J. Math. Anal. Appl. 397 (2013) 693-696

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and **Applications**

journal homepage: www.elsevier.com/locate/jmaa

The sharpness of some results on stable solutions of $-\Delta u = f(u)$ in \mathbb{R}^N

Miguel Angel Navarro, Salvador Villegas*

Departamento de Análisis Matemático. Universidad de Granada. 18071 Granada. Spain

ARTICLE INFO

ABSTRACT

Article history: Received 13 July 2012 Available online 16 August 2012 Submitted by Manuel del Pino

Keywords: Stability Sharpness results

1. Introduction

This paper deals with the stability of nonconstant solutions of

 $-\Delta u = f(u)$ in \mathbb{R}^N ,

where $f \in C^1(\mathbb{R})$. We consider classical solutions $u \in C^2(\mathbb{R}^N)$.

A solution u of (1.1) is called stable if

$$\int_{\mathbb{R}^N} \left(|\nabla v|^2 - f'(u)v^2 \right) \, dx \ge 0$$

for every $v \in C^{\infty}(\mathbb{R}^N)$ with compact support in \mathbb{R}^N . Note that the above expression is nothing but the second variation of the energy functional associated with (1.1) in a bounded domain $\Omega: E_{\Omega}(u) = \int_{\Omega} (|\nabla u|^2/2 - F(u)) dx$, where F' = f. Thus, if $u \in C^1(\mathbb{R}^N)$ is a local minimizer of E_Ω for every bounded smooth domain $\Omega \subset \mathbb{R}^N$ (i.e., a minimizer under every small enough $C^{1}(\Omega)$ perturbation vanishing on $\partial \Omega$), then *u* is a stable solution of (1.1).

Stable radial solutions of (1.1) are well-understood: by the work of Cabré and Capella [1], refined by the second author [2], every bounded radial solution of (1.1) must be constant if $N \le 10$. Also, in these works there are examples of nonconstant bounded radial stable solutions for when $N \ge 11$. For dimensions $N \le 4$, Dupaigne and Farina [3] have obtained that every bounded stable solution of (1.1) must be constant if $f \ge 0$. For the case N = 2, Farina et al. [4] proved that any stable solution of (1.1) with bounded gradient is one-dimensional (i.e. up to a rotation of the space, u depends on only one variable). For every dimension N of the space, for the case of the nonlinearities $f(u) = |u|^{p-1}u$, p > 1, and $f(u) = e^u$, classification results have been obtained by Farina [5–7]. On the other hand Dupaigne and Farina [8] considered, in any dimension, the case of very general non-negative, non-decreasing and convex nonlinearities. Specifically they obtained:

Theorem 1.1 (Dupaigne and Farina [8]). Let $I = (a, b) \subset \mathbb{R}$ be a maximal open interval, possibly unbounded, such that $0 \neq f \in C^2(I; \mathbb{R}) \cap C^0(\overline{I}; \mathbb{R})$ is non-negative, non-decreasing, convex in I and vanishes at some point of \overline{I} . Define

$$q(u) := \frac{f'^2}{ff''}(u); \qquad \overline{q_0} = \limsup_{u \to z^+} q(u); \qquad \underline{q_0} = \liminf_{u \to z^+} q(u); \qquad \overline{q_\infty} = \limsup_{u \to b^-} q(u),$$

Corresponding author.

In this note we give a complete answer to a question raised by Dupaigne and Farina (2009) [8] related to the existence of nonconstant stable solutions of the equation $-\Delta u =$ f(u) in \mathbb{R}^N , where $N \leq 9$ and f is a very general non-negative, non-decreasing and convex nonlinearity.

© 2012 Elsevier Inc. All rights reserved.

(1.1)

E-mail addresses: mnavarro_2@ugr.es (M.A. Navarro), svillega@ugr.es (S. Villegas).

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2012.08.022

where $z = \sup \{ u \in \overline{I} = [a, b] \subset \overline{\mathbb{R}} : f(u) = 0 \}$ and $b = \sup I$. Assume that $u \in C^2(\mathbb{R}^N)$ is a stable solution of (1.1). Then, u is constant if $N \leq 2$ and

$$0 < \underline{q_0} \le \overline{q_0} < +\infty \quad and \quad 0 < \overline{q_\infty} < +\infty \tag{1.2}$$

or if $N \ge 3$ and the following conditions hold:

$$\overline{q_0} < +\infty \quad and \quad \frac{4}{N-2} \left(1 + 1/\sqrt{\overline{q_0}} \right) > 1/\underline{q_0}.$$
(1.3)

$$\overline{q_{\infty}} < +\infty \quad and \quad \frac{4}{N-2} \left(1 + 1/\sqrt{\overline{q_{\infty}}} \right) > 1/\overline{q_{\infty}}.$$
 (1.4)

In [8, Remark 1.3] the authors showed that conditions (1.3) and (1.4) are sharp if $N \ge 10$; a counterexample is given by the nonlinearity $f(u) = e^u$ if N = 10 and by $f(u) = u^p$ (for certain p > 1) if $N \ge 11$. In this remark the authors also raised the question of whether conditions (1.2)–(1.4) are sharp in dimensions 1 < N < 9.

In this paper we respond to this question. We show that, in Theorem 1.1, condition (1.2) is not sharp if $1 \le N \le 2$, while conditions (1.3) and (1.4) are sharp if $3 \le N \le 9$. More precisely we obtained the following results:

Theorem 1.2. Let $N \le 2, f \in C^1(\mathbb{R})$ a non-decreasing function and u a stable solution of (1.1). Then f is constant in the interval $J := u(\mathbb{R}^N)$.

As a corollary of this theorem we obtain the following result, which proves that condition (1.2) of Theorem 1.1 is not sharp in dimensions $1 \le N \le 2$.

Corollary 1.3. Let $N \leq 2$, and $0 \neq f \in C^1(\mathbb{R})$ be a non-decreasing function vanishing at some point of $\overline{\mathbb{R}}$. Assume $u \in C^2(\mathbb{R}^N)$ is a stable solution of (1.1). Then u is constant.

For dimensions $3 \le N \le 9$, the following result shows that conditions (1.3) and (1.4) of Theorem 1.1 are sharp, at least for the case $z = -\infty$. It would be interesting to find counterexamples for the case $z \in \mathbb{R}$.

Proposition 1.4. Let $3 \le N \le 9$ and q > 0, satisfying

$$\frac{4}{N-2}\left(1+\frac{1}{\sqrt{q}}\right) \le \frac{1}{q}.$$
(1.5)

Then there exists $u_q \in C^{\infty}(\mathbb{R}^N)$ with $u_q(\mathbb{R}^N) = (-\infty, -1]$ and $f_q \in C^{\infty}(\mathbb{R})$ such that u_q is a stable solution of (1.1) with $f = f_q$, and f_q satisfies $f_q, f'_q, f''_q > 0$ in \mathbb{R} , $\lim_{u \to -\infty} f_q(u) = 0$ and $\overline{q_0} = \underline{q_0} = \lim_{u \to -\infty} \frac{f'_q}{f_d f''_u}(u) = q$.

Remark 1. Note that the number $q_{\infty} = \lim_{u \to +\infty} q(u)$ is not relevant, since $u_q(\mathbb{R}^N) = (-\infty, -1]$. In fact, it is a simple matter to obtain any value $q_{\infty} \in [1, +\infty]$ modifying appropriately the function f_q in $(1, +\infty)$.

2. Proof of the main results

To prove Theorem 1.2 we will need the lemma below. It has not appeared anywhere but it is essentially known. In fact, a similar result, using the same ideas as this lemma (a capacity test function), has been written in the case of the biharmonic operator (see e.g. [9, Theorem 6]).

Lemma 2.1. Let $N \leq 2$ and $h \in L^1_{loc}(\mathbb{R}^N)$ with $h \geq 0$. If

$$\int_{\mathbb{R}^N} |\nabla w|^2 \, dx \ge \int_{\mathbb{R}^N} h \, w^2 \, dx, \quad \forall w \in C_c^\infty \left(\mathbb{R}^N \right),$$
(2.1)

then $h \equiv 0$.

Remark 2. Lemma 2.1 is optimal for dimensions N = 1, 2, but not for dimensions $N \ge 3$ due to the Hardy inequality: $\int_{\mathbb{R}^N} |\nabla w|^2 dx \ge \int_{\mathbb{R}^N} ((N-2)^2/(4||x||^2)) w^2 dx$, for every $w \in C_c^{\infty}(\mathbb{R}^N)$.

Proof of Lemma 2.1. Let us first note that (2.1) remains true if we consider functions $w \in W_0^{1,p}(B(0, R))$ where 2 , and <math>R > 0.

Since p > 2 and p > N, we have that $W_0^{1,p}(B(0,R)) \subset (W_0^{1,2} \cap L^\infty)(B(0,R))$. Therefore the functional $w \mapsto \int_{B(0,R)} (|\nabla w|^2 - hw^2)$ is continuous in $W_0^{1,p}(B(0,R))$. The density of $C_c^\infty(B(0,R))$ in $W_0^{1,p}(B(0,R))$, ensures that (2.1) holds for any $w \in W_0^{1,p}(B(0,R))$.

Consider the following sequence of functions:

$$w_n(x) = \begin{cases} 1, & |x| \le n, \\ 2 - \frac{\ln |x|}{\ln n}, & n < |x| < n^2, \\ 0, & |x| \ge n^2. \end{cases}$$

It follows immediately that

$$\int_{\mathbb{R}^N} |\nabla w_n|^2 \, dx \longrightarrow 0.$$

Hence, from (2.1), we deduce that

$$\int_{\mathbb{R}^N} h w_n^2 \, dx \longrightarrow 0$$

Finally, since $\int_{\mathbb{R}^N} h w_n^2 \ge \int_{B(0,n)} h$ and $h \ge 0$ in \mathbb{R}^N , we conclude that $h \equiv 0$ in \mathbb{R}^N . \Box

Proof of Theorem 1.2. Applying the previous lemma with h(x) = f'(u(x)) we deduce that f'(u(x)) = 0 for every $x \in \mathbb{R}^N$. Thus f'(s) = 0 for every $s \in J$ and the theorem follows. \Box

Proof of Corollary 1.3. Applying Theorem 1.2 we can assert that $-\Delta u = C$ in \mathbb{R}^N for some constant $C \in \mathbb{R}$. Let us consider the function

$$w(x) = u(x) + \frac{C}{2}x_1^2.$$

- Case C > 0.

We claim that *u* is not bounded from below. This is obvious if *w* is constant. Otherwise, since *w* is harmonic it follows that w is not bounded from below. Therefore u < w is not bounded from below. Hence the interval $I \subset I$ is not bounded from below and f(s) = C > 0 in J. This contradicts our assumptions on f, which is non-decreasing and vanishing at some point of I.

-Case C < 0.

Like for the previous case we deduce that u is not bounded from above. Hence the interval $I \subset I$ is not bounded from above and f(s) = C < 0 in *I*. This contradicts again our assumptions on *f*, which is non-decreasing and vanishing at some point of I.

- Case C = 0.

In this case u is an harmonic function in \mathbb{R}^N . If u is not constant then u is neither bounded above nor bounded below. Thus $I = \mathbb{R}$ and $f \equiv 0$, contradicting our assumptions. We conclude that *u* must be constant.

Proof of Proposition 1.4. First of all, it is easily seen that 3 < N < 9, q > 0 and (1.5) imply that

$$0 < q \le \frac{N}{4} - \frac{\sqrt{N-1}}{2} < 1.$$
(2.2)

Define the radial function

$$u_q(x) = -(1+|x|^2)^{1-q}$$

and

$$f_q(s) = \begin{cases} 4q(1-q)(-s)^{\frac{q+1}{q-1}} + 2(1-q)(N-2q)(-s)^{\frac{q}{q-1}}, & s \le -1, \\ g_q(s), & s > -1, \end{cases}$$

where $g_q(s)$ is chosen such that $f_q \in C^{\infty}(\mathbb{R})$ and $f, f_q, f_q'' > 0$ in \mathbb{R} . Since $q \in (0, 1)$, it is easy to check that $\lim_{u \to -\infty} f_q(u) = 0$ and $\overline{q_0} = \underline{q_0} = \lim_{u \to -\infty} \frac{f_q^{\prime 2}}{f_q f_q^{\prime \prime}}(u) = q$. It remains to prove that u_q is stable. For this purpose, taking into account (2.2), an easy computation shows that

$$f'_{q}\left(u_{q}(x)\right) = \frac{2q\left((N-2q)|x|^{2}+(N+2)\right)}{\left(1+|x|^{2}\right)^{2}} < \frac{2q(N-2q)}{|x|^{2}} \le \frac{(N-2)^{2}}{4|x|^{2}} \quad \forall x \in \mathbb{R}^{N}$$

and, by the Hardy inequality, we conclude that u_q is stable. \Box

Acknowledgment

The authors were supported by the MEC Spanish grant MTM2009-10878.

References

- X. Cabré, A. Capella, On the stability of radial solutions of semilinear elliptic equations in all of ℝⁿ, C. R. Math. Acad. Sci. Paris 338 (2004) 769–774.
 S. Villegas, Asymptotic behavior of stable radial solutions of semilinear elliptic equations in ℝ^N, J. Math. Pures Appl. 88 (2007) 241–250.
 L. Dupaigne, A. Farina, Stable solutions of −Δu = f(u) in ℝ^N, J. Eur. Math. Soc. (JEMS) 12 (2010) 855–882.
 A. Farina, B. Sciunzi, E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2009) 74. (2008) 741–791.
- [5] A. Farina, Liouville-type results for solutions of $-\Delta u = |u|^{p-1}u$ on unbounded domains of \mathbb{R}^N , C. R. Math. Acad. Sci. Paris 341 (2005) 415–418.

- [6] A. Farina, Downley per results for Solutions of $-\Delta u = |u|^{-1}$ un unbounded domains of \mathbb{R}^{-1} , C. Math. Acad. Sci. Paris 541 (2005) 415–418. [6] A. Farina, On the classification of solutions of the Lane–Emden equation on unbounded domains of \mathbb{R}^{N} , J. Math. Pures Appl. 87 (2007) 537–561. [7] A. Farina, Stable solutions of $-\Delta u = e^{u}$ on \mathbb{R}^{N} , C. R. Math. Acad. Sci. Paris 345 (2007) 63–66. [8] L. Dupaigne, A. Farina, Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities, Nonlinear Anal. 70 (2009) 2882-2888.
- [9] G. Warnault, Liouville theorems for stable radial solutions for the biharmonic operator, Asymptot. Anal. 69 (2010) 87–98.