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1. Introduction

This paper deals with the stability of nonconstant solutions of
—Au=f@) inRV, (1.1)

where f € C'(R). We consider classical solutions u € C2(RN).
A solution u of (1.1) is called stable if

f (IV? = f'(uyv?) dx = 0
RN

for every v € C®(RN) with compact support in RV. Note that the above expression is nothing but the second variation of
the energy functional associated with (1.1) in a bounded domain £2: Eg (u) = f_q (|Vu|2/2 — F(u)) dx, where F’ = f. Thus,

ifu € C'(RN) is a local minimizer of E, for every bounded smooth domain £2 C R (i.e., a minimizer under every small
enough C'(£2) perturbation vanishing on 92), then u is a stable solution of (1.1).

Stable radial solutions of (1.1) are well-understood: by the work of Cabré and Capella[1], refined by the second author [2],
every bounded radial solution of (1.1) must be constant if N < 10. Also, in these works there are examples of nonconstant
bounded radial stable solutions for when N > 11. For dimensions N < 4, Dupaigne and Farina [3] have obtained that every
bounded stable solution of (1.1) must be constant if f > 0. For the case N = 2, Farina et al. [4] proved that any stable solution
of (1.1) with bounded gradient is one-dimensional (i.e. up to a rotation of the space, u depends on only one variable). For
every dimension N of the space, for the case of the nonlinearities f (u) = |u|P~'u, p > 1,and f (u) = e*, classification results
have been obtained by Farina [5-7]. On the other hand Dupaigne and Farina [8] considered, in any dimension, the case of
very general non-negative, non-decreasing and convex nonlinearities. Specifically they obtained:

Theorem 1.1 (Dupaigne and Farina [8]). Let I = (a,b) C R be a maximal open interval, possibly unbounded, such that
0 # f e C?(I; R) N C°(I; R) is non-negative, non-decreasing, convex in I and vanishes at some point of I. Define

72
qu) == - (u); o = limsup q(u); qo = liminfq(u); Qoo = limsup q(u),
ff u—zt u—z+ U—sbh—
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where z = sup {u el=[a,blCR:fu)= O} and b = sup I. Assume that u € C2(R") is a stable solution of (1.1). Then, u is
constant if N < 2 and
0<qo=<qo<+00 and 0 <o < +00 (1.2)

orif N > 3 and the following conditions hold:

4
qo < +oo and m(l—i—l/\/q:o) > 1/qo. (1.3)
G < 400 and i(l—l—l/\/qi) > 1/4=. (1.4)

In [8, Remark 1.3] the authors showed that conditions (1.3) and (1.4) are sharp if N > 10; a counterexample is given by
the nonlinearity f (u) = e* if N = 10 and by f (u) = u? (for certainp > 1)if N > 11. In this remark the authors also raised
the question of whether conditions (1.2)-(1.4) are sharp in dimensions 1 < N < 9.

In this paper we respond to this question. We show that, in Theorem 1.1, condition (1.2) is not sharpif 1 < N < 2, while
conditions (1.3) and (1.4) are sharp if 3 < N < 9. More precisely we obtained the following results:

Theorem 1.2. Let N < 2, f € C!(R) a non-decreasing function and u a stable solution of (1.1). Then f is constant in the interval
J = u@®").

As a corollary of this theorem we obtain the following result, which proves that condition (1.2) of Theorem 1.1 is not
sharp in dimensions 1 < N < 2.

Corollary 1.3. Let N < 2, and 0 # f € C'(R) be a non-decreasing function vanishing at some point of R. Assume u € C2(RV)
is a stable solution of (1.1). Then u is constant.

For dimensions 3 < N < 9, the following result shows that conditions (1.3) and (1.4) of Theorem 1.1 are sharp, at least
for the case z = —oo. It would be interesting to find counterexamples for the case z € R.

Proposition 1.4. Let 3 < N < 9and q > 0, satisfying

() s
N-—-2 V4 ~q .

Then there exists ug € C®(RN) with uq(RN) = (—oo, —1]and f; € C*(R) such that ug is a stable solution of (1.1) with f = f,

12
and fq satisfies fq, fy, f;' > 0in R, limy—, o0 fg(u) = 0and go = go = limy—, oo ff"T(u) =q.
- aq

Remark 1. Note that the number q,, = lim,_, 1~ q(u) is not relevant, since uq(RN) = (—o00, —1]. In fact, it is a simple
matter to obtain any value g, € [1, +o00] modifying appropriately the function f; in (1, 4+-00).

2. Proof of the main results

To prove Theorem 1.2 we will need the lemma below. It has not appeared anywhere but it is essentially known. In fact, a
similar result, using the same ideas as this lemma (a capacity test function), has been written in the case of the biharmonic
operator (see e.g. [9, Theorem 6]).

Lemma2.1. Let N < 2and h € L, (R") with h > 0. If

/ [Vw|? dx > / hw?dx, Yw e (RY), (2.1)
RN RN
thenh = 0.

Remark 2. Lemma 2.1 is optimal for dimensions N = 1, 2, but not for dimensions N > 3 due to the Hardy inequality:
Jen Vw2 dx > [on (N = 2)?/(4]1x]1?)) w? dx, for every w € C° (RV).

Proof of Lemma 2.1. Let us first note that (2.1) remains true if we consider functions w € Wol‘p (B(0, R)) where2 < p < 00,
andR > 0.
Sincep > 2and p > N, we have that Wol’p (B(0O,R)) C (Wg’2 ﬂLm) (B(0, R)). Therefore the functional w +>

fB(O B (IVw|*> — hw?) is continuous in Wol‘p (B(0, R)). The density of C>°(B(0, R)) in Wol‘p(B(O, R)), ensures that (2.1) holds
forany w € WO]”J(B(O, R)).
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Consider the following sequence of functions:

1, x| <,

In |x| 5

wa(X) = 32— ——, n<|x| <n,
Inn ,
0, |x| > n”.

It follows immediately that
/ |Vw,|? dx —> 0.
RN

Hence, from (2.1), we deduce that

/ hw? dx — 0.
RN

Finally, since [y hw} > fB(O’n) handh > 0in RN, we conclude thath =0inRN. O

Proof of Theorem 1.2. Applying the previous lemma with h(x) = f'(u(x)) we deduce that f'(u(x)) = 0 for every x € RV,
Thus f'(s) = 0 for every s € J and the theorem follows. O

Proof of Corollary 1.3. Applying Theorem 1.2 we can assert that —Au = C in RN for some constant C € R. Let us consider
the function

C 2
w(x) = u(x) + Exl'

- CaseC > 0.
We claim that u is not bounded from below. This is obvious if w is constant. Otherwise, since w is harmonic it follows
that w is not bounded from below. Therefore u < w is not bounded from below. Hence the interval | C I is not bounded
from below and f (s) = C > 0in]. This contradicts our assumptions on f, which is non-decreasing and vanishing at some
point of I.

- CaseC < 0.
Like for the previous case we deduce that u is not bounded from above. Hence the interval ] C I is not bounded from
above and f(s) = C < 0inJ. This contradicts again our assumptions on f, which is non-decreasing and vanishing at
some point of I.

- CaseC =0.
In this case u is an harmonic function in RV. If u is not constant then u is neither bounded above nor bounded below.
ThusJ = R and f = 0, contradicting our assumptions. We conclude that u must be constant. O

Proof of Proposition 1.4. First of all, it is easily seen that 3 < N < 9, q > 0 and (1.5) imply that

N N-—-1
0<qg=<—— <
4 2
Define the radial function
1—
ug(0) = — (14 [x1?)
and
at1 q_
fis) = (490 = D(=9)7T +201 - QN —29)(=9)T1, s < -1,
gq(s), s> —1,
where g, (s) is chosen such that f; € C*°(R) andf,fq,fq” > 0inR.Sinceq € (0, 1), itis easy to check that lim,_, o fg(u) =0
12
and @ = go = lim, ff’w(u) —q
It remains to prove that ug is stable. For this purpose, taking into account (2.2), an easy computation shows that
2 ((N —2)x” + (N +2)) _2q(N —29) _ (N —2)’
(1+ x2)° X2 T 42

and, by the Hardy inequality, we conclude that uy is stable. O

fi (ug®) = Vx € RN
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