cell death. How-
ever, ceramide formationwas not altered by the presence of the CAV1 in
MIN6, indicating that the CAV1-induced sensitization occurs via a differ-
ent mechanism.

4.3. Palmitate, ceramide and ROS generation

Several studies are available linking free fatty acids to ceramide for-
mation and oxidative stress. For instance, palmitate induces ROS libera-
tion from the mitochondria associated with mitochondrial damage in
skeletal muscle cells in a de novo ceramide synthesis-dependent man-
ner [13]. Also, ceramide directly suppresses the respiratory chain Com-
plex III [54] and possibly also the Complex II [76]. In our study, we
obtained evidence indicating that both palmitate (2 mM) and C2-
ceramide (100 μM) induced ROS formation in MIN6 (Mock) and MIN6
(Cav-1) cells (Fig. 6B and C). Increments in ROS following palmitate
treatment were rapid, reaching a peak at 4 h as has been described pre-
viously [77]. In contrast, oleate did not increase ROS levels. Surprisingly,
CAV1 expression seems to decrease ROS levels in MIN6 (Cav-1) in the
presence of palmitate or C2-ceramide, although the observed decreases
were not statistically significant (p N 0.05). We observed a positive
correlation between de novo ceramide synthesis and ROS induction
by palmitate in MIN6 cells. Indeed, ROS formation was inhibited by
pre-incubation with myriocin (100 nM) (Fig. 7A). Taken together, the
evidence provided suggests that the mechanism underlying CAV1-
mediated sensitization to palmitate lies downstream of ROS generation
in MIN6 cells.

Antioxidants have been shown to prevent free fatty acid or
ceramide-induced cell death. For instance, human pancreatic islets
were protected from a mixture of free fatty acids with a non-peptidyl
radical scavenger [78] and similar results have been reported in rat pan-
creatic islets using nicotinamide as an antioxidant [79]. NAC, a glutathi-
one precursor, has been implicated as a ROS scavenger in the protection
of skeletal muscle cells against palmitate-induced damage [13]. Consis-
tent with these observations and our working hypothesis, we observed
that NAC protected MIN6 cells against palmitate-induced cell death
(Fig. 7).

4.4. Loss of mitochondrial membrane potential

The mitochondria represent the main source of ROS in cells [55,56].
In beta pancreatic cells, ROS generation has been associated with gluco-
and lipotoxicity that is frequently but not exclusively, attributed to al-
terations in the mitochondrial respiratory chain [80]. In the beta cell
line INS 832/13, palmitate induces MMP loss that is prevented by
fumonisin B1 [12]. In our studies, we observed that palmitate and C2-
ceramide induced a significant increase (p b 0.05) in the fluorescence-
negative MIN6 population (loss of MMP), suggesting that both agents
cause mitochondrial damage in MIN6 cells (Fig. 8A). In a time-course
assay, thedecrease influorescencepositive cells after 4 h coincided tem-
porarily with the peak of ROS generation (Fig. 6), although the presence
of CAV1 did not alter this tendency significantly.

Mitochondrial damage may represent both a source or the conse-
quence of ROS formation [81]. The experiments described here
were not able to distinguish between whether ROS were generated
as the consequence of palmitate-induced mitochondrial damage or
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alternatively, palmitate induced ROS, which in turn promoted mito-
chondrial damage. Ceramide has been shown to induce ROS formation
by NADPH oxidase activation in endothelial cells and the same mecha-
nism has been proposed to occur in beta cells [82] and has been associ-
ated with the development of type II diabetes mellitus [81].

On the other hand, enhanced susceptibility to oxidative stress in
cells expressing CAV1 has been proposed previously. For instance, lack
of CAV1 in lung fibroblasts inhibits premature senescence induced by
oxidative stress triggered by cigarette smoke [83]. Along the same
lines, CAV1 has been attributed a preponderant role in the “free radical
theory” of aging and premature senescence [84].

4.5. CAV1 phosphorylation induced by palmitate

Our results indicate that CAV1 participates in the demise of MIN6
cells caused by palmitate and ceramide downstream of ROS production
and mitochondrial damage. Thus, we evaluated the possibility that oxi-
dative stress generated by palmitate exposure altered the “functional
behavior” of CAV1 and sensitized the beta cell to apoptosis. CAV1 is
known to be phosphorylated on tyrosine-14 in response to oxidative
stress [29]. This phosphorylation is triggered by the activation of non-
receptor tyrosine kinases including Src, Abl and Fyn due to a variety of
stimuli and tyrosine-14 phosphorylation has been suggested to repre-
sent an oxidative stress marker [17,30,31,85] and sensitize to cell
death [32,33]. In this study, we observed that palmitate (2mM) induced
a significant increase (p b 0.01) in tyrosine-14 phosphorylation, which
peaked after 4 h (Fig. 9A and B) and coincided with the previously ob-
served peak in ROS generation (Fig. 6). C2-ceramide (100 μM) also
augmented CAV1 tyrosine-14 phosphorylation after 4 h (Fig. 9C
and D). In both cases, tyrosine-14 phosphorylation was abolished by
pre-incubation with the Src kinase inhibitor PP2 (Fig. 9C and D). Also,
PP2 induced a significant increase inMIN6 (Cav-1) cell viability after ex-
posure for 24 h to palmitate (2mM) (Fig. 10A). Importantly, PP2 had no
effects on palmitate sensitivity in MIN6 (Mock) cells, as was also the
Fig. 11.Working model that summarizes themajor findings described here. Palmitate is taken u
lular ceramide levels, in turn, induce mitochondrial damage and increase oxidative stress. Aug
family kinases that phosphorylate CAV1 on tyrosine-14 and thereby enhance palmitate-indu
how the expression of CAV1 sensitizes beta-cells to palmitate-induced apoptosis.
case for the ceramide synthesis inhibitors myriocin and fumonisin B1
(Fig. 4D).

These results obtained with PP2 associate palmitate exposure with
the Src kinase activation through ROS generation. Src family kinases
participate in a number of crucial cellular events, such as cytoskeleton
remodeling, proliferation and cell signaling [29,86,87]. It has been pro-
posed that the members of this family can be activated by ROS follow-
ing oxidation of a disulfide bridge that favors maintenance of an open
and completely active conformation of the enzyme [88]. In a previous
study, Lyn function as redox sensor in leukocytes was attributed to ox-
idation of cysteine residue C466 by H2O2 produced during tissue injury.
Cysteine oxidation leads to a conformational change and Lyn activa-
tion, which initiates pathways that regulate chemotaxis in these
cells [89]. Thus, it is intriguing to suggest that palmitate exposure
leads to ceramide synthesis which induces ROS formation and activates
a Src family kinase member that in turn phosphorylates CAV1 on
tyrosine-14.

The biological significance of CAV1 phosphorylation on tyrosine-14
is still controversial. In fact, this modification reportedly participates in
caveolae formation and function [90], actin cytoskeleton remodeling
and focal adhesion formation in response to oxidative stress [29]. Also,
the phosphorylation of CAV1 on tyrosine-14 participates in Src inhibi-
tion through the recruitment of Csk [91]. To evaluate the relevance of
tyrosine-14, we expressed in MIN6 cells a mutated version of CAV1 in
which tyrosine-14 was replaced either by the non-phosphorylatable
amino acid phenylalanine (Y14F) or the phosphomimetic amino acid
glutamic acid (Y14E). ForMIN6 (Y14F), diminished sensitivity to palmi-
tate and C2-ceramide, similar to MIN6 (Mock) cells, was observed
(Fig. 10C), while forMIN6 (Y14E) cells, sensitivity to palmitatewas sim-
ilar to that of MIN6 (Cav-1) cells. Taken together, these results implicate
CAV1 phosphorylation on tyrosine-14 in augmented sensitivity to pal-
mitate in MIN6 cells and specifically link enhanced sensitivity of MIN6
cells expressing CAV1 to ceramide-induced ROS formation and
tyrosine-14 phosphorylation.
p by the cell and utilized as a precursor for de novo ceramide synthesis. Elevated intracel-
mented ROS levels trigger largely apoptotic beta-cell death. Additionally, ROS activate Src
ced apoptotic cell death. The model presented here provides a plausible explanation for



706 S. Wehinger et al. / Biochimica et Biophysica Acta 1852 (2015) 693–708
This ability of CAV1 to modulate cellular responses after tyrosine-14
phosphorylation is attributed to accessibility of the scaffolding domain
of this protein. Tyrosine-14 phosphorylation is suggested to facilitate
the assembly, recruitment and even the sequestration of signaling com-
plexes, altering signaling pathways in response to a variety of stimuli
[92–94]. This modification increases sensitivity to cytotoxic stress. For
instance, tyrosine-14 phosphorylation of CAV1 enhances sensitivity to
the chemotherapeutic agent paclitaxel in breast cancer cells, in which
CAV1 serves as a scaffold protein for JNK that is activated by paclitaxel,
phosphorylating BCL2 and BCLXL, which leads to inactivation of these
anti-apoptotic proteins [33,92]. Phosphomimetic variants could easily
replicate the effects of phosphorylation on protein conformation. How-
ever, it is difficult to envision how this change could induce appropriate
docking of binding partners that recognize phosphorylated tyrosine-14.
It is important to note that in our results, the phosphomimetic CAV-1
mutant Y14E showed the same response to palmitate as did wild-type
CAV-1, without sensitizing cells under basal conditions (with vehicle).
This is intriguing and suggests that tyrosine-14 phosphorylation need
not function as a specific docking site for protein complex recruitment,
but rather that changes at this site modulate CAV1 conformation in
ways that are not easy to predict. Possibly the phosphomimetic modifi-
cation does not replicate completely the effects on CAV1 conformation.
Homology modeling of CAV1 by Shajahan et al. suggests that the aro-
matic ring of Tyr-14 is important due to its ability to form a stable struc-
ture that regulates protein binding to the scaffolding domain [94].
Anyway, how exactly phosphorylation of CAV1 on tyrosine-14 modu-
lates CAV1 function remains to be defined.

With respect to the signaling downstream of phosphorylated CAV1,
JNK activation is a possibility that has been linked to inflammation and
beta cell dysfunction. On the other hand, the ATM-p53-p21 sequence is
another interesting possibility, given that activation of this pathway has
been associated with CAV1-enhanced sensitivity to oxidative stress
induced-cell death in lung fibroblasts [95]. Also, CAV1 phosphorylation
on Y14 is required for hyperoxia-induced apoptosis in pulmonary epi-
thelial cells [96], where hyperoxia induces ROS production and CAV1
phosphorylation, which facilitates formation of the death-induced
signaling complex (DISC) and caspase 8 activation. In our study, the sig-
naling pathways downstream CAV1 that explain the observed pro-
apoptotic effects in the presence of palmitate and ceramide, remain to
be determined. Interesting possibilities include as mentioned, the MAP
kinases JNK and/or p38.

5. Conclusions

In summary, we propose a working model (Fig. 11) in which palmi-
tate enters the cell where it is employed as a precursor for de novo cer-
amide synthesis. The increase in intracellular ceramide levels is
suggested to induce mitochondrial damage, increase ROS generation
and oxidative stress in beta cells, which in turn activate pro-apoptotic
pathways and cell death. Additionally, ROS activate Src family kinases
that phosphorylate CAV1 on tyrosine-14, which favors the activation
of pro-apoptotic pathways and in doing so, sensitizes MIN6 cells to
palmitate-induced cell death. Thus, enhanced sensitivity of pancreatic
beta cells to palmitate caused by the expression of CAV1 may play an
important role in beta cell demise and this could be a factor to consider
in the physiopathology of beta pancreatic cells. Moreover, given that
CAV1 is expressed in many different cell types, it is intriguing to specu-
late that the presence of the protein may also sensitize those cells to
palmitate-induced cell death.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbadis.2014.12.021.
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