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a b s t r a c t

In this note we give a complete answer to a question raised by Dupaigne and Farina
(2009) [8] related to the existence of nonconstant stable solutions of the equation −∆u =

f (u) in RN , where N ≤ 9 and f is a very general non-negative, non-decreasing and convex
nonlinearity.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the stability of nonconstant solutions of

− 1u = f (u) in RN , (1.1)
where f ∈ C1(R). We consider classical solutions u ∈ C2(RN).

A solution u of (1.1) is called stable if
RN


|∇v|

2
− f ′(u)v2 dx ≥ 0

for every v ∈ C∞(RN) with compact support in RN . Note that the above expression is nothing but the second variation of
the energy functional associated with (1.1) in a bounded domain Ω: EΩ(u) =


Ω


|∇u|2/2 − F(u)


dx, where F ′

= f . Thus,
if u ∈ C1(RN) is a local minimizer of EΩ for every bounded smooth domain Ω ⊂ RN (i.e., a minimizer under every small
enough C1(Ω) perturbation vanishing on ∂Ω), then u is a stable solution of (1.1).

Stable radial solutions of (1.1) arewell-understood: by thework of Cabré and Capella [1], refined by the second author [2],
every bounded radial solution of (1.1) must be constant if N ≤ 10. Also, in these works there are examples of nonconstant
bounded radial stable solutions for when N ≥ 11. For dimensions N ≤ 4, Dupaigne and Farina [3] have obtained that every
bounded stable solution of (1.1)must be constant if f ≥ 0. For the caseN = 2, Farina et al. [4] proved that any stable solution
of (1.1) with bounded gradient is one-dimensional (i.e. up to a rotation of the space, u depends on only one variable). For
every dimension N of the space, for the case of the nonlinearities f (u) = |u|p−1u, p > 1, and f (u) = eu, classification results
have been obtained by Farina [5–7]. On the other hand Dupaigne and Farina [8] considered, in any dimension, the case of
very general non-negative, non-decreasing and convex nonlinearities. Specifically they obtained:

Theorem 1.1 (Dupaigne and Farina [8]). Let I = (a, b) ⊂ R be a maximal open interval, possibly unbounded, such that
0 ≢ f ∈ C2(I; R) ∩ C0(I; R) is non-negative, non-decreasing, convex in I and vanishes at some point of I. Define

q(u) :=
f ′2

ff ′′
(u); q0 = lim sup

u→z+
q(u); q0 = lim inf

u→z+
q(u); q∞ = lim sup

u→b−

q(u),
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where z = sup

u ∈ I = [a, b] ⊂ R : f (u) = 0


and b = sup I . Assume that u ∈ C2(RN) is a stable solution of (1.1). Then, u is

constant if N ≤ 2 and

0 < q0 ≤ q0 < +∞ and 0 < q∞ < +∞ (1.2)

or if N ≥ 3 and the following conditions hold:

q0 < +∞ and
4

N − 2


1 + 1/


q0


> 1/q0. (1.3)

q∞ < +∞ and
4

N − 2


1 + 1/


q∞


> 1/q∞. (1.4)

In [8, Remark 1.3] the authors showed that conditions (1.3) and (1.4) are sharp if N ≥ 10; a counterexample is given by
the nonlinearity f (u) = eu if N = 10 and by f (u) = up (for certain p > 1) if N ≥ 11. In this remark the authors also raised
the question of whether conditions (1.2)–(1.4) are sharp in dimensions 1 ≤ N ≤ 9.

In this paper we respond to this question. We show that, in Theorem 1.1, condition (1.2) is not sharp if 1 ≤ N ≤ 2, while
conditions (1.3) and (1.4) are sharp if 3 ≤ N ≤ 9. More precisely we obtained the following results:

Theorem 1.2. Let N ≤ 2, f ∈ C1(R) a non-decreasing function and u a stable solution of (1.1). Then f is constant in the interval
J := u(RN).

As a corollary of this theorem we obtain the following result, which proves that condition (1.2) of Theorem 1.1 is not
sharp in dimensions 1 ≤ N ≤ 2.

Corollary 1.3. Let N ≤ 2, and 0 ≢ f ∈ C1(R) be a non-decreasing function vanishing at some point of R. Assume u ∈ C2(RN)
is a stable solution of (1.1). Then u is constant.

For dimensions 3 ≤ N ≤ 9, the following result shows that conditions (1.3) and (1.4) of Theorem 1.1 are sharp, at least
for the case z = −∞. It would be interesting to find counterexamples for the case z ∈ R.

Proposition 1.4. Let 3 ≤ N ≤ 9 and q > 0, satisfying

4
N − 2


1 +

1
√
q


≤

1
q
. (1.5)

Then there exists uq ∈ C∞(RN) with uq(RN) = (−∞, −1] and fq ∈ C∞(R) such that uq is a stable solution of (1.1)with f = fq,

and fq satisfies fq, f ′
q, f

′′
q > 0 in R, limu→−∞ fq(u) = 0 and q0 = q0 = limu→−∞

f ′2q
fqf ′′q

(u) = q.

Remark 1. Note that the number q∞ = limu→+∞ q(u) is not relevant, since uq(RN) = (−∞, −1]. In fact, it is a simple
matter to obtain any value q∞ ∈ [1, +∞] modifying appropriately the function fq in (1, +∞).

2. Proof of the main results

To prove Theorem 1.2 we will need the lemma below. It has not appeared anywhere but it is essentially known. In fact, a
similar result, using the same ideas as this lemma (a capacity test function), has been written in the case of the biharmonic
operator (see e.g. [9, Theorem 6]).

Lemma 2.1. Let N ≤ 2 and h ∈ L1loc

RN


with h ≥ 0. If

RN
|∇w|

2 dx ≥


RN

hw2 dx, ∀w ∈ C∞

c


RN

, (2.1)

then h ≡ 0.

Remark 2. Lemma 2.1 is optimal for dimensions N = 1, 2, but not for dimensions N ≥ 3 due to the Hardy inequality:
RN |∇w|

2 dx ≥


RN


(N − 2)2/(4∥x∥2)


w2 dx, for every w ∈ C∞

c


RN


.

Proof of Lemma 2.1. Let us first note that (2.1) remains true if we consider functionsw ∈ W 1,p
0 (B(0, R))where 2 < p < ∞,

and R > 0.
Since p > 2 and p > N , we have that W 1,p

0 (B(0, R)) ⊂


W 1,2

0 ∩ L∞


(B(0, R)). Therefore the functional w →

B(0,R)


|∇w|

2
− hw2


is continuous in W 1,p

0 (B(0, R)). The density of C∞
c (B(0, R)) in W 1,p

0 (B(0, R)), ensures that (2.1) holds

for any w ∈ W 1,p
0 (B(0, R)).
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Consider the following sequence of functions:

wn(x) =


1, |x| ≤ n,

2 −
ln |x|
ln n

, n < |x| < n2,

0, |x| ≥ n2.

It follows immediately that
RN

|∇wn|
2 dx −→ 0.

Hence, from (2.1), we deduce that
RN

hw2
n dx −→ 0.

Finally, since


RN hw2
n ≥


B(0,n) h and h ≥ 0 in RN , we conclude that h ≡ 0 in RN . �

Proof of Theorem 1.2. Applying the previous lemma with h(x) = f ′(u(x)) we deduce that f ′(u(x)) = 0 for every x ∈ RN .
Thus f ′(s) = 0 for every s ∈ J and the theorem follows. �

Proof of Corollary 1.3. Applying Theorem 1.2 we can assert that −1u = C in RN for some constant C ∈ R. Let us consider
the function

w(x) = u(x) +
C
2
x21.

– Case C > 0.
We claim that u is not bounded from below. This is obvious if w is constant. Otherwise, since w is harmonic it follows
that w is not bounded from below. Therefore u ≤ w is not bounded from below. Hence the interval J ⊂ I is not bounded
from below and f (s) = C > 0 in J . This contradicts our assumptions on f , which is non-decreasing and vanishing at some
point of I .

– Case C < 0.
Like for the previous case we deduce that u is not bounded from above. Hence the interval J ⊂ I is not bounded from
above and f (s) = C < 0 in J . This contradicts again our assumptions on f , which is non-decreasing and vanishing at
some point of I .

– Case C = 0.
In this case u is an harmonic function in RN . If u is not constant then u is neither bounded above nor bounded below.
Thus J = R and f ≡ 0, contradicting our assumptions. We conclude that umust be constant. �

Proof of Proposition 1.4. First of all, it is easily seen that 3 ≤ N ≤ 9, q > 0 and (1.5) imply that

0 < q ≤
N
4

−

√
N − 1
2

< 1. (2.2)

Define the radial function

uq(x) = −

1 + |x|2

1−q

and

fq(s) =


4q(1 − q)(−s)

q+1
q−1 + 2(1 − q)(N − 2q)(−s)

q
q−1 , s ≤ −1,

gq(s), s > −1,

where gq(s) is chosen such that fq ∈ C∞(R) and f , fq, f ′′
q > 0 inR. Since q ∈ (0, 1), it is easy to check that limu→−∞ fq(u) = 0

and q0 = q0 = limu→−∞

f ′2q
fqf ′′q

(u) = q.
It remains to prove that uq is stable. For this purpose, taking into account (2.2), an easy computation shows that

f ′

q


uq(x)


=

2q

(N − 2q)|x|2 + (N + 2)


1 + |x|2

2 <
2q(N − 2q)

|x|2
≤

(N − 2)2

4|x|2
∀x ∈ RN

and, by the Hardy inequality, we conclude that uq is stable. �
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