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Abstract

Let S be a finite set of points in the plane and TtS) be the set of intersection points between pairs of lines passing through
any two points inS. We characterize all configurations of poistsuch that iteration of the above operation produces a dense set.
We also discuss partial results on the characterization of those finite point-sets with rational coordinates that genetzte all of
through iteration of7".
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1. Introduction

Let S be a set of points in the plane and let= {L;};<; be the set of lines between pairs of pointsSinConsider
the following operation or$':

T(S)=|JLinL;cR? (1.1)
i#]
In other words .7 (S) is the set of intersection points between pairs of distinct lings.iti S consists of: collinear
points (or no points at all), then the union above is empty; so to keep the notation consistent,7w#&)set? for
these cases.

As a simple example of the operati@n let S consist of four black points that are the vertices of a trapezoid as in
Fig. 1. Then7 (S) consists of the original four points along with two additional ones shown in gray. It should be clear
that for a set of points not all collinear, we hav& 7 (S). Moreover, 7 (S) is finite for finite setsS. We are interested
here in the iterations] (S), and specifically, the limiting behavior of such operations on arbitrary finiteSsekae
study of such phenomenon naturally leads to the notion of the order ofSawkich we define below. As a matter of
convention, we sef9(S) = S.
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Fig. 1.7 (S) for a set of pointsS that form a trapezoid.

Definition 1.1. Let S be a set of points ifR?. Theorder of S is the smallest positive integarsuch that7”(S) =
7"-1(8). If there is no such, then the order of is defined to bex.

For example, the order for a set of points forming the vertices of a square is 2. If the order ¢fia 4ethen we
call S fixedunder7 . A setS, therefore, has finite order if and only4f (S) is fixed for some nonnegative integer

Problem 1.2. Describe the finite point-sets that have finite order.

Before discussing the answer to this problem (in Section 2), we describe a nontrivial infinite point-set that has finite
order. LetS be the set of rational points on the unit circté, 4 y? = 1. For a givenP € Q?, choose two pointg and
B in S such thatP A and P B are not tangent to the unit circle. Thendfand D are the points of intersection ¢fA
and P B (respectively) with the circle, it turns out [7, p. 249] th@atand D are both rational. It follows tha® € 7 (S)
for every P € Q?, and thus

T2()=T@Q* =Q*>=7(S).

Excluding the sets of finite order, it follows that iteration®fproduces a strictly increasing chain of sets of points
in the plane. In light of this observation, a natural question is whether we arrive at a dense set of points by such a
procedure. In other words, [gi>07i (S) dense inR2? A more difficult but related question is whether we get all of
Q? whens consists of only rational points. We address both of these questions with a complete answer to the first in
Section 3 and some partial results for the second in Section 4.

Theorem 1.3. Let S be a finite set of points in the plane. Th&mas infinite order if and only iU;oTi (S) is dense
in R2.

The answer to Problem 1.2 found in Corollary 2.3 below, therefore, gives a complete characterization of when
iterated line intersections are dense.

Corollary 1.4. Let S be a finite set of points in the plane. Theg,,>07" () is dense irR? if and only if S is not one
of the following sets

(1) The empty set.

(2) A setof collinear points.

(3) A set of collinear points with one additional noncollinear point.

(4) The vertices of a parallelogram.

(5) The vertices of a parallelogram and the intersection of its two diagonals.

In the rational case, we conjecture a more exact result.
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Conjecture 1.5. Let S be a finite set of points in the plane with rational coordinates. Tiemas infinite order if and
only if ;50 7° () = Q2.

As a step in the direction of this conjecture, we offer the following; its proof can be found in Section 4.

Theorem 1.6. LetR, P, Q, T € S be rational points in the plane witR Q and PT parallel and suppose thak P is
not parallel to Q7. Then, J;5, 77 () = Q%

Though we were not motivated by any other particular work, we should remark that a similar question posed by
Fejes-Toth (with circles replacing lines) was addressed by Bezdek and Pach in [3], and related results can also |
found in the papers [2,6]. Additionally, Theorem 1.3 has also been discovered recently (independently) by Ismailesc
and Radoicic [5].

2. Finitefixed sets

We begin by characterizing sets of finite order. Although one may deduce the main result of this section from
Lemmas 3.1 and 3.2 in Section 3, the methods employed here are less cumbersome and might be of independ:
interest. We will need the following result from elementary geometry.

Theorem 2.1 (The Sylvester—Gallai theorenfjor every set ofi noncollinear points in the plane, there exists a line
that contains exactly two of the points.

Although this fact seems intuitively obvious, its proof eluded even Sylvester, and it was only solved (in published
form) some 50 years after being posed by him [4]. We refer the reader to [1] for more details. We are ready to approac
Problem 1.2.

Theorem 2.2. A finite setS fixed underZ must be one of the following configurations

(1) The empty set.
(2) A setof collinear points with one additional noncollinear point.
(3) The vertices of a parallelogram and the intersection of its two diagonals.

Proof. Let S be a set ofi noncollinear points in the plane that is fixed By Using Theorem 2.1, there exists a line
intersectings in exactly two pointsP and Q. By assumption, there is some other pothhot on this line, and we can
chooseX so that its altitude fronP Q is largest. If all other points lie on the linéP or if all of them lie onX Q, then
we are in configuration (2) above. The remaining possibilities break up into two cases.

Casel: There is a point € S not onX P and not onX Q.

We first claim thatr must lie on the line througly that is parallel taP Q. Indeed, any other position fat would
give rise to an intersection betweéf’ and P Q that is notP or Q, contrary to our use of Theorem 2.1 and our

&

Y

P 0

N

Fig. 2. Case 1 in the proof of Theorem 2.2.
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Fig. 3. Case 2 in the proof of Theorem 2.2.

assumption thaf (S) = S. Relabeling if necessary, Fig. 2 depicts the situation. Sknisdixed, the intersection point,
Z,of XQ andPY isin S. It follows thatX P andY Q must be parallel (otherwise, W is the intersection point of
X P andY Q, thenZW would intersectP Q). Finally, it is easy to see that there can be no other poinShy our
choice ofP and Q.
Case2: Every pointinS lies on one of the lineX P or X Q.
If S is not a configuration of type (2), then there are potg” € S such thatR is on the lineX P, T is on the line
XQ, andR, T are notX, P, or Q. By the assumption o and the lineP Q, only two configurations foR and T
are possible; these are depicted in Fig. 3. In both cases, two iteratidhgigé rise to a point ir§ on the lineP Q, a
contradiction. Therefore, no fixed point-sets other than those of configuration (2) may take this form. This completes
the proof. O

Corallary 2.3. The finite point-sets with finite order are

(1) The empty set.

(2) A set of collinear points.

(3) A set of collinear points with one additional noncollinear point.

(4) The vertices of a parallelogram.

(5) The vertices of a parallelogram and the intersection of its two diagonals.

Proof. Let S be a finite set ifR? with ordern. Applying Theorem 2.2, it follows thak = 7"~1(S) must be one
of three types. Wherr is empty, thenS is either itself empty or a set of collinear points. Similarly, a Rebf
collinear points with one additional point can only be obtained from & gbat is the same aR. Finally, whenR
forms a parallelogram with the intersection of its diagonals, theSs®miust either beR or R without its diagonal
intersection. O

3. Thedensity theorem

Before proving Theorem 1.3, we record the following technical lemmas, the first of which provides a useful char-
acterization of sets of infinite order. For ease of presentation, we say that a stifdtlg containedn a setK if it is
located in its interior.

Lemma 3.1. Let S be a finite set of infinite order. Then, there exists N such that7”(S) contains a subset of
points in which3 of the points are noncollinear and the fourth point is strictly contained in the triangle determined
by these3 points.
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Fig. 4. Four vertices on the convex hull §f

Proof. We consider the number of verticeon the convex hulH of S. Whenv = 2, the setS cannot have infinite
order. So suppose that= 3. If there is a point of strictly contained insidéZ, then we are done. Otherwise, singe
has infinite order, there must be two pointsSobn different edges off. An iteration of7 then produces our desired
point.

Assume now thaH has exactly four vertices. If these vertices do not form a parallelogram, then one iterafion of
gives us what we want (see Fig. 4). Otherwise, there is a poitvhich is not a vertex o and not the intersection
of the diagonals of the quadrilateral determineddbyAgain in this case, one iteration @f (giving us the intersection
of the two diagonals off) produces the desired result.

Finally, if v > 4, then we proceed as follows. Pick two adjacent verticesid B. There must be two other vertices
C and D such that the edge$B andC D are not parallel # has at least 5 vertices and is convex). This reduces the
problem to the case of 4 vertices not forming a parallelogram (encountered above) and completes the proof of th
lemma. O

Our next result allows one to produce a convergent, nested sequence of triangles.

Lemma 3.2. Let A, B, and C be noncollinear points, and le® be a point strictly insideAABC. Then, there exist
trianglesAA, B,C, (n=1,2,...) strictly containingP such thalim,,_,c A, =lim, .o B, =lim,_ C, = P,and
for eachn,

o0
An. By Coe| JTY({A. B.C. P}).
j=0

Proof. Given a triangleA A BC and a pointP strictly contained in it, we may construct the vertices of another triangle
containing this point by intersecting the linds?, B P, andC P with the edges oNABC. Iterating this procedure
produces a nested sequence of triangles strictly contaifingth vertices in{J ;-7 ({A, B, C, P}) (see Fig. 5).
This sequence contains two types of triangles; we label the odd itetddg &, F;,, while even iterates are denoted
by AA,B,C,. Here, theA, (resp.B,, C,) are labeled so that they are the ones on the Aie(resp.B P, C P). We
claim the vertices of the trianglesA, B, C,, all converge taP.

To verify this assertion, it suffices to show thdl P| < |AA1|, |B1P| < |BB1|, and|C1P| < |CC1|. Without loss
of generality, we prove thgA; P| < |AA1|. Reducing further, we observe that it is enough to show that the area of
AP D;F; is less than the area @fA D1 F; (drop altitudes taD; F; from A, P and compare similar triangles). Next,
draw the lineJ K that is parallel taD; F1 and passes through, and label the angles formed as in Fig. 6. Sifg®
andAJ (resp.D1P and AK) intersect atB (resp.C), it follows thate < 8 andy < §. Therefore, when we form the
triangle A Q D1 F1 that is congruent taé\ P D1 F1, it must lie entirely insideA A D1 F1. This finishes the proof. O

Lemma 3.3. Let A, B, C be noncollinear points in the plane. & is a dense set of points WABC, then7 (K) is a
dense set of points in the entire plane.
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Fig. 5. Nested triangle iteration.

A

Fig. 6. Iterations decrease triangle areas.

Proof. Let P be a point in the plane, and Iét1, 0> andR1, R2 be points strictly insideé\ A BC such thatQ1 0> and

R1R> intersect atP. SincekK is dense iMMABC, there are a sequence of poills,, 02, € K andRy,, R2, € K that
converge toQ1, Q2 andR1, Ro, respectively. Since the intersection of two lines formed by four points is continuous
in the four points (the intersection is a rational function in the coordinates of the four points), it follows that the
intersections ofD1, @2, and Ry, R2, (which are in7 (K)) converge taP. This completes the proof.O

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The if-direction &) in the theorem statement is immediate. ThereforeS Ibe a finite set
of infinite order. Using Lemma 3.1, there exigt& N such that7"(S) contains a triangle of vertices and a fourth
point strictly contained in the triangle determined by these 3 vertices. We claim that iterationrothese 4 points
produces a dense set of points in the triangle. The theorem then follows from Lemma 3.3.

Let A, B, andC be the vertices of the triangle strictly containifty Suppose thak =(J,;-,7 (A, B, C, P)
does not contain a dense set of point&iA BC; we will derive a contradiction. Using Lemma 3.2, we can produce a
sequence of trianglegy A; B; C;, with vertices inK such these vertices convergeRoLet  be so large that the circle
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A

Fig. 7. Obtaining a contradiction.

centered aP with radius equal to twice the largest side®fi;, B, C}, is strictly contained im ABC. SinceK is not
dense i\ ABC, it follows that K cannot be dense in Ay, B, C;, (again using Lemma 3.3).

Let K be the closure ok and setW = K N AA;, By Cj,. Also, let In(A A, B, Cy,) denote the interior oA A, B, Ch,.
SinceK is not dense in the triangla A, B, Cj,, the (nonempty) open set it A, B, Cy) \ W contains an open ball
centered at some poit inside A A, B, Cj,. Consider the set of all closed balls centered ahat do not interseck’,
and letr > 0 denote the supremum over all radii of such balls. The closed3gall r) of radiusr centered ak must
be strictly contained i\ A BC since its interior cannot contaify,, By, or Cj, (they are inK) and because of how we
choseh.

By construction ofB(X, r), there exists a point € K intersecting the boundary @ (X, r). Consider the lines
AY, CY,andBY, and notice that they cannot all be tangent to the BaX, r) (there is only one tangent line through
a point on a circle). Therefore, at least one of these lines thréygtay AY, must intersect the interior & (X, r).
Let Z be the intersection of the linéY with the boundary oB(X, r) (the pointZ need not be irK). The situation
is depicted in Fig. 7. The dashed line througlis the line tangent to the boundary Bt X, r) at Y, while the dashed
line throughZ is parallel to it.

To continue, we observe the following straightforward fact that was discussed in the proof of Lemma 3.3: If
U,V,Q, R e K determine two nonparallel lingdgV and QR, then the intersection point &V and QR is in K.
With this observation in mind, we may use Lemma 3.2 to obtain vertices of trianglé8/C/ in K that containy
and that also converge 1. None of the verticed’, B;, or C; is in the interior ofB(X, r) by our choice of-.

Finally, we claim that for large enough the segmen¥ Z must intersect a side af A, B, C,, in the interior of
B(X,r), a contradiction to our assumption enTo see this, notice that for a large at least one of the vertices
of AA), B, C; must lie between the two parallel lines (depicted in Fig. 7) throtigh, while none of them will
lie beneath the line throug#. It follows that an edge o\ A/, B C), intersects the linedY inside B(X,r). This
contradiction completes the proofm

4. Therational case

We now turn our attention to the case of rational points as in the statement of Conjecture 1.5. We note the followinc
simple observation.

Lemma 4.1. Suppose thatS = {(0, 0), (0, 1), (0, 2), (1,0), (1,1), (1,2)} or that S = {(0,0), (0, 1), (0, 2), (1, 0),
(1, -1), (L, —2)}. Then ;5o 77 (5) = Q%

Proof. Iteration of7 on both sets above gives all %, and it is easily verified that? generates all 0f?. O

We next restrict our attention to a particular case involving a pair of parallel lines. We need the following fact from
plane geometry.
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Fig. 8. Midpoint Lemma 4.2.

Lemmad4.2. LetR, P, O, T be points in the plane witl® O and PT parallel and suppose that P is not parallel to
QT. LetY be the intersection oRT and P Q and setX to be the intersection ad® P and QT. Then,XY intersects
RQ and PT in their midpointsU and V', respectively.

Proof. SinceARUY and ATVY are similar triangles, we havRU/TV = UY/VY. The same reasoning gives
us thatUY/VY = UQ/V P. Examining the large triangleAXVT and AX PV, it is also clear thaU Q/TV =
XU/XV = RU/V P. Therefore,

RU , UQ

TV.— =TV ,
vo= VP VP2

sothatT V =V P. A similar computation shows th&U =U Q. O

We finally arrive at our main result in the rational case. It will be a consequence of Lemma 4.2, and it is the closest
we come to proving Conjecture 1.5.

Proof of Theorem 1.6. Since a (rational) translation does not change the problem, we may assunge=th@, 0).
Moreover, it is easy to see thatM € GLo(Q), then

M-S= {M[Z}: (a,b) es}

gives rise taQ? through iteration off if and only if § does. Suppose th& = (a, b), P = (¢, d), andT = (u, v) with
a,b,c,d,u,ve Q. SinceRQ and PT do not define the same line, it follows that — av # 0. Also, sinceRQ and
PT are parallel, we havey — av = bc — ad.

Consider the following matrix:

1 _
M= [b “].
bu—av|—v u

A straightforward computation give¥ - S = {(0, 0), (0, 1), (1, 0), (1 du=cvy1 ‘Moreover, sinceR P is not parallel to

> bu—av

QT, it follows that 24=<¥ £ 1. Next, set; = du—cv in which r, s € Z and gedr, s) = 1. Suppose first that/s > 0.

bu—av — bu—av

By successively applying Lemma 4.2, |terat|or1K)bn M - S produces the points:

l rl
{(0,2—1)(1 Zi) 1,12, k € N; o<11,12<2’<}

It follows that if we choosé such that 21 > max{r, s}, we will have

[09.05)02)20.(1) ()] s
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Therefore, letting

1 0
[t 3)

r

we must have
{(0,0),(0,1),(0,2),(1,0),(L1), (1,2} SN -T*M - ).

An application of Lemma 4.1 now concludes the proof of this case.
Finally, if r/s < 0, then the same examination as above reduces the situata-t0, 0), (0, 1), (0, 2), (1, 0),
(1, -1), (1, —2)}, also covered by Lemma 4.10
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