The sharpness of some results on stable solutions of $-\Delta u=f(u)$ in \mathbb{R}^{N}

Miguel Angel Navarro, Salvador Villegas*
Departamento de Análisis Matemático, Universidad de Granada, 18071 Granada, Spain

ARTICLE INFO

Article history:

Received 13 July 2012
Available online 16 August 2012
Submitted by Manuel del Pino

Keywords:

Stability
Sharpness results

Abstract

In this note we give a complete answer to a question raised by Dupaigne and Farina (2009) [8] related to the existence of nonconstant stable solutions of the equation $-\Delta u=$ $f(u)$ in \mathbb{R}^{N}, where $N \leq 9$ and f is a very general non-negative, non-decreasing and convex nonlinearity.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the stability of nonconstant solutions of

$$
\begin{equation*}
-\Delta u=f(u) \quad \text { in } \mathbb{R}^{N}, \tag{1.1}
\end{equation*}
$$

where $f \in C^{1}(\mathbb{R})$. We consider classical solutions $u \in C^{2}\left(\mathbb{R}^{N}\right)$.
A solution u of (1.1) is called stable if

$$
\int_{\mathbb{R}^{N}}\left(|\nabla v|^{2}-f^{\prime}(u) v^{2}\right) d x \geq 0
$$

for every $v \in C^{\infty}\left(\mathbb{R}^{N}\right)$ with compact support in \mathbb{R}^{N}. Note that the above expression is nothing but the second variation of the energy functional associated with (1.1) in a bounded domain $\Omega: E_{\Omega}(u)=\int_{\Omega}\left(|\nabla u|^{2} / 2-F(u)\right) d x$, where $F^{\prime}=f$. Thus, if $u \in C^{1}\left(\mathbb{R}^{N}\right)$ is a local minimizer of E_{Ω} for every bounded smooth domain $\Omega \subset \mathbb{R}^{N}$ (i.e., a minimizer under every small enough $C^{1}(\Omega)$ perturbation vanishing on $\left.\partial \Omega\right)$, then u is a stable solution of (1.1).

Stable radial solutions of (1.1) are well-understood: by the work of Cabré and Capella [1], refined by the second author [2], every bounded radial solution of (1.1) must be constant if $N \leq 10$. Also, in these works there are examples of nonconstant bounded radial stable solutions for when $N \geq 11$. For dimensions $N \leq 4$, Dupaigne and Farina [3] have obtained that every bounded stable solution of (1.1) must be constant if $f \geq 0$. For the case $N=2$, Farina et al. [4] proved that any stable solution of (1.1) with bounded gradient is one-dimensional (i.e. up to a rotation of the space, u depends on only one variable). For every dimension N of the space, for the case of the nonlinearities $f(u)=|u|^{p-1} u, p>1$, and $f(u)=e^{u}$, classification results have been obtained by Farina [5-7]. On the other hand Dupaigne and Farina [8] considered, in any dimension, the case of very general non-negative, non-decreasing and convex nonlinearities. Specifically they obtained:

Theorem 1.1 (Dupaigne and Farina [8]). Let $I=(a, b) \subset \mathbb{R}$ be a maximal open interval, possibly unbounded, such that $0 \not \equiv f \in C^{2}(I ; \mathbb{R}) \cap C^{0}(\bar{I} ; \overline{\mathbb{R}})$ is non-negative, non-decreasing, convex in I and vanishes at some point of \bar{I}. Define

$$
q(u):=\frac{f^{\prime 2}}{f f^{\prime \prime}}(u) ; \quad \overline{q_{0}}=\limsup _{u \rightarrow z^{+}} q(u) ; \quad \underline{q_{0}}=\liminf _{u \rightarrow z^{+}} q(u) ; \quad \overline{q_{\infty}}=\limsup _{u \rightarrow b^{-}} q(u)
$$

[^0]where $z=\sup \{u \in \bar{I}=[a, b] \subset \overline{\mathbb{R}}: f(u)=0\}$ and $b=\sup$. Assume that $u \in C^{2}\left(\mathbb{R}^{N}\right)$ is a stable solution of (1.1). Then, u is constant if $N \leq 2$ and
\[

$$
\begin{equation*}
0<\underline{q_{0}} \leq \overline{q_{0}}<+\infty \quad \text { and } 0<\overline{q_{\infty}}<+\infty \tag{1.2}
\end{equation*}
$$

\]

or if $N \geq 3$ and the following conditions hold:

$$
\begin{align*}
& \overline{q_{0}}<+\infty \text { and } \frac{4}{N-2}\left(1+1 / \sqrt{\overline{q_{0}}}\right)>1 / \underline{q_{0}} \tag{1.3}\\
& \overline{q_{\infty}}<+\infty \text { and } \frac{4}{N-2}\left(1+1 / \sqrt{\overline{q_{\infty}}}\right)>1 / \overline{q_{\infty}} \tag{1.4}
\end{align*}
$$

In [8, Remark 1.3] the authors showed that conditions (1.3) and (1.4) are sharp if $N \geq 10$; a counterexample is given by the nonlinearity $f(u)=e^{u}$ if $N=10$ and by $f(u)=u^{p}$ (for certain $p>1$) if $N \geq 11$. In this remark the authors also raised the question of whether conditions (1.2)-(1.4) are sharp in dimensions $1 \leq N \leq 9$.

In this paper we respond to this question. We show that, in Theorem 1.1, condition (1.2) is not sharp if $1 \leq N \leq 2$, while conditions (1.3) and (1.4) are sharp if $3 \leq N \leq 9$. More precisely we obtained the following results:

Theorem 1.2. Let $N \leq 2, f \in C^{1}(\mathbb{R})$ a non-decreasing function and u a stable solution of (1.1). Then f is constant in the interval $J:=u\left(\mathbb{R}^{N}\right)$.

As a corollary of this theorem we obtain the following result, which proves that condition (1.2) of Theorem 1.1 is not sharp in dimensions $1 \leq N \leq 2$.

Corollary 1.3. Let $N \leq 2$, and $0 \not \equiv f \in C^{1}(\mathbb{R})$ be a non-decreasing function vanishing at some point of $\overline{\mathbb{R}}$. Assume $u \in C^{2}\left(\mathbb{R}^{N}\right)$ is a stable solution of (1.1). Then u is constant.

For dimensions $3 \leq N \leq 9$, the following result shows that conditions (1.3) and (1.4) of Theorem 1.1 are sharp, at least for the case $z=-\infty$. It would be interesting to find counterexamples for the case $z \in \mathbb{R}$.

Proposition 1.4. Let $3 \leq N \leq 9$ and $q>0$, satisfying

$$
\begin{equation*}
\frac{4}{N-2}\left(1+\frac{1}{\sqrt{q}}\right) \leq \frac{1}{q} \tag{1.5}
\end{equation*}
$$

Then there exists $u_{q} \in C^{\infty}\left(\mathbb{R}^{N}\right)$ with $u_{q}\left(\mathbb{R}^{N}\right)=(-\infty,-1]$ and $f_{q} \in C^{\infty}(\mathbb{R})$ such that u_{q} is a stable solution of (1.1) with $f=f_{q}$, and f_{q} satisfies $f_{q}, f_{q}^{\prime}, f_{q}^{\prime \prime}>0$ in $\mathbb{R}, \lim _{u \rightarrow-\infty} f_{q}(u)=0$ and $\overline{q_{0}}=\underline{q_{0}}=\lim _{u \rightarrow-\infty} \frac{f_{q}^{\prime 2}}{f_{q} f_{q}^{\prime \prime}}(u)=q$.

Remark 1. Note that the number $q_{\infty}=\lim _{u \rightarrow+\infty} q(u)$ is not relevant, since $u_{q}\left(\mathbb{R}^{N}\right)=(-\infty,-1]$. In fact, it is a simple matter to obtain any value $q_{\infty} \in[1,+\infty]$ modifying appropriately the function f_{q} in $(1,+\infty)$.

2. Proof of the main results

To prove Theorem 1.2 we will need the lemma below. It has not appeared anywhere but it is essentially known. In fact, a similar result, using the same ideas as this lemma (a capacity test function), has been written in the case of the biharmonic operator (see e.g. [9, Theorem 6]).

Lemma 2.1. Let $N \leq 2$ and $h \in L_{\text {loc }}^{1}\left(\mathbb{R}^{N}\right)$ with $h \geq 0$. If

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla w|^{2} d x \geq \int_{\mathbb{R}^{N}} h w^{2} d x, \quad \forall w \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right) \tag{2.1}
\end{equation*}
$$

then $h \equiv 0$.
Remark 2. Lemma 2.1 is optimal for dimensions $N=1$, 2 , but not for dimensions $N \geq 3$ due to the Hardy inequality: $\int_{\mathbb{R}^{N}}|\nabla w|^{2} d x \geq \int_{\mathbb{R}^{N}}\left((N-2)^{2} /\left(4\|x\|^{2}\right)\right) w^{2} d x$, for every $w \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$.

Proof of Lemma 2.1. Let us first note that (2.1) remains true if we consider functions $w \in W_{0}^{1, p}(B(0, R))$ where $2<p<\infty$, and $R>0$.

Since $p>2$ and $p>N$, we have that $W_{0}^{1, p}(B(0, R)) \subset\left(W_{0}^{1,2} \cap L^{\infty}\right)(B(0, R))$. Therefore the functional $w \mapsto$ $\int_{B(0, R)}\left(|\nabla w|^{2}-h w^{2}\right)$ is continuous in $W_{0}^{1, p}(B(0, R))$. The density of $C_{c}^{\infty}(B(0, R))$ in $W_{0}^{1, p}(B(0, R))$, ensures that (2.1) holds for any $w \in W_{0}^{1, p}(B(0, R))$.

Consider the following sequence of functions:

$$
w_{n}(x)= \begin{cases}1, & |x| \leq n \\ 2-\frac{\ln |x|}{\ln n}, & n<|x|<n^{2} \\ 0, & |x| \geq n^{2}\end{cases}
$$

It follows immediately that

$$
\int_{\mathbb{R}^{N}}\left|\nabla w_{n}\right|^{2} d x \longrightarrow 0
$$

Hence, from (2.1), we deduce that

$$
\int_{\mathbb{R}^{N}} h w_{n}^{2} d x \longrightarrow 0
$$

Finally, since $\int_{\mathbb{R}^{N}} h w_{n}^{2} \geq \int_{B(0, n)} h$ and $h \geq 0$ in \mathbb{R}^{N}, we conclude that $h \equiv 0$ in \mathbb{R}^{N}.
Proof of Theorem 1.2. Applying the previous lemma with $h(x)=f^{\prime}(u(x))$ we deduce that $f^{\prime}(u(x))=0$ for every $x \in \mathbb{R}^{N}$. Thus $f^{\prime}(s)=0$ for every $s \in J$ and the theorem follows.

Proof of Corollary 1.3. Applying Theorem 1.2 we can assert that $-\Delta u=C$ in \mathbb{R}^{N} for some constant $C \in \mathbb{R}$. Let us consider the function

$$
w(x)=u(x)+\frac{C}{2} x_{1}^{2} .
$$

- Case C >0.

We claim that u is not bounded from below. This is obvious if w is constant. Otherwise, since w is harmonic it follows that w is not bounded from below. Therefore $u \leq w$ is not bounded from below. Hence the interval $J \subset I$ is not bounded from below and $f(s)=C>0$ in J. This contradicts our assumptions on f, which is non-decreasing and vanishing at some point of \bar{I}.

- Case $C<0$.

Like for the previous case we deduce that u is not bounded from above. Hence the interval $J \subset I$ is not bounded from above and $f(s)=C<0$ in J. This contradicts again our assumptions on f, which is non-decreasing and vanishing at some point of \bar{I}.

- Case $C=0$.

In this case u is an harmonic function in \mathbb{R}^{N}. If u is not constant then u is neither bounded above nor bounded below. Thus $J=\mathbb{R}$ and $f \equiv 0$, contradicting our assumptions. We conclude that u must be constant.
Proof of Proposition 1.4. First of all, it is easily seen that $3 \leq N \leq 9, q>0$ and (1.5) imply that

$$
\begin{equation*}
0<q \leq \frac{N}{4}-\frac{\sqrt{N-1}}{2}<1 \tag{2.2}
\end{equation*}
$$

Define the radial function

$$
u_{q}(x)=-\left(1+|x|^{2}\right)^{1-q}
$$

and

$$
f_{q}(s)= \begin{cases}4 q(1-q)(-s)^{\frac{q+1}{q-1}}+2(1-q)(N-2 q)(-s)^{\frac{q}{q-1}}, & s \leq-1, \\ g_{q}(s), & s>-1,\end{cases}
$$

where $g_{q}(s)$ is chosen such that $f_{q} \in C^{\infty}(\mathbb{R})$ and $f, f_{q}, f_{q}^{\prime \prime}>0$ in \mathbb{R}. Since $q \in(0,1)$, it is easy to check that $\lim _{u \rightarrow-\infty} f_{q}(u)=0$ and $\overline{q_{0}}=\underline{q_{0}}=\lim _{u \rightarrow-\infty} \frac{f_{q}^{\prime 2}}{f_{q} f_{q}^{\prime \prime}}(u)=q$.

It remains to prove that u_{q} is stable. For this purpose, taking into account (2.2), an easy computation shows that

$$
f_{q}^{\prime}\left(u_{q}(x)\right)=\frac{2 q\left((N-2 q)|x|^{2}+(N+2)\right)}{\left(1+|x|^{2}\right)^{2}}<\frac{2 q(N-2 q)}{|x|^{2}} \leq \frac{(N-2)^{2}}{4|x|^{2}} \quad \forall x \in \mathbb{R}^{N}
$$

and, by the Hardy inequality, we conclude that u_{q} is stable.

Acknowledgment

The authors were supported by the MEC Spanish grant MTM2009-10878.

References

[1] X. Cabré, A. Capella, On the stability of radial solutions of semilinear elliptic equations in all of \mathbb{R}^{n}, C. R. Math. Acad. Sci. Paris 338 (2004) $769-774$.
[2] S. Villegas, Asymptotic behavior of stable radial solutions of semilinear elliptic equations in \mathbb{R}^{N}, J. Math. Pures Appl. 88 (2007) $241-250$.
[3] L. Dupaigne, A. Farina, Stable solutions of $-\Delta u=f(u)$ in \mathbb{R}^{N}, J. Eur. Math. Soc. (JEMS) 12 (2010) 855-882.
[4] A. Farina, B. Sciunzi, E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008) 741-791.
[5] A. Farina, Liouville-type results for solutions of $-\Delta u=|u|^{p-1} u$ on unbounded domains of \mathbb{R}^{N}, C. R. Math. Acad. Sci. Paris 341 (2005) 415-418.
[6] A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of \mathbb{R}^{N}, J. Math. Pures Appl. 87 (2007) $537-561$.
[7] A. Farina, Stable solutions of $-\Delta u=e^{u}$ on \mathbb{R}^{N}, C. R. Math. Acad. Sci. Paris 345 (2007) 63-66.
[8] L. Dupaigne, A. Farina, Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities, Nonlinear Anal. 70 (2009) 2882-2888.
[9] G. Warnault, Liouville theorems for stable radial solutions for the biharmonic operator, Asymptot. Anal. 69 (2010) 87-98.

[^0]: * Corresponding author.

 E-mail addresses: mnavarro_2@ugr.es (M.A. Navarro), svillega@ugr.es (S. Villegas).

