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Neutrinos interacting with the quintessence field can trigger the accelerated expansion of the Universe.
In such models with a growing neutrino mass the homogeneous cosmological solution is often unstable
to perturbations. We present static, spherically symmetric solutions of the Einstein equations in the
same models. They describe astrophysical objects composed of neutrinos, held together by gravity and
the attractive force mediated by the quintessence field. We discuss their characteristics as a function
of the present neutrino mass. We suggest that these objects are the likely outcome of the growth of
cosmological perturbations.

© 2008 Elsevier B.V. Open access under CC BY license.
The mechanism responsible for the onset of the accelerating
phase in quintessence cosmology remains undetermined. Explain-
ing the emergence of an accelerating phase in recent cosmo-
logical times constitutes one of the most difficult challenges of
quintessence models—the coincidence problem. A possible trig-
ger for the acceleration has been proposed recently [1,2], arising
through the interaction of the quintessence field with a matter
component whose mass grows with time. This matter component
may be identified with neutrinos [1–3]. In the proposed scenario
the neutrinos remain essentially massless until recent times. When
their mass eventually grows close to its present value, their in-
teraction with the quintessence field (the cosmon) almost stops
its evolution. The potential energy of the cosmon becomes the
dominant contribution to the energy density of the Universe. Cos-
mological acceleration ensues.

For the coupled neutrino–cosmon fluid the squared sound
speed c2

s may become negative—a signal of instability [3]. Indeed,
the sign of c2

s oscillates in the accelerating phase for one of the
proposed models [2]. A natural interpretation of this instability
is that the Universe becomes inhomogeneous with the neutri-
nos forming denser structures. Within the linear approximation
the neutrino fluctuations can be followed in these models until a
redshift around one, when the neutrino overdensities become non-
linear [4]. One suspects that some form of subsequent collapse of
these fluctuations will result into bound neutrino lumps. In this
Letter we present static, spherically symmetric solutions of the
Einstein equations that describe such structures and study their
characteristics. Astrophysical objects composed of neutrinos have
also been studied in [5,6].
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We assume that the energy density of the Universe involves a
gas of weakly interacting particles (neutrinos). The mass m of the
particles depends on the value of a slowly varying cosmon field φ

[7]. For the field equation

1√−g

∂

∂xμ

(√−g gμν ∂φ

∂xν

)
= dU

dφ
− 1

m

dm(φ(x))

dφ
T μ

μ, (1)

we approximate the neutrino energy–momentum tensor as T μ
ν =

diag(−ρ, p, p, p). The cosmology of [1,2] also assumes the pres-
ence of another gas of particles (dark matter) whose mass is inde-
pendent of φ.

We consider stationary, spherically symmetric configurations,
with metric

ds2 = −B(r)dt2 + r2(dθ2 + sin2 θ dϕ2) + A(r)dr2. (2)

For the neutrinos we assume a Fermi–Dirac distribution, with lo-
cally varying density—the Thomas–Fermi approximation. The local
chemical potential satisfies μ(r) = μ0/

√
B(r) [6,8]. Stable config-

urations are prevented from collapsing by the pressure generated
through the exclusion principle. We concentrate on vanishing tem-
perature of the neutrino gas. We do not expect qualitative changes
of our solution for a non-zero temperature. For simplicity we con-
sider one neutrino species, with the generalization to degenerate
neutrino masses being straightforward.

We parametrize the particle mass by a dimensionless func-
tion m̃, defined according to m(φ) = σ m̃[(φ − φ̄)/M], with σ an
arbitrary energy scale and M = (16πG)−1/2 � 1.72 × 1018 GeV.
Here φ̄ is a fixed reference value, close to the present value of
the quintessence field. Hence, σ is of the order of the present
neutrino mass, in the eV range or somewhat below. For con-
creteness, we consider a cosmon potential of the form U (φ) =
Cσ 4 exp[−a(φ − φ̄)/M] with a = O(1). However, the effect of the
potential on our solutions is negligible. For this reason, the pre-
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dicted astrophysical objects are largely independent of the form of
the potential, and depend mainly on the interaction between dark
energy and neutrinos. The present cosmological value of φ is given
by the requirement that U (φ) constitute about 3/4 of the critical
energy density U (φ) � 10−11 (eV)4. The cosmological value of φ is
taken as the asymptotic value φas of our local solutions for large r,
obeying (φas − φ̄)/M = φ̃as � (1/a)[25.3 + ln C + 4 ln(σ /eV)].

The equations of motion become more transparent if we de-
fine the dimensionless variables φ̃ = (φ − φ̄)/M and r̃ = σ 2r/M .
All other dimensionful quantities are multiplied with appropriate
powers of σ , in order to form dimensionless quantities denoted as

tilded. We use B̃ = B/μ̃2
0 = Bσ 2/μ2

0 and μ̃(r̃) = 1/

√
B̃(r̃). We de-

fine the radius R̃ of the compact object by the value of r̃ at which
the fermionic density becomes negligible. The physical radius is

R/Mpc � 1.1 × 10−2(σ /eV)−2 R̃.

The mass of the object is given by its Schwarzschild radius R̃s . For
r̃ → ∞ we have B = 1/A = 1− R̃s/r̃. In units of the solar mass, the
mass of the neutrino lump is

Mtot/M� � 1.2 × 1017(σ /eV)−2 R̃s.

Another important characteristic is the total neutrino number,
which we assume to be conserved. It is

N � 5.1 × 1081(σ /eV)−3 Ñ,

with

Ñ =
∞∫

0

4π r̃2ñ
√

A dr̃.

The field equations read [8]
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where a prime denotes a derivative with respect to r̃. We also have
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for μ̃ � m̃, and ñ = ρ̃ = p̃ = 0 for μ̃ < m̃. Finally, Ũ (φ̃) =
C exp(−aφ̃).

We need four initial conditions for the system of Eqs. (3). Two
of them are imposed by the regularity of the solution at r̃ = 0:
φ̃′(0) = 0, A(0) = 1. The value of B̃(0) is the only free integration
constant. Since AB(r → ∞) = 1 one has AB̃(r̃ → ∞) = (μ0/σ )−2.
As a result, the choice of B̃(0) determines the chemical potential
Fig. 1. Radial dependence of φ̃ , ρ̃ , A and B for a neutrino lump.

and, therefore, the total number of neutrinos in the lump. Finally,
φ̃(0) must be chosen so that φ̃(r̃ → ∞) reproduces correctly the
present value φ̃as of the cosmological solution. (We assume that
the time scale of the cosmological solution is very large and ne-
glect the time dependence of φ̃(r̃ → ∞).)

We consider two types of models, distinguished by the depen-
dence of the particle mass on the field:

Model I assumes m̃(φ̃) = −1/φ̃ [2], with the field φ̃ taking neg-
ative values.

Model II assumes m̃(φ̃) = exp(−bφ̃) [1], with b < 0. (Notice
that a = α/

√
2, b = β/

√
2 in comparison to [1], where a different

convention for M is used.)

In both cases we are interested in values of the field near φ̃ = 0.
For model II we can choose φ̄ such that φ̃as = 0, implying that
σ = mν(t0) equals the present neutrino mass. One infers for the
quintessence potential ln C = −25.3 − 4 ln(σ /eV). The parameter
a is fixed by requiring that during the early stages of the cos-
mological evolution the dark energy be subleading and track the
radiation or the dark matter. During the radiation and matter dom-
inated epochs, the dark energy follows a “tracker” solution with a
constant density parameter Ωh,early = n/(2a2), where n = 3(4) for
matter (radiation) [1]. Observations require a to be large, typically
a � 7 [9]. We use a = 7 in the following. The future of our Universe
is described by a different attractor, for which the dark energy
dominates. Our present era coincides with the transition between
the two cosmic attractors. The influence of the neutrinos on the
evolution of the cosmon field is determined by the second term in
the r.h.s. of Eq. (1). Demanding that today this term be equal to the
first term, that arises from the potential, fixes the present neutrino
fraction to the value Ων(t0) = −(b/a)Ωh(t0) [1]. For a realistic cos-
mology with present dark energy fraction Ωh(t0) � 3/4 one has to
adjust b to the neutrino mass. For one dominant neutrino species
we have b = −a(36 eV/mν(t0)). For model I we need to know
how close φ̃as is to zero, with σ = −φ̃asmν(t0). As compared to
model II, we have now an effective φ̃-dependent b(φ̃) = −1/φ̃,
which results in the condition φ̃as = −(1/a)mν(t0)/(36 eV) or
σ = (1/a)m2

ν(t0)/(36 eV).
In Fig. 1 we present a typical solution describing a static as-

trophysical object in model I. The chemical potential has the value
μ̃0 � 2.9. The scalar field becomes more negative near the cen-
ter of the solution, so that the neutrinos become lighter there. The
asymptotic value is φ̃as = −0.02, which corresponds to mν(t0) �
5 eV. The pressure and density of the fermionic gas vanish for
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Fig. 2. Mass vs. size for neutrino lumps in model I.

r̃ � R̃ � 0.91. The mass of the object can be deduced from the
asymptotic form of A or B for r̃ → ∞. We find R̃s � 0.12. The
total fermionic number is Ñ � 0.88. The form of the solutions in
model II is similar to the one depicted in Fig. 1.

The variation of the chemical potential results in a whole class
of solutions, depicted by the solid line in Fig. 2. We display the
dimensionless Schwarzschild radius R̃s as a function of the dimen-
sionless radius of the object R̃ . There is a maximal value for the
mass, denoted by the end of the thick line. The continuation of the
curve has the form of a spiral and is depicted by a thinner line.
This branch is unstable to perturbations that can lead to gravita-
tional collapse [10]. In order to demonstrate this fact, we plot in
the same figure R̃s as a function of Ñ/6 (dotted line). This curve
has two branches. The one depicted by a thinner line corresponds
to the thinner line of the curve R̃s(R̃). There are two possible val-
ues of R̃s that correspond to the same value of the total neutrino
number Ñ . The value on the thinner line has a larger value of R̃s

and results in a larger mass. The corresponding configuration is
unstable towards one with the same Ñ located on the thicker line.
The characteristics of the solutions depend only very mildly on the
value of φ̃as, as demonstrated by the comparison of the solid and
dashed curves. All the values of mν(t0) in the range [0,5] eV cor-
respond to φ̃as in the range [−0.02,0]. The respective R̃s(R̃) curves
lie between the solid and dashed curves of Fig. 2.

A striking feature is the existence of neutrino lumps with arbi-
trarily small mass. They correspond to the lower left corner of the
figure, where both R̃ and R̃s vanish. For such objects the contribu-
tion from gravity is negligible and their existence is a consequence
of the attractive force mediated by the scalar field. Such configura-
tions are not generic, but depend crucially on the assumed form of
m̃(φ̃). A completely different form of solutions appears in model II.
In Fig. 2 we also depict the gravitational potential Φ(r̃) = −R̃s/(2r̃)
at a distance r̃ = R̃ equal to the radius of the astrophysical ob-
ject.

The function R̃s(R̃) in model II displays a different behaviour. In
Fig. 3 we plot this function for four different values of b, namely
b = −500,−50,−4,−1. Realistic neutrino masses correspond to
large, negative b. For b = −1 (solid line) there is a maximal value
for the mass of the astrophysical objects and a branch of unsta-
ble solutions. The maximal value of R̃s is comparable for model I
and model II with b = −1, even though the corresponding radius
is larger by an order of magnitude in the second case. For b = −4
(dashed line) the maximal value of R̃s and the corresponding R̃
increase by roughly two orders of magnitude.
Fig. 3. Same for model II.

The crucial qualitative difference with model I concerns the
form of the solutions with low values of R̃s . In model I for R̃s → 0
we have R̃ → 0, while in model II we have R̃ → ∞. The attrac-
tive interaction mediated by the scalar field in model II is not
sufficiently strong to lead to bound objects with a small fermion
number. Gravity must play a role for compact objects to exist.
As |b| increases the dependence of m̃ on φ̃ becomes more pro-
nounced. The effective neutrino mass in the interior of a compact
object can become smaller without a large variation of φ̃ (and a
significant energy cost through the field derivative term). This has
two significant effects: (a) Objects with smaller Ñ and R̃ can exist.
As a result the bending of the curve R̃s(R̃) for low R̃s takes place
for smaller R̃ . (b) The configurations that are gravitationally un-
stable (indicated by the spiral in the upper part of the curve) are
shifted toward larger values of R̃s . The reason is that the neutri-
nos are essentially massless in the interior of such configurations,
carrying only kinetic energy. This makes the gravitational collapse
difficult.

The curves R̃s(R̃) in model II with b = −500 and −50 are
also depicted in Fig. 3. We have not managed to determine nu-
merically a maximal value of R̃s , as objects with huge values
of R̃s , R̃ (larger by more than twenty orders of magnitude than
the ones depicted) are possible. For comparison we note than in
model I we have a maximal value (R̃s)max = 0.80 with a corre-
sponding radius (R̃)max = 2.0. In Fig. 3 we observe minimal values
of the radius, (R̃)min = 0.54 for b = −50 and (R̃)min = 0.054 for
b = −500. The corresponding values of the Schwarzschild radius
are (R̃s)min = 1.1 × 10−5 and (R̃s)min = 1.1 × 10−8, respectively.
It is apparent that for small R̃s we have the scaling behaviour
R̃ ∼ b−1, R̃s ∼ b−3. This can be understood by noticing that in the
limit A′, B ′ → 0, A → 1, and for negligible dŨ/dφ̃, the factors of
b in Eq. (3) can be eliminated through the redefinitions bφ̃ → φ̃,
br̃ → r̃. In Fig. 3 we also depict the surface gravitational potential
Φ(R̃) = −R̃s/(2R̃) as a function of R̃ for the cases b = −500 and
−50.

In Fig. 4 we display the size R of the astrophysical objects as
a function of the present neutrino mass mν ≡ mν(t0). Restoring
physical units requires the scale σ . We use for model I a = 7 or
(σ /eV)1/2 � 0.063(mν/eV). The function R̃s(R̃) has a very mild
dependence on φ̃as for 0 � φ̃as � 0.02 (see Fig. 2). For given R̃
the variation of σ (or equivalently mν ) produces a class of as-
trophysical objects of variable physical size. They all generate the
same surface gravitational potential Φ = −R̃s/(2R̃). In Fig. 4 we
depict three such classes. The first two contain objects with strong
gravitational potentials, while the last one contains objects that
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Fig. 4. Size of neutrino lumps as a function of the neutrino mass.

generate weaker fields. Solutions with R̃ → 0 produce curves par-
allel to those in Fig. 4, but located closer to the lower left corner.
In the same figure we also depict two solutions of model II. In this
model the neutrino mass is uniquely determined by the value of b.
The two points in Fig. 4 correspond to the minimal values of R̃
for b = −50 and −500. These are R̃ = 0.54 and R̃ = 0.054, respec-
tively.

Recently, a first investigation of the coupled fluctuations of dark
matter, neutrinos, baryons and the cosmon field has been per-
formed for the models within the linear approximation [4]. For
a specific model with a present average neutrino mass of 2.1 eV,
the neutrino fluctuations grow nonlinear at a redshift around one.
The typical size of these fluctuations is large, in the range of su-
perclusters and beyond. A further investigation of the fate of these
neutrino lumps will have to follow their collapse due to the scalar-
mediated attractive interaction and gravity. This should generate
the distribution of the integration constants of the present solu-
tion, like the characteristic mass and size of the lumps.

Our study demonstrates that the presence of instabilities in
quintessence cosmologies with a variable neutrino mass may have
interesting astrophysical consequences. After a sufficiently long
time, these instabilities may lead to the formation of stable bound
neutrino lumps. Their radius and mass within the family of al-
lowed solutions (for given mν ) depend on the details of the dy-
namical formation mechanism. Since in the models of [1,2] the
neutrinos remain free streaming until a rather recent cosmologi-
cal epoch (say, z = 5), one may expect a large typical size of the
neutrino lumps (more than 100 Mpc). At the present stage of the
investigations it is not clear if such lumps have already decoupled
from the cosmological expansion—for this, the perturbations have
to grow nonlinear—or if this will happen only in the future. In the
extreme case of an early formation of a population of lumps with
subgalactic size, they could even play the role of dark matter. The
detection of lumps could proceed directly through their gravita-
tional potential, or indirectly through their attraction for baryons.
Quintessence cosmologies may provide surprises for structures on
very large scales.
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