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Abstract

Let S be a finite set of points in the plane and letT (S) be the set of intersection points between pairs of lines passing thr
any two points inS. We characterize all configurations of pointsS such that iteration of the above operation produces a dens
We also discuss partial results on the characterization of those finite point-sets with rational coordinates that generateQ2

through iteration ofT .
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let S be a set of points in the plane and letL = {Li}i∈I be the set of lines between pairs of points inS. Consider
the following operation onS:

T (S) =
⋃
i �=j

Li ∩ Lj ⊆ R2. (1.1)

In other words,T (S) is the set of intersection points between pairs of distinct lines inL. If S consists ofn collinear
points (or no points at all), then the union above is empty; so to keep the notation consistent, we setT (S) = ∅ for
these cases.

As a simple example of the operationT , let S consist of four black points that are the vertices of a trapezoid
Fig. 1. Then,T (S) consists of the original four points along with two additional ones shown in gray. It should be
that for a set of points not all collinear, we haveS ⊆ T (S). Moreover,T (S) is finite for finite setsS. We are intereste
here in the iterations,T i (S), and specifically, the limiting behavior of such operations on arbitrary finite setsS. The
study of such phenomenon naturally leads to the notion of the order of a setS, which we define below. As a matter
convention, we setT 0(S) = S.
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Fig. 1.T (S) for a set of pointsS that form a trapezoid.

Definition 1.1. Let S be a set of points inR2. Theorder of S is the smallest positive integern such thatT n(S) =
T n−1(S). If there is no suchn, then the order ofS is defined to be∞.

For example, the order for a set of points forming the vertices of a square is 2. If the order of a setS is 1, then we
call S fixedunderT . A setS, therefore, has finite order if and only ifT n(S) is fixed for some nonnegative integern.

Problem 1.2. Describe the finite point-sets that have finite order.

Before discussing the answer to this problem (in Section 2), we describe a nontrivial infinite point-set that h
order. LetS be the set of rational points on the unit circle,x2 + y2 = 1. For a givenP ∈ Q2, choose two pointsA and
B in S such thatPA andPB are not tangent to the unit circle. Then, ifC andD are the points of intersection ofPA

andPB (respectively) with the circle, it turns out [7, p. 249] thatC andD are both rational. It follows thatP ∈ T (S)

for everyP ∈ Q2, and thus

T 2(S) = T (Q2) = Q2 = T (S).

Excluding the sets of finite order, it follows that iteration ofT produces a strictly increasing chain of sets of po
in the plane. In light of this observation, a natural question is whether we arrive at a dense set of points b
procedure. In other words, is

⋃
i�0T i (S) dense inR2? A more difficult but related question is whether we get al

Q2 whenS consists of only rational points. We address both of these questions with a complete answer to th
Section 3 and some partial results for the second in Section 4.

Theorem 1.3. LetS be a finite set of points in the plane. Then,S has infinite order if and only if
⋃

i�0T i (S) is dense

in R2.

The answer to Problem 1.2 found in Corollary 2.3 below, therefore, gives a complete characterization o
iterated line intersections are dense.

Corollary 1.4. LetS be a finite set of points in the plane. Then,
⋃

i�0T i (S) is dense inR2 if and only ifS is not one
of the following sets:

(1) The empty set.
(2) A set of collinear points.
(3) A set of collinear points with one additional noncollinear point.
(4) The vertices of a parallelogram.
(5) The vertices of a parallelogram and the intersection of its two diagonals.

In the rational case, we conjecture a more exact result.
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Conjecture 1.5. LetS be a finite set of points in the plane with rational coordinates. Then,S has infinite order if and
only if

⋃
i�0T i (S) = Q2.

As a step in the direction of this conjecture, we offer the following; its proof can be found in Section 4.

Theorem 1.6. Let R,P,Q,T ∈ S be rational points in the plane withRQ andPT parallel and suppose thatRP is
not parallel toQT . Then,

⋃
i�0T i (S) = Q2.

Though we were not motivated by any other particular work, we should remark that a similar question po
Fejes-Toth (with circles replacing lines) was addressed by Bezdek and Pach in [3], and related results ca
found in the papers [2,6]. Additionally, Theorem 1.3 has also been discovered recently (independently) by Ism
and Radoicic [5].

2. Finite fixed sets

We begin by characterizing sets of finite order. Although one may deduce the main result of this sectio
Lemmas 3.1 and 3.2 in Section 3, the methods employed here are less cumbersome and might be of ind
interest. We will need the following result from elementary geometry.

Theorem 2.1 (The Sylvester–Gallai theorem). For every set ofn noncollinear points in the plane, there exists a l
that contains exactly two of the points.

Although this fact seems intuitively obvious, its proof eluded even Sylvester, and it was only solved (in pu
form) some 50 years after being posed by him [4]. We refer the reader to [1] for more details. We are ready to a
Problem 1.2.

Theorem 2.2. A finite setS fixed underT must be one of the following configurations:

(1) The empty set.
(2) A set of collinear points with one additional noncollinear point.
(3) The vertices of a parallelogram and the intersection of its two diagonals.

Proof. Let S be a set ofn noncollinear points in the plane that is fixed byT . Using Theorem 2.1, there exists a li
intersectingS in exactly two pointsP andQ. By assumption, there is some other pointX not on this line, and we ca
chooseX so that its altitude fromPQ is largest. If all other points lie on the lineXP or if all of them lie onXQ, then
we are in configuration (2) above. The remaining possibilities break up into two cases.

Case1: There is a pointY ∈ S not onXP and not onXQ.
We first claim thatY must lie on the line throughX that is parallel toPQ. Indeed, any other position forY would

give rise to an intersection betweenXY andPQ that is notP or Q, contrary to our use of Theorem 2.1 and o

Fig. 2. Case 1 in the proof of Theorem 2.2.
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Fig. 3. Case 2 in the proof of Theorem 2.2.

assumption thatT (S) = S. Relabeling if necessary, Fig. 2 depicts the situation. SinceS is fixed, the intersection poin
Z, of XQ andPY is in S. It follows thatXP andYQ must be parallel (otherwise, ifW is the intersection point o
XP andYQ, thenZW would intersectPQ). Finally, it is easy to see that there can be no other points inS by our
choice ofP andQ.

Case2: Every point inS lies on one of the linesXP or XQ.
If S is not a configuration of type (2), then there are pointsR,T ∈ S such thatR is on the lineXP , T is on the line

XQ, andR,T are notX,P , or Q. By the assumption onX and the linePQ, only two configurations forR andT

are possible; these are depicted in Fig. 3. In both cases, two iterations ofT give rise to a point inS on the linePQ, a
contradiction. Therefore, no fixed point-sets other than those of configuration (2) may take this form. This co
the proof. �
Corollary 2.3. The finite point-sets with finite order are:

(1) The empty set.
(2) A set of collinear points.
(3) A set of collinear points with one additional noncollinear point.
(4) The vertices of a parallelogram.
(5) The vertices of a parallelogram and the intersection of its two diagonals.

Proof. Let S be a finite set inR2 with ordern. Applying Theorem 2.2, it follows thatR = T n−1(S) must be one
of three types. WhenR is empty, thenS is either itself empty or a set of collinear points. Similarly, a setR of
collinear points with one additional point can only be obtained from a setS that is the same asR. Finally, whenR

forms a parallelogram with the intersection of its diagonals, the setS must either beR or R without its diagona
intersection. �
3. The density theorem

Before proving Theorem 1.3, we record the following technical lemmas, the first of which provides a usefu
acterization of sets of infinite order. For ease of presentation, we say that a point isstrictly containedin a setK if it is
located in its interior.

Lemma 3.1. Let S be a finite set of infinite order. Then, there existsn ∈ N such thatT n(S) contains a subset of4
points in which3 of the points are noncollinear and the fourth point is strictly contained in the triangle determ
by these3 points.



110 C.J. Hillar, D.L. Rhea / Computational Geometry 33 (2006) 106–114

d

n of
n
n

es
s the
of of the

t

ngle
e

ed

ea of
t,

e

Fig. 4. Four vertices on the convex hull ofS.

Proof. We consider the number of verticesv on the convex hullH of S. Whenv = 2, the setS cannot have infinite
order. So suppose thatv = 3. If there is a point ofS strictly contained insideH , then we are done. Otherwise, sinceS

has infinite order, there must be two points ofS on different edges ofH . An iteration ofT then produces our desire
point.

Assume now thatH has exactly four vertices. If these vertices do not form a parallelogram, then one iteratioT
gives us what we want (see Fig. 4). Otherwise, there is a point inS which is not a vertex ofH and not the intersectio
of the diagonals of the quadrilateral determined byH . Again in this case, one iteration ofT (giving us the intersectio
of the two diagonals ofH ) produces the desired result.

Finally, if v > 4, then we proceed as follows. Pick two adjacent verticesA andB. There must be two other vertic
C andD such that the edgesAB andCD are not parallel (H has at least 5 vertices and is convex). This reduce
problem to the case of 4 vertices not forming a parallelogram (encountered above) and completes the pro
lemma. �

Our next result allows one to produce a convergent, nested sequence of triangles.

Lemma 3.2. Let A, B, andC be noncollinear points, and letP be a point strictly inside�ABC. Then, there exis
triangles�AnBnCn (n = 1,2, . . .) strictly containingP such thatlimn→∞ An = limn→∞ Bn = limn→∞ Cn = P , and
for eachn,

An,Bn,Cn ∈
∞⋃

j=0

T (j)
({A,B,C,P }).

Proof. Given a triangle�ABC and a pointP strictly contained in it, we may construct the vertices of another tria
containing this point by intersecting the linesAP , BP , andCP with the edges of�ABC. Iterating this procedur
produces a nested sequence of triangles strictly containingP with vertices in

⋃
j�0T (j)({A,B,C,P }) (see Fig. 5).

This sequence contains two types of triangles; we label the odd iterates�DnEnFn, while even iterates are denot
by �AnBnCn. Here, theAn (resp.Bn, Cn) are labeled so that they are the ones on the lineAP (resp.BP , CP ). We
claim the vertices of the triangles�AnBnCn all converge toP .

To verify this assertion, it suffices to show that|A1P | < |AA1|, |B1P | < |BB1|, and|C1P | < |CC1|. Without loss
of generality, we prove that|A1P | < |AA1|. Reducing further, we observe that it is enough to show that the ar
�PD1F1 is less than the area of�AD1F1 (drop altitudes toD1F1 from A, P and compare similar triangles). Nex
draw the lineJK that is parallel toD1F1 and passes throughP , and label the angles formed as in Fig. 6. SinceF1P

andAJ (resp.D1P andAK) intersect atB (resp.C), it follows thatα < β andγ < δ. Therefore, when we form th
triangle�QD1F1 that is congruent to�PD1F1, it must lie entirely inside�AD1F1. This finishes the proof. �
Lemma 3.3. LetA, B, C be noncollinear points in the plane. IfK is a dense set of points in�ABC, thenT (K) is a
dense set of points in the entire plane.
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Fig. 5. Nested triangle iteration.

Fig. 6. Iterations decrease triangle areas.

Proof. Let P be a point in the plane, and letQ1,Q2 andR1,R2 be points strictly inside�ABC such thatQ1Q2 and
R1R2 intersect atP . SinceK is dense in�ABC, there are a sequence of pointsQ1n,Q2n ∈ K andR1n,R2n ∈ K that
converge toQ1,Q2 andR1,R2, respectively. Since the intersection of two lines formed by four points is contin
in the four points (the intersection is a rational function in the coordinates of the four points), it follows th
intersections ofQ1nQ2n andR1nR2n (which are inT (K)) converge toP . This completes the proof.�

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The if-direction (⇐) in the theorem statement is immediate. Therefore, letS be a finite set
of infinite order. Using Lemma 3.1, there existsn ∈ N such thatT n(S) contains a triangle of vertices and a fou
point strictly contained in the triangle determined by these 3 vertices. We claim that iteration ofT on these 4 point
produces a dense set of points in the triangle. The theorem then follows from Lemma 3.3.

Let A, B, andC be the vertices of the triangle strictly containingP . Suppose thatK = ⋃
j�0T (j)(A,B,C,P )

does not contain a dense set of points in�ABC; we will derive a contradiction. Using Lemma 3.2, we can produ
sequence of triangles,�AiBiCi , with vertices inK such these vertices converge toP . Let h be so large that the circl
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Fig. 7. Obtaining a contradiction.

centered atP with radius equal to twice the largest side of�AhBhCh is strictly contained in�ABC. SinceK is not
dense in�ABC, it follows thatK cannot be dense in�AhBhCh (again using Lemma 3.3).

Let K be the closure ofK and setW = K ∩�AhBhCh. Also, let Int(�AhBhCh) denote the interior of�AhBhCh.
SinceK is not dense in the triangle�AhBhCh, the (nonempty) open set Int(�AhBhCh) \ W contains an open ba
centered at some pointX inside�AhBhCh. Consider the set of all closed balls centered atX that do not intersectK ,
and letr > 0 denote the supremum over all radii of such balls. The closed ballB(X, r) of radiusr centered atX must
be strictly contained in�ABC since its interior cannot containAh, Bh, or Ch (they are inK) and because of how w
choseh.

By construction ofB(X, r), there exists a pointY ∈ K intersecting the boundary ofB(X, r). Consider the line
AY , CY , andBY , and notice that they cannot all be tangent to the ballB(X, r) (there is only one tangent line throug
a point on a circle). Therefore, at least one of these lines throughY , sayAY , must intersect the interior ofB(X, r).
Let Z be the intersection of the lineAY with the boundary ofB(X, r) (the pointZ need not be inK). The situation
is depicted in Fig. 7. The dashed line throughY is the line tangent to the boundary ofB(X, r) at Y , while the dashed
line throughZ is parallel to it.

To continue, we observe the following straightforward fact that was discussed in the proof of Lemma
U,V,Q,R ∈ K determine two nonparallel linesUV andQR, then the intersection point ofUV andQR is in K .
With this observation in mind, we may use Lemma 3.2 to obtain vertices of triangles�A′

iB
′
iC

′
i in K that containY

and that also converge toY . None of the verticesA′
i , B ′

i , or C′
i is in the interior ofB(X, r) by our choice ofr .

Finally, we claim that for large enoughn, the segmentYZ must intersect a side of�A′
nB

′
nC

′
n in the interior of

B(X, r), a contradiction to our assumption onr . To see this, notice that for a largen, at least one of the vertice
of �A′

nB
′
nC

′
n must lie between the two parallel lines (depicted in Fig. 7) throughY,Z, while none of them will

lie beneath the line throughZ. It follows that an edge of�A′
nB

′
nC

′
n intersects the lineAY inside B(X, r). This

contradiction completes the proof.�
4. The rational case

We now turn our attention to the case of rational points as in the statement of Conjecture 1.5. We note the f
simple observation.

Lemma 4.1. Suppose thatS = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)} or that S = {(0,0), (0,1), (0,2), (1,0),

(1,−1), (1,−2)}. Then,
⋃

i�0T i (S) = Q2.

Proof. Iteration ofT on both sets above gives all ofZ2, and it is easily verified thatZ2 generates all ofQ2. �
We next restrict our attention to a particular case involving a pair of parallel lines. We need the following fa

plane geometry.
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Lemma 4.2. Let R,P,Q,T be points in the plane withRQ andPT parallel and suppose thatRP is not parallel to
QT . LetY be the intersection ofRT andPQ and setX to be the intersection ofRP andQT . Then,XY intersects
RQ andPT in their midpointsU andV , respectively.

Proof. Since�RUY and �T V Y are similar triangles, we haveRU/T V = UY/V Y . The same reasoning give
us thatUY/V Y = UQ/V P . Examining the large triangles�XV T and�XPV , it is also clear thatUQ/T V =
XU/XV = RU/V P . Therefore,

UQ = T V · RU

V P
= T V 2 · UQ

V P 2
,

so thatT V = V P . A similar computation shows thatRU = UQ. �
We finally arrive at our main result in the rational case. It will be a consequence of Lemma 4.2, and it is the

we come to proving Conjecture 1.5.

Proof of Theorem 1.6. Since a (rational) translation does not change the problem, we may assume thatQ = (0,0).
Moreover, it is easy to see that ifM ∈ GL2(Q), then

M · S =
{
M

[
a

b

]
: (a, b) ∈ S

}

gives rise toQ2 through iteration ofT if and only if S does. Suppose thatR = (a, b), P = (c, d), andT = (u, v) with
a, b, c, d,u, v ∈ Q. SinceRQ andPT do not define the same line, it follows thatbu − av �= 0. Also, sinceRQ and
PT are parallel, we havebu − av = bc − ad .

Consider the following matrix:

M = 1

bu − av

[
b −a

−v u

]
.

A straightforward computation givesM · S = {(0,0), (0,1), (1,0), (1, du−cv
bu−av

)}. Moreover, sinceRP is not parallel to

QT , it follows that du−cv
bu−av

�= 1. Next, setr
s

= du−cv
bu−av

in which r, s ∈ Z and gcd(r, s) = 1. Suppose first thatr/s > 0.
By successively applying Lemma 4.2, iteration ofT onM · S produces the points:{(

0,
l1

2k

)
,

(
1,

rl2

s2k

)
: l1, l2, k ∈ N; 0� l1, l2 � 2k

}
.

It follows that if we choosek such that 2k−1 � max{r, s}, we will have{
(0,0),

(
0,

r

k

)
,

(
0,

2r

k

)
, (1,0),

(
1,

r

k

)
,

(
1,

2r

k

)}
⊆ T k(M · S).
2 2 2 2
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Therefore, letting

N =
[

1 0
0 2k

r

]
,

we must have{
(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)

} ⊆ N · T k(M · S).

An application of Lemma 4.1 now concludes the proof of this case.
Finally, if r/s < 0, then the same examination as above reduces the situation toS = {(0,0), (0,1), (0,2), (1,0),

(1,−1), (1,−2)}, also covered by Lemma 4.1.�
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