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A geometric construction of iterative functions of order three to
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Abstract

In this paper we consider a geometric construction of iteration functions of order three to develop cubically convergent iterative
methods for solving nonlinear equations. This construction can be applied to any iteration function of order two to develop an
iteration function of order three. Some examples are given of deriving several third-order iteration methods, and several numerical
results follow to illustrate the performance of the derived methods.
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1. Introduction

One of the most important problems in numerical analysis is that of solving nonlinear equations. In this paper, we
consider iterative methods to find a simple root α, i.e., f (α) = 0 and f ′(α) 6= 0, of a nonlinear equation f (x) = 0
that uses f and f ′ but not the higher derivatives of f . The case of multiple roots will not be considered.

Newton’s method for the calculation of α is probably the most widely used iterative method, defined by

xn+1 = xn −
f (xn)

f ′(xn)
. (1)

It is well known [1] that this method is quadratically convergent.
In recent years, numerous third-order variants of Newton’s method that do not require the computation of second

derivatives have been proposed and analyzed for solving nonlinear equations; see [2–9] and the references therein. It
is observed that most of these variants are constructed based on considering appropriate quadrature formulas for the
computation of the integral involved. It has been shown that these methods are efficient in their performance, and can
compete with Newton’s method.

In this paper, we are also concerned with developing iterative methods with at least cubic convergence that do not
require the computation of second derivatives. Unlike the approaches which were used in deriving existing methods,
our approach is based on a simple geometric construction which will be described in detail in the following section,
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and can use any second-order iterative method in deriving a third-order method. Several examples and a numerical
experiment result are given to illustrate how our result is employed as a means of deriving cubically convergent
methods, and to demonstrate the performance of the derived methods, respectively.

2. Main result

In this section, we construct iteration functions of order three from the given iteration functions of order two based
on a geometric observation. In the sequel, whenever we mention that an iteration function φ is of order p, it means
that the corresponding iterative method defined by

xn+1 = φ(xn), n = 0, 1, 2, . . . (2)

is of convergence order p, that is, the error |α − xn+1| is proportional to |α − xn|
p as n → ∞. It is well known [7]

that if φ satisfies

φ(α) = α; φ( j)(α) = 0, j = 1, 2, . . . , p − 1; φ(p)(α) 6= 0, (3)

and

M(ε) := max
t∈Iε

|φ′(t)| < 1, (4)

where Iε = {x ∈ R : |x − α| ≤ ε}, then the fixed point iteration (2) converges to α for any x0 ∈ Iε , and φ is of order
p. We refer the reader to [8] for further details about the order of an iteration function. For notational convenience,
we indicate that φ is an iteration function whose order is p by writing φ ∈ Ip.

Our proposed scheme is constructed geometrically as follows. Let x be a guess for α and let φ be an iteration
function with φ ∈ I2. We consider the function φ̄ satisfying φ(x)+φ̄(x)

2 = x , that is, φ̄(x) = 2x − φ(x). Notice that
x is the point which bisects that segment which lies between [φ(x), 0] and [φ̄(x), 0]. As the next guess for α, we
consider the intersection ψ(x) with the x-axis of the line through (φ̄(x), f [φ̄(x)]) which is parallel to the tangent line
at (x, f (x)). This ψ(x) can be written as follows.

ψ(x) = φ̄(x)−
f [φ̄(x)]

f ′(x)
.

We now prove that the iteration function ψ constructed in this way is of order three.

Theorem 2.1. Let α ∈ J be a simple zero of sufficiently differentiable function f : J → R for an open interval J , i.e.,
f (α) = 0 and f ′(α) 6= 0, and φ be an iteration function with φ ∈ I2, such that φ(3) is continuous in a neighborhood
of α. Let φ̄ be the function satisfying φ(x)+φ̄(x)

2 = x and let

ψ(x) = φ̄(x)−
f [φ̄(x)]

f ′(x)
. (5)

Then ψ ∈ I3.

Proof. We will show that ψ(α) = α,ψ ′(α) = ψ ′′(α) = 0. Observe that φ̄(α) = α, φ̄′(α) = 2; φ̄( j)(α) =

−φ( j)(α), j ≥ 2. It is easy to verify that ψ(α) = α,ψ ′(α) = 0. Rewrite the definition of ψ(x) as

f ′(x)ψ(x) = f ′(x)φ̄(x)− f [φ̄(x)]. (6)

Let l be any integer. Differentiating (6) l times with respect to x yields

l∑
j=0

C[l, j] f (l− j+1)(x)ψ ( j)(x) =

l∑
j=0

C[l, j] f (l− j+1)(x)φ̄( j)(x)−
dl f [φ̄(x)]

dx l , (7)

where C[l, j] is a binomial coefficient. Set x = α and l = 2 in (7). An elementary calculation shows that

f ′(α)ψ ′′(α) = 4 f ′′(α)+ f ′(α)φ̄′′(α)−
d2 f [φ̄(x)]

dx l

∣∣∣∣
x=α

,
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and

d2 f [φ̄(x)]
dx l

∣∣∣∣
x=α

= 4 f ′′(α)+ f ′(α)φ̄′′(α).

Hence

f ′(α)ψ ′′(α) = 0.

Since f ′(α) 6= 0, we conclude that ψ ′′(α) = 0. �

An elementary computation for ψ (3)(α) yields

ψ (3)(α) =
3 f ′′(α)φ′′(α)− 2 f (3)(α)

f ′(α)
, (8)

and, in general, ψ (3)(α) 6= 0. So, in most cases the iteration function defined by (5) is of order three.

3. Examples and numerical results

It should be noted that the result of Theorem 2.1 is independent of the structure of the iteration function of order
two involved, so any iteration function of order two gives rise to an iteration function of order three. In this section
several iteration functions of order two are considered to illustrate how Theorem 2.1 can be employed as a means of
deriving cubically convergent methods. Some of the obtained methods are then compared with some of the existing
third-order methods.

Example 3.1. Consider Newton’s iteration function defined by φ(x) = x − f (x)/ f ′(x). In this case, φ̄(x) =

x + f (x)/ f ′(x). By Theorem 2.1 the iteration function ψ defined by

ψ(x) = x −
f (x + f (x)/ f ′(x))− f (x)

f ′(x)

is of order three. Therefore we obtain the iterative method with third-order convergence given by

xn+1 = xn −
f (xn + f (xn)/ f ′(xn))− f (xn)

f ′(xn)
. (9)

We remark that this method has also been derived by Kou et al. [9] by using Newton’s theorem for the function f on
a new interval of integration.

Example 3.2. Let φ(x) = x − f (x)/( f (x)+ f ′(x)). This iteration function was derived in [10] and it was proved that
it is of order two. Theorem 2.1 with φ̄(x) = x + f (x)/( f (x)+ f ′(x)) implies that the iteration function ψ defined by

ψ(x) = x +
f (x)

f (x)+ f ′(x)
−

f (x + f (x)/( f (x)+ f ′(x)))
f ′(x)

is of order three. Hence we obtain the new iterative method with third-order convergence given by

xn+1 = zn −
f (zn)

f ′(xn)
, (10)

where zn = xn +
f (xn)

f (xn)+ f ′(xn)
.

Example 3.3. Let φ(x) = x − f (x) f ′(x)/( f 2(x)+ f ′2(x)). This is the iteration function due to Mamta et al. which
converges quadratically [11]. In this case, φ̄(x) = x + f (x) f ′(x)/( f 2(x) + f ′2(x)). By Theorem 2.1 the iteration
function ψ defined by

ψ(x) = x +
f (x) f ′(x)

f 2(x)+ f ′2(x)
−

f (x + f (x) f ′(x)/( f 2(x)+ f ′2(x)))
f ′(x)
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Table 1
Comparison of various third-order iterative methods and Newton’s method

f (x) IT NFE
NM WF MM HM KM CM NM WF MM HM KM CM

f1, x0 = 0.8 8 5 5 5 6 13 16 15 15 15 18 39
f2, x0 = 2.3 8 5 6 5 6 6 16 15 18 15 18 18
f3, x0 = 1.5 7 5 5 5 6 5 14 15 15 15 18 15
f4, x0 = 1.7 7 5 5 5 5 5 14 15 15 15 15 15
f5, x0 = −2 10 7 7 7 6 6 20 21 21 21 18 18
f6, x0 = 4.7 11 10 7 6 8 6 22 30 21 18 24 18
f7, x0 = 3 105 66 67 52 76 76 210 198 201 156 228 228

is of order three. Thus we obtain the new iterative method with third-order convergence given by

xn+1 = zn −
f (zn)

f ′(xn)
, (11)

where zn = xn +
f (xn) f ′(xn)

f 2(xn)+ f ′2(xn)
.

It should be pointed out that per iteration the methods (9)–(11) require two function and one first-derivative
evaluations, but they converge cubically. In a similar fashion to that in the above examples, one can continue to
derive iterative methods with cubic convergence by making use of existing second-order methods as long as they are
provided.

Finally, we present some numerical test results for various cubically convergent iterative schemes and the Newton
method in Table 1. Compared were the Newton method (NM), the method of Weerakoon and Fernando (WF) defined
by

xn+1 = xn −
2 f (xn)

f ′(xn)+ f ′(xn − f (xn)/ f ′(xn))
, (12)

the mid-point rule (MM) defined by

xn+1 = xn −
f (xn)

f ′(xn − f (xn)/(2 f ′(xn)))
, (13)

the method of Homeier (HM) defined by

xn+1 = xn −
f (xn)

2

(
1

f ′(xn)
+

1
f ′(xn − f (xn)/ f ′(xn))

)
, (14)

the methods of (9) (KM), and (10) (CM) newly obtained in the present contribution. We note that these methods do
not require the computation of second derivatives to carry out iterations.

All computations were done using the MAPLE using 128-digit floating point arithmetic (Digits := 128). We
accept an approximate solution rather than the exact root, depending on the precision (ε) of the computer. We use the
following stopping criteria for computer programs: (i) |xn+1 − xn| < ε, (ii) | f (xn+1)| < ε, and so, when the stopping
criterion is satisfied, xn+1 is taken as the exact root α computed. We used ε = 10−32 and the same test functions as in
Weerakoon and Fernando [2], and display the approximate zeros x∗ found up to the 28th decimal places.

f1(x) = x3
+ 4x2

− 10, x∗ = 1.3652300134140968457608068290,
f2(x) = sin2 x − x2

+ 1, x∗ = 1.4044916482153412260350868178,
f3(x) = x2

− ex
− 3x + 2, x∗ = 0.25753028543986076045536730494,

f4(x) = cos x − x, x∗ = 0.73908513321516064165531208767,

f5(x) = xex2
− sin2 x + 3 cos x + 5, x∗ = −1.2076478271309189270094167584,

f6(x) = x2 sin2(x)+ ex2 cos x sin x
− 28, x∗ = 4.6221041635528383439278532516,

f7(x) = (x3
+ 4x2

− 10)2, x∗ = 1.3652300134140968457608068290.
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Displayed are the number of iterations to approximate the zero (IT), and the number of function evaluations (NFE)
counted as the sum of the number of evaluations of the function itself plus the number of evaluations of the derivative.
The results presented in Table 1 show that for most of the functions we tested, the methods introduced in the present
presentation demonstrate at least equal performance compared to the other methods of order three in consideration,
and converge more rapidly than Newton’s method. It is clear that the function f7 has a repeated zero, and in this
case, it is noteworthy that all of the third-order methods under consideration also show linear convergence just as in
Newton’s method, which is well known.

4. Conclusion

In this work we considered a geometric construction of iteration functions of order three to develop cubically
convergent iterative methods for solving nonlinear equations where in most cases the derived methods do not require
the computation of second derivatives. The presented methods are compared in their performance with various
cubically convergent iteration methods, and it is observed that they have at least equal performance. The result
presented in this work can be continuously applied to developing the other cubically convergent iterative schemes.
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