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In rat cerebrocortical synaptosornes, the addition of 4fl-phorbot dibutyrate (4p-PDBu) and arachidonic acid enhances and decreases, respectively, 
the glutamate release evoked b)' 4-aminopyridine. Pretreatment of synaptosomes with 12-O-tctradecanoylphorbol 13.acetate (TPA) or pre- 
incubation with staurosporine, prevent the stimulator), effect of 4,/LPDBu. but are without effect on the inhibitory action of arachidonic acid. 
Moreover. methyl arachidonatc, which is not effective as a PKC activator, also strongly inhibits glutamate exocytosis. These results suggest that 

PKC is not involved in the inhibition of  glutamate release by arachldonle acid. 
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I. INTRODUCTION 

Protein kinase C (PKC) is a family of enzymes which 
have been proposed to play an important role in several 
neuronal functions such as transmitter release, long- 
term potentiation and the modulation of ionic channeh 
[1,2]. PKC is activated b:,' phorbol esters, such as 12-0- 
tetradecanoylphorbol 13 acetate (TPA), that mimic the 
physiological activator diacylglycerol [3]. More 
recently, it has been demonstrated that PKC can also 
be activated by cis-fatty acids [4--6]. It is well known that 
the activation of PKC with phorbol esters enhances the 
release of a variety of  neurotransmitters [7-11], includ- 
ing glutamate [12-14]. In cerebrocortical synaptosomes, 
the addition of phorbol esters greatly enhances the 
release of transmitter glutamate induced by depolariza- 
tion with 4-aminopyridine [14]. However, we have 
recently found that arachidonic acid inhibits the 4AP- 
evoked release of glutamate [15,16]. The present report 
describes experiments conducted to determine whether 
the inhibition of glutamate exocytosis by arachidonie 
acid is mediated by PCK activation. The results indicate 
a PCK-independent inhibition of glutamate release by 
araehidonie acid. 

Abbreviations: 4AP. 4-aminopyridine; 4,8-PDBa, 4fl-phorbol diba- 
t),rate; [Ca-'+], cytosolic frec Ca 2" concentration; TE$. 2-([2-hydroxy- 
l,l-bis(hydroxymethyl)-ethyl]-amino)ethane sulphonat¢; TPA, 12-O- 
tetradeeanoylphorbol 13-acetate. 

Correspondence address: 2. S~nchez-Ptleto, Deparlamento de 
Bioqulmiea, Facultad de Veterinaria, Universidad Complutense, 
Madrid 28040, Spain. Fax: (34) (1) 394 31S83, 

2. MATERIALS AND METHODS 
2.1. Preparation of s),naptosomes 

Synaptosome5 were prepared from the cerebral cortices of male 
Wistar rats [17]. Synaptosomes (1 mg pellets) were resuspended into 
1.5 ml of incubation medium (122 mM NaCI. 3.1 mM KCI. 0.4 mM 
KH2PO4. 5 mM NaHCO~. 1.2 mM MeSOn, 10 mM glucose and 20 
mM TES buffer, pH 7.4) and incubated for 1 h at 37°C in the pre~enee 
of 16/JM bovine serum albumin (BSA). essentially fatty acid free 
(Sigma). to prevent the effects of free fatty acids relea.~d from ~ynap- 
tosomes during the incubation [15]. 

2.2. Glutamate release 
Glutamate release was determined as previously deserilx~l [18.19]. 

After pre-incubation for I h in the presence of BSA, the synaptosom~ 
were pelleted and re~usl~nded in fresh incubation medium without 
albumin. An aliquot (I ml) was transferred to a stirred cuvette contain- 
ing I mM NADP. 50 U of glutamate dehydrogenas¢, and 1.33 mM 
CaCI,, or 200 nM free [Ca 2"] (50 ,aM EGTA and 38 tiM CaCl_, [20]). 
The fluorescence was measured using a Perkin Elmer model LS.50 
luminescence spectrometer. 

2.3. TPA preincubation 
Synaptosomes were exposed to I /.tM TPA for 30 rain and the 

incubation stopped by placing the tub¢~ on ice. Sample5 were washed 
by centrifugation at 17,000 × g for 10 rain. After pre-ineabation for 
30 rain in the presence of BSA, the synaptosomc'~ were pelleted and 
resuspended in fresh incubation medium without albumin and as~tyed 
for glutamate release. 

2.4. Materials 
Ficoll was from Pharmacia (Upp~ala. Sweden). 4fl-PDBu. TPA, 

glutamate dchydrogena~, HADP, araehidoai¢ acid and methyl ara- 
ehidonate were from Sigma (St. Louis, MO, USA). Arachidonic acid 
was stored under nitrogen atmosphere at -70°C as a 15 mM stock 
sus~nsion in water and occasionally in dimcthyl sulfoxide, Methyl 
arachidonate was prepared in dimethyl sulfoxide. 

3. RESULTS AND DISCUSSION 

The addition of low concentrations of arachidonic 
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Fig. 1. TPA-pre-incttbation prevents the 4fl-PDBu-indueed enhance- 
ment of glutamate release but not the inhibitory action ofarachidonic 
acid. Synaptosomes were exposed to 1 pM PMA for 30 rain as detailed 
in Material~ and Metbod,~. Control ~ynaptosomes were treated identi- 
cally in the absence of TPA. Glutamate release in control (A and C) 
and TPA.pre-incubated synaptosomes (B and D) was measured in the 

presence of 1.33 mM CaCI,. 
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acid to rat cerebrocortieal synaptosomes strongly in- 
hibited the release of glutamate evoked by depolariza- 
tion with a maximal concentration of 4-aminopyridine 
(Fig. IA), while the addition of the phorbol ester, 4fl- 
PDBu, greatly enhanced the release of transmitter glu- 
tamate evoked by a submaximai concentration of  4AP 
(Fig. IC). In order to know whether inhibition of  glu- 
tamate exoc),tosis by arachidonic acid was mediated by 
PKC activation we pre-i~cubated the synaptosomes 
with l /zM TPA for 30 min. The treatment of synap- 
tosomes with high concentrations of TPA has been 
shown to down-regulate the PKC activity [11,13]. After 
30 rain exposure to 1 ,aM TPA followed by washing and 
resuspension, synaptosomes responded normally in 
terms of glutamate release to 50 ,aM 4AP but did not 
respond to 1 pM 4fl-PDBu added 1 min prior to 4AP 
(Fig. 1D). In agreement with these results it has been 
shown that pretreatment of synaptosomes with TPA 
does not alter the K~'-evoked noradrenaline release, but 
the ability of  TPA to enhance the evoked release is lost 
[11]. In contrast to 4fl-PDBu experiments, the ability of 
arachidonic acid to reduce glutamate exocytosis was not 
altered by pretreatment with TPA (Fig. I B). 

Cerebral cortical synaptosomes contain the ~z, fl and 
7 subspecies of PKC [6]. After the treatment of  synap- 
tosomes from cerebrum with TPA, the rate of depletion 
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Fig. 2. Staurosporlne prevents the 4fl-PDBu-induced enhancement of  
glutamate release but not the inhibitory action of  arachidonic acid. 
Synaptosomes were pre-incubated in the absence (A and C) and pres- 
ence (B a,ad D) of I / tM staurosporine for 30 rain and the glutamate 

release measured in the presence of  1.3.3 rnM CaCl2. 

of ~ and fl subspecies has been shown to be very rapid, 
while some activity of the 7 subspecies is retained [11]. 
It could be argued, therefore, that the remaining activity 
of PKC in TPA-treated synaptosomes might be respon- 
sible for the inhibition of arachidonic acid on glutamate 
release. An alternative strategy in establishing whether 
a given effect is mediated by PKC is to use protein 
kinase inhibitors. Unfortunately, none of the inhibitors 
is conapletely specific for PKC, as they all inhibit Ca 2*- 
ealmodulin protein kinase or cyclic nucleotide kinase to 
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Fig. 3. Methyl araehidonate also inhibits glutamate release. Glutamate 
release was estimated in the presence of 1.33 mM CaCI,. When indi. 
cared, arachidonic acid (AA) and methyl arachidonate (MAA) were 

added 1 rain prior to depolarization with 1 mM 4AP. 
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some degree [2! ,221. Keeping this in mind, Fig. 2 shows 
that staurosporine prevents the phorbol esters-induced 
enhancement of glutamate release but, again, the inhibi- 
tory action by arachidonic acid is present. It is well 
established that protein kinase C activation is specific 
to the &-form of free fatty acids [6]. However, gluta- 
mate exocytosis was strongly inhibited not only by ara- 
chidonic acid, but also by methyl arachidonatc (Fig. 31, 
which has been shown not to be effective as a protein 
kinase C activator [4]. In our experiments the ability of 
methyl arachidonate to inhibit glutamate exocytosis 
was not due to the disruption of synaptic plasma mem- 
branes, since methyl arachidonate did not modify the 
Ca”-independent release of cytoplasmic glutamate 
(data not shown). 

We have recently reported that the presynaptic in- 
hibition by arachidonic acid of glutamate exocytosis 
seems to be mediated by the modulation of K+-channels 
that control the duration of the action potentials in- 
duced by 4-aminopyridine, causing a reduced depolari- 
zation and Ca”-entry, and thereby resulting in a re- 
duced transmitter release [!6]. In the present study, we 
present data suggesting that the inhibitory effect by 
fatty acids in glutamate release is independent of PKC- 
activation. An alternative explanation for the inhibition 
of glutamate release in cerebrocortical synaptosomes is 
by a direct action of arachidonic acid or its oxygenated 
metabolites on presynaptic K+-channels, as has been 
demonstrated for a number of channel types in a variety 
of preparations [23-X]. However, the demonstration of 
such a mechanism in cortical nerve terminals remains 
to be established. 
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