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SUMMARY

Axonal and dendritic arbors can be characterized
statistically by their spatial density function, a func-
tion that specifies the probability of finding a branch
of a particular arbor at each point in a neural circuit.
Based on an analysis of over a thousand arbors
from many neuron types in various species, we have
discovered an unexpected simplicity in arbor struc-
ture: all of the arbors we have examined, both axonal
and dendritic, can be described by a Gaussian
density function truncated at about two standard
deviations. Because all arbors are characterized by
density functions with this single functional form,
only four parameters are required to specify an
arbor’s size and shape: the total length of its branches
and the standard deviations of the Gaussian in three
orthogonal directions. This simplicity in arbor struc-
ture can have implications for the developmental
wiring of neural circuits.

INTRODUCTION

One of neurobiology’s central problems is how neural circuits

form in development. But to even think about this problem we

need to know how many parameters are needed to specify the

form of an arbor. A typical vertebrate axonal arbor makes about

104 synapses, and a dendritic arbor receives about the same

number. If the exact location of each synapse were important,

that would mean at least 6 3 104 parameters (one each for the

three coordinates specifying the synapse location for the

neuron’s axonal and dendritic arbors) would be required per

arbor—actually the number would be larger because the assign-

ment of synapses to arbor branches would be necessary. Given

the large number of neurons in the brain, around 105 per micro-

liter, this scheme would require a prohibitive amount of informa-

tion, because at least 6 3 109 parameters would be required to

wire a microliter volume of neuropil. To explore simpler ideas

about neural network development than the brute force specifi-

cation of each synapse position, we would need to know the

smallest number of parameters needed to give a quantitative

description of an arbor’s form. This is the question we address

here.

Each axonal arbor in the brain distributes information over

some particular part of a neural circuit, a region called its ‘‘terri-

tory,’’ and each dendritic arbor samples the information available

in its territory. Discovering the structural principles that axons
and dendrites use to distribute and sample information is central

to understanding how neural circuits are constructed and how

they operate. Here we describe a simple structural principle to

which the arbors of both axons and dendrites conform: the

density of arbor branches in space is described by a Gaussian

that is truncated at around two standard deviations from the

arbor center. Because all of the arbors we have studied are

quantitatively characterized by the same type of function, only

three parameters—the standard deviations in three direc-

tions—are needed to specify how the arbor is distributed

spatially.
RESULTS

Strategy for Describing Arbor Structure
The details of arbor structure (Binzegger et al., 2004a; Uylings

and van Pelt, 2002) are, of course, important, but one can also

focus on the statistics of how arbor branches are distributed in

space, because this distribution determines what circuits can

possibly be formed (Binzegger et al., 2004b; Chklovskii, 2004;

Hellwig, 2000; Kalisman et al., 2003; Krone et al., 1986; Liley

and Wright, 1994; Lübke et al., 2003; Peters and Payne, 1993;

Shepherd et al., 2005; Sholl and Uttley, 1953; Stepanyants

et al., 2002; Stevens, 1982; Uttley, 1955). In order to characterize

the structural basis for information distribution and collection, we

have studied the arbor spatial density function, an example of

which is illustrated in Figure 1A. In this figure, we show a goldfish

two-dimensional retinotectal axon arbor, stained with DiI and

reconstructed with Neurolucida (see Experimental Procedures),

together with the arbor’s spatial density estimated by placing a

6 3 6 grid over the arbor and adding up the branch lengths in

each grid box. The density of arbor branches is highest near

the center and declines systematically toward the edges of the

arbor’s territory.

To learn the properties of the arbor density function, we must

compare this function across different types of arbors. The esti-

mate of the arbor density function presented in Figure 1A is,

however, rather crude and has insufficient spatial resolution to

permit a detailed comparison of different arbors. One way to

improve the spatial resolution for the estimate of arbor density

might be to decrease the box size of the covering grid. But this

approach will not work because most arbors, like the one illus-

trated in Figure 1A, are so sparse that estimates of density at

better spatial resolution are too noisy to be useful. The usual

way to improve the noisy estimate would be to average across

arbors, but this approach is also unsatisfactory because we do

not know in advance which arbors share the same density
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Figure 1. Separability Test for the Two-Dimensional Dendritic and
Axonal Arbors

Data from goldfish and zebrafish retinotectal axonal arbors (n = 79) and retinal

ganglion cell dendritic arbors (n = 76).

(A) An arbor density function estimated by summing the arbor’s segment

lengths in each box of a grid (6 3 6) covering a goldfish retinotectal arbor

shown beneath the estimated density. Length indicated on axis in microns.

(B) Double logarithmic plot of the product moment (mk, k = 0,2.20) as a func-

tion of the product of the separated moments (mx
km

y
k). Squares are for axonal

arbors, and circles (obscured by the density of data points) are dendritic

arbors. The equality line (top, slope = 1) and a least-squares line fitted to all

1705 data points from 155 arbors (slope = 0.966 ± 0.001) can be seen extend-

ing past the cloud of data points.

(C) Frequency histogram of slope for log(mk) versus log(mx
km

y
k), calculated by

least-squares, for each of the 79 retinotectal arbors.

(D) Frequency histogram as in (C) for 76 retinal ganglion cell dendritic arbors.
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function (so that averaging them is justified) or how to align, and

possibly scale, the arbor densities from different arbors.

Our goal, then, is to find a way of characterizing the arbor

density for individual arbors without making assumptions about

the density function’s form. Initially, we will restrict our attention

to two-dimensional arbors from goldfish and zebrafish visual

systems (retinal ganglion cell dendritic arbors and retinotectal

axonal arbors), like the one illustrated in Figure 1A, and then

consider mammalian three-dimensional arbors.

The problem with working directly with arbor densities is

that density is a local property of an arbor (each point in space

is assigned a value of the density) and therefore is noisy. To

describe individual arbors with good resolution and without

making assumptions about their form, we need a way of trans-

forming the arbor’s density function in terms of less noisy global

parameters (each one of which reflects information about the

entire arbor) rather than local parameters. To do this, we have

borrowed a standard method from probability theory in which

a probability distribution is completely characterized not by its

density but rather by its moments, like the mean, standard devi-

ation, kurtosis, and higher moments. Knowing all of the moments

of a probability distribution is exactly equivalent to knowing the

function that describes that distribution, but moments are global

parameters; the value of each moment depends on the entire

arbor.

We have used this same moment approach to characterize

arbor density functions. Arbor moments (defined below) are

easy to calculate, and the number of moments calculated deter-

mines the resolution with which the density function is described.

Generally, when the number of moments is doubled, the resolu-

tion also doubles, and we have used 21 moments to give a

resolution of about 1/20th of the arbor’s diameter. The lower-

order moments characterize the arbor density function, and

information about the fine details of arbor structure (exact loca-

tion and shape of individual branches) only begins to appear

when a very large number of moments have been calculated

(Stevens, 1982).

We seek simplicities underlying arbor structure and, thus, start

by identifying ways that arbors could be constructed to make the

density function as simple as possible. Two requirements for the

greatest possible simplicity are immediately apparent. The first

requirement is that it should be possible to change the arbor’s

distribution along one direction without affecting the shape of

the arbor’s density in other orthogonal directions. In this way,

changing the density function in each direction would not influ-

ence the density function in other directions. The second

requirement is that only one—or perhaps a few—different func-

tional forms should be used to specify arbor density functions. If

arbors differed from one another only by being stretched or

shrunken along major orthogonal axes, then rules that deter-

mined connections between arbors during development would

have to take account of just a few parameters per arbor. These

parameters, together, of course, with the propensity of the two

particular cell types to synapse, could then specify the proba-

bility of two arbors coming close enough and forming a synapse.

Both of these requirements relate to qualitative properties of

arbor density functions. The first property is separability (arbor

densities in the x and y directions are independent), and the
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second is known as self-similarity (arbor densities have the same

shape, up to some stretching or compression). There are no

standard tests for these properties, so we have developed

ones to discover whether arbor density functions are separable

and self-similar and also to determine how many different func-

tional forms for density functions are used by the brain. These

tests can be carried out by plotting the measured arbor moments

in ways described below. The goal of the following sections is

to show that the arbors we have examined ‘‘pass’’ both of

these tests: all arbors are nearly separable (we shall describe

how close they come to exact separability) and can be described

by a density function with a single functional form, a truncated

two- or three-dimensional Gaussian. Thus, arbor densities

are, we shall conclude, about as simple as they could possibly

be.

Arbor Moments
All of the arbors we used were digitized using Neurolucida and

thus are represented as a collection of very short line segments,

with the ith segment having, for the two-dimensional arbors,

a midpoint location (xi, yi). The moments we calculate are all

weighted averages of these segment midpoint locations raised

to some power; the weight assigned to each segment in this

average is its length. For reasons that will become clear later,

we use two sorts of moments, described first for two-dimen-

sional arbors. The first kind of moments are called here ‘‘product

moments,’’ denoted by mk. To calculate mk, we sum oven all

segments the quantities (xiyi)
k—the product of the ith segment

midpoints xiyi raised to the kth power—with the ith quantity

weighted by ith segment length. The integer k is called the

moment order and ranges from 0 to 20 in the following. For

what is designated ‘‘separated moments,’’ we sum over all

segments in the arbor (again with the weight being determined

by the arbor length for each segment) either xk
i or yk

i, the x or y

segment midpoint coordinates raised to the kth power. These

separated moments are denoted mx
k or my

k. Note that the x

and y here are superscripts indicating whether xi or yi was aver-

aged, and are not powers. The moments are defined in the same

way for the three-dimensional arbors, except that the three coor-

dinates (xi, yi, and zi) are needed to give the location of the

midpoint of each segment. In Experimental Procedures (Calcula-

tion of Arbor Moments), we give a more detailed description of

how moments are calculated.

Arbor Density Separability (2D Arbors)
We start by asking whether arbor density functions are separable

in Cartesian (x,y) coordinates. Any function f(x,y) is separable if

it can be written as the product of two functions g(x) and

h(y): f(x,y) = g(x)h(y). What this means is that the function f(x,y)

can be changed in the y direction, by stretching h(y), for example,

without altering the function g(x) in the x direction. For example,

the function

fðx; yÞ= e�ðx
2=a2 + y2=b2Þ =

�
e�x2=a2��

e�y2=b2�
is separable because it can be written as a product of the two

functions indicated above, and stretching the function in the y

direction (by changing b) has no effect on its x dependence. An
example of a function that is not separable is f(x,y) = exp(�(xy)2),

where f(x,y) would extend a larger amount over space in the x

direction than f(x,2y).

If an arbor’s density is separable, then the product moments

defined above equal the product of the separated moments

(see Experimental Procedures: Theory), for moments of all

orders: mk = mx
km

y
k, for all k. Because the moments mk become

very large (m20 is close to 1080 for the largest fish arbors), we plot

log(mk) against log(mx
km

y
k) for k = 0,2.20 in Figure 1B. If the

densities for fish retinal ganglion cell dendritic and axonal arbors

are separable, they should fall along the equality line with a slope

of 1 that passes through the origin. Clearly, the arbor density

functions tested in Figure 1B for both the dendritic and axonal

arbors are approximately, but not exactly, separable: although

the line fitted to the data passes through the origin, the slope

of log(mk) against log(mx
km

y
k) is a few per cent less than 1.

The deviation from exact separability is documented in Figures

1C and 1D, where histograms for all slopes of log(mk) versus

log(mx
km

y
k) for individual arbors appear. Exact separability

(with some random error) should have slopes distributed around

1, but the observed slopes are distributed around 0.95 for

dendritic arbors (Figure 1C) and 0.97 for axonal arbors

(Figure 1D).

Clearly, these arbor density functions are ‘‘almost’’ separable,

but how are we to interpret the observed departure from exact

separability. Although there is no standard way for quantitating

how close a function comes to being separable, there is in this

case a natural way to measure departures from exact separa-

bility. The only two-dimensional function that is circularly

symmetric and separable in Cartesian coordinates is a Gaussian

(Jaynes, 2003), but a Gaussian truncated at a circular boundary

(a Gaussian-like function that vanishes outside of the circular

boundary) would no longer be separable (see Suplemental

Experimental Procedures: Arobr Separability). As the location

of the truncation moves farther from the center (measured in

number of standard deviations to the truncation boundary), the

departures from exact separability decrease smoothly until,

when the truncation moves to infinity, the function is exactly

separable. Deviations from exact separability, then, can be

measured in terms of the distance in standard deviations to the

boundary where the Gaussian’s value vanishes.

Because many of the fish arbors are approximately circular,

close to separable, and terminate at their boundaries, a truncated

Gaussian arbor density function should be a reasonable descrip-

tion, and the deviation from separability can be specified as the

location of the arbor territory boundary measured as number of

standard deviations. Using the equations derived in Suplemental

Experimental Procedures: Arbor Separability, we have evaluated

the data presented in Figure 1B and find the departure from

exact separability is what would be expected if the arbors

were, on average, described by a Gaussian density function

that was truncated at about two standard deviations. Figure S1

documents the departure from separability with a related but

different method with the same conclusion.

Our use of a truncated Gaussian to quantitate the departure

from exact separability certainly does not mean that the arbor

density function must be a truncated Gaussian, but it does reveal

how deviations from exact separability of the magnitude found
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Figure 2. Properties of the Arbor Density

Function of Two-Dimensional Axonal and

Dendritic Arbors

(A) Double logarithmic plot comparing of the size

of arbors measured by their convex hull area

(units: mm2), with arbor size measured by the

product of the arbor standard deviations in the

x and y directions (units: mm2). Squares represent

data from 79 axonal arbors and circles from 76

dendritic arbors. Least-squares line has a

slope = 1.013 ± 0.017 and intercept 1.135 ± 0.047.

(B) Plot of log(mk) as a function of log(sx sy) for

k = 0,2.20. Circles for dendritic arbors and

squares for axonal arbors. Each arbor provides

a single point for each k for a total of 1705 data

points on the graph. Straight lines superimposed

on data points are from least-squares fits.

(C) Slopes of least-squares fits to log(mk) as a

function of log(sx sy) for moment orders (k) with

k = 0,1.20. 95% confidence intervals are just

visible for the last four data points; for other data

points, the 95% confidence intervals are smaller

that the radius of the plotting symbols. The

straight line superimposed on data points has

a slope of 1.005 ± 0.0001 and an intercept of

0.546 ± 0.002 determined by a least-squares fit.

(D) Intercepts of regression lines in (B) as a func-

tion of moment order. Error bars are 95% confi-

dence intervals. The smooth curve through the

points is what would be predicted from a Gaussian

arbor density function truncated at a circular

boundary at 1.95 standard deviations from the

center of the arbor. The upper smooth line is the

prediction of a Gaussian truncated at a circular boundary at 2.95 standard deviations, and the lower smooth line is the prediction of an arbor density function,

normalized to have the observed arbor standard deviation, with a constant density inside a circular boundary.
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could naturally arise and gives a feeling for the magnitude of the

effect. In summary, then, we can say that arbor density functions

for the Figure 2 data are nearly separable, so an arbor’s density

could be stretched or compressed (or modified in other ways) in

one direction without appreciable changes in an orthogonal

direction.
Measures of Arbor Size (2D Arbors)
Arbors vary greatly in size from one neuron to the next, and we

wish now to compare the density functions, as reflected in their

moments, for arbors with different sizes of territories. We need,

then, to identify a quantitative measure of territory size. A first

possible measure, one often used to specify the size of retinal

ganglion cell dendritic arbors (Wässle and Boycott, 1991), is

the area of the smallest enclosing convex polygon (the convex

hull). A second potential size measure is the product of the

standard deviation of the arbor in the x and y directions, which is

sxsy =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mx

2my
2

m0

s
;

the arbor length m0 appears here to normalize the total arbor

‘‘weight’’ to 1 so arbors with different lengths can be compared.

Figure 2A presents a double logarithmic plot of convex hull area

as a function of sxsy for our fish arbors, and the superimposed

line is a least-squares fit to the data with a slope of 1.013 and
48 Neuron 66, 45–56, April 15, 2010 ª2010 Elsevier Inc.
an intercept 1.135 = log(13.6); thus, the quantity sxsy is propor-

tional to the territory area (estimated by the convex hull) so that

these two measures of arbor size are equivalent. We use sxsy

as our measure of territory size in the following. This size

measure was selected to provide a simple test for self-similarity

described in the next section.

Because the convex hull area A of arbors is proportional to the

product sxsy with A = pr2 = 13.6sxsy, (r is the equivalent radius

that gives a circle of area A, and the 13.6 comes from the inter-

cept of the regression line in Figure 2A), the distance r to the

arbor boundary can be expressed in units of the average stan-

dard deviation s = (sxsy)
1/2. For the fish retinal ganglion cell

dendritic arbors and retinotectal axonal arbors, r = 2.08s, a value

similar to what is needed to account for the deviation in Figure 1B

from exact separability.

Arbor Density Self-Similarity (2D Arbors)
In the preceding, we have shown that arbors are characterized

by density functions that are very nearly separable and have

established a measure of arbor territory size (sxsy). We now

turn to the question: what functional forms do arbor density

functions have? We do not know in advance how many different

functional forms the brain might use for arbors. We define a class

of arbors as all arbors characterized by a density function

with a single functional form. For example, all of the arbors that

could be described by a Gaussian density function would
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constitute one class, and arbors described by a pill-box function

(constant arbor density inside a circular boundary, zero outside

the boundary) would define a second class of arbors. A third

class of arbors might be described by a doughnut-like density

function.

Earlier, we pointed out that, in addition to separability, another

desirable property for a density function is that it have the same

shape for all arbors in the same class, but the arbor density is

perhaps stretched or compressed from one arbor to the next

within the class. For example, a class of arbors might be

described by pill-box functions, but members of this class might

have pill-boxes with different diameters. And some members of

the class might be described by pill-boxes with an elliptical

shape where the diameter in one direction would be stretched

more than the diameter in the orthogonal direction. Functions

that have the same shape (for example, pill-box) but differ only

in being smoothly stretched or compressed along one or more

orthogonal axes (circular and elliptical pill-boxes of different

sizes, for instance) have been studied, and are called self-similar

functions (Barrenblatt, 1996; also see Supplemental Experi-

mental Procedures: Self-Similar Functions for a more complete

description of this class of functions and for examples of families

that are and are not self-similar).

To determine the extent to which an arbor density function is,

indeed, self-similar, we have developed a test using the arbor

moments mk that appeared above in our study of separability.

In this test, the moments for all arbors from one class fall along

one set of lines, and the moments for arbors of another class

will fall along a second set of lines. Thus, the test determines

how many classes of arbors are present and whether the arbors

of each class have the property of self-similarity (all density

functions have the same shape, except for being stretched or

compressed in one or more directions).

This test for self-similarity for arbors in the same class (see

Experimental Procedures: Theory) takes place in two steps.

The first step is to plot, for different arbors, log(mk) versus

log(sxsy) for the various values of k = 0,1,..20. Arbors that share

a self-similar density function should fall on straight lines, with

a different slope for each value of k. The second step in the

test is to plot the slope of each line generated in the first step

versus the associated value of k; if the function is self-similar,

the slope of this plot should be 1 with an intercept that is not

known in advance. Note that in this test for self-similarity, every

individual arbor is compared to all other arbors because each

arbor is represented by its 21 quantities, the values of its 21

moments, that appear in our plots. Any specific arbors that

deviate systematically from others can be identified by visual

inspection.

This test can fail for two reasons. The first reason is that the

density function that describes the arbors being tested is not

a self-similar function. The second reason is that arbors of

different classes, that is, with different functional forms for their

density functions, are being compared. This second type of

failure can occur even if each of the different classes into which

the arbors fall is described by a self-similar density function.

When data from multiple classes of arbors are superimposed,

the data points do not, as described below, fall on a single set

of lines, and the result can be difficult to interpret. In general, it
might be hard to identify the cause for a failure of the self-simi-

larity test, but if the test is ‘‘passed,’’ this must mean that the

arbors being compared are all described by a density function

with a single functional form (all fall into the same class).

The test for self-similarity as just described gives no informa-

tion at all about the shape of the density function being studied,

and a function of any shape at all that is altered by smoothly

stretching or compressing along orthogonal axes will pass the

test. All of the information about the shape of the density function

is contained in the intercepts of the lines fitted in the first step of

the test for self-similarity. Different functions each have a

different pattern of intercepts as the moment order varies, and

any proposed density function can be tested to see whether it

provides an adequate description of the data by comparing the

observed and predicted pattern of intercepts (see Experimental

Procedures: Intercepts for self-similarity test). Going from the

moments of a function to the function itself is, however, an old

problem that is unsolvable without additional constraints (Jimbo,

2004). The more similar in shape two functions are, the closer

their pattern of intercepts, so one can say, as will be seen, that

whenever the moments of density functions for different arbors

fall close to the same set of lines, those arbors must have density

functions that are nearly the same shape.

Figure 2B is a plot, for k = 0,2,.20 (see Figure S4 for a plot of

all 21 moments), of log(mk) versus log(sxsy) (first step in test for

self-similarity) for the 155 fish retinal ganglion cell dendritic

arbors and retinotectal axonal arbors that provided the data for

Figures 1 and 2A. These data do not differ significantly from

a single set of straight lines (fitted by least-squares) as required

to pass the first part of the test for a single self-similar density

function. Figure 2C is a plot of the slope of each line for k =

0,1,.20 in Figure 2B (and for odd-numbered moments not

shown in Figure 2B; see Figure S4) as a function of the corre-

sponding moment order k (second step). The slope of the line

in Figure 2C, predicted to be 1, is determined by a least-squares

fitting of the data to be 1.005 and is not significantly different

from 1. Clearly, our population of fish arbors can all be described

by a single density function that is self-similar.

The results from Figure 2 we have discussed above mean that,

because the data in Figure 2B are well fitted by a single set of

lines, the same self-similar arbor density function describes all

of the fish dendritic and axonal arbors we have examined. But

the data as presented do not uniquely specify the functional

form of the density function. As noted above, any self-similar

function will pass the test we have used, but different self-similar

functions will have different patterns of intercepts for the various

arbor moments. As an example, Figure 2D shows the measured

intercepts from Figure 2B and the predictions (see Experimental

Procedures: Intercepts for self-similarity test) from a Gaussian

density function truncated at 1.95 standard deviations at a

circular boundary (line passing through the data points). Predic-

tions from the closely related Gaussian density function trun-

cated at 2.95 (upper theoretical line) show that this relatively

small change in the density function (truncating the Gaussian

at one additional standard deviation) is clearly a poor fit. Another

possible density function is a ‘‘pill-box,’’ a density function that

assumes uniform coverage by the arbor within its boundary,

but it is also unsatisfactory (lower theoretical line). We can say,
Neuron 66, 45–56, April 15, 2010 ª2010 Elsevier Inc. 49



Figure 3. Separability Test for Three-Dimensional Axonal and

Dendritic Arbors from Mammalian Neurons

(A) Double logarithmic plot of the product moments (mk) as a function of the

product of separated moments (mx
km

y
km

z
k) for k = 0,2,.20. The plot is based

on data from 1091 neocortical axonal and dendritic arbors (squares) and 521

hippocampal arbors (both axonal and dendritic plot symbols are obscured

because the graph contains 18,590 data points). Three straight lines have

been fitted to the data and can be seen extending from the cloud of data

points. The upper line has a slope = 1. A regression line, fitted to the data

from hippocampal cells and constrained to pass through the origin, has a slope

of 0.975 ± 0.0004 and appears in the middle. The lowest regression line, with

a slope of 0.942 ± .0003, was fitted to the neocortical data points.

(B) Frequency histogram of slopes fitted to log(mk) as a function of

log(mx
km

y
km

z
k) for 521 individual hippocampal arbors with k = 0,2.20.

(C) Frequency histogram, as in (B), from 1091 neocortical arbors.
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then, that if we approximate the fish arbor density function as

a Gaussian truncated at 1.95 standard deviations, we have a

statistically adequate and very compact description for all of

the data in Figures 1B and 2B–2D. Although we can exclude a

Gaussian that is truncated at 2.95 standard deviations, and

a pill-box density function, there is a range of functions close

to a Gaussian truncated at 1.95 standard deviations that we

cannot exclude.

Nevertheless, we have achieved a simple and statistically

adequate description of the data in Figures 1B and 2. The 1705

data points in Figure 2B (and 3255 data points in Figure S4) can

be predicted (neglecting scatter) with just two numbers: the

intercept of the straight line in Figure 2C (0.546) and the location

of the arbor truncation (1.95 standard deviations) for a Gaussian

density function.
50 Neuron 66, 45–56, April 15, 2010 ª2010 Elsevier Inc.
Three-Dimensional Mammalian Arbor Densities
Does the simplicity of the arbor density function found for the

two-dimensional fish arbors described above extend to three-

dimensional arbors in the mammalian brain? We have tested

the density functions of 1612 arbors from the mammalian brain

for separability and self-similarity. These arbors were recon-

structed in Neurolucida, and include axons and dendrites from

various neocortical areas in humans, monkeys, cats, and

rodents (1091 arbors) and from the rat hippocampus (521).

Pyramidal, stellate, granule, and a wide variety of inhibitory cell

types—reconstructed by 22 different laboratories—are included

(see Experimental Procedures). For pyramidal cells, we calcu-

lated the moments for basal and apical dendritic arbors

separately. Although not an issue for the reconstructions that

we have used, we would have excluded long, unbranched

segments as part of an arbor. For example, if an axon arborized

in two well-separated locations, we would consider this as two

different arbors and exclude the connecting, unbranched axon

connecting the two arbors.

Figure 3A (the separability test) displays a double logarithmic

plot of the product moment mk as a function of the product of

the separated moments mx
km

y
km

z
k, for even values of k = 0 to

20. As with the two-dimensional fish arbors, these three-dimen-

sional arbors fall close to the equality line but depart from exact

separability. The slopes of log(mk) versus log(mx
km

y
km

z
k), deter-

mined by a least-squares fit for individual arbors, appear in the

histograms for neocortex (Figure 3B) and hippocampus

(Figure 3C) with k = 0,2,.20. As for the fish arbors, the magni-

tude of these deviations from exact separability is what would

be expected for a three-dimensional Gaussian density function

truncated at around two standard deviations (also see

Figure S2, which documents departures from exact separability

in a related but different plot).

We also carried out the two-step test for self-similarity of the

arbor density functions. For the first step of the test, Figure 4A

displays a double logarithmic plot of the product moments mk

as a function of arbor size as measured by the product sxsysz

together with least-squares fits to the data for moments

0,2,.20 (see Figure S6 for all moments). As with the fish arbors,

the data fall along a single set of straight lines for moment values

that range over about 175 orders of magnitude (up to 10175). In

the second step of the test for a single self-similar density func-

tion, the slopes of the fitted lines in Figure 4A (together with the

slopes fitted to the odd-numbered moments not presented in

the figure; see Figure S5) are plotted as a function of the moment

order k in Figure 4B. The least-squares fit to the data in Figure 4B,

predicted to have a slope = 1, has a slope of 1.035. As with the

fish arbors, then, these mammalian arbors all share (within the

statistical limits of our resolution) a single self-similar density

function, because data points fall along a single set of lines,

one for each moment order.

Finally, the intercepts for the least-squares fits to the Figure 4B

data are plotted as a function of moment order (k) in Figure 4C.

Superimposed on these observed intercepts are those expected

if the arbor density function were a three-dimensional spherical

Gaussian truncated at 1.7 standard deviations (curve through

the data points). For comparison, the predicted intercepts for

a Gaussian density function truncated at 2.7 standard deviations



Figure 4. Test for Self-Similarity of Three-

Dimensional Mammalian Arbors

(A) Double logarithmic plot of mk as a function of

sx sy sz for 1091 neocortical and 521 hippocampal

arbors (both axonal and dendritic) for k = 0,2.20.

Each of the 1612 arbors provided a data point for

each k. Straight lines are least-squares fits, one for

each value of k.

(B) Plots of slopes of regression lines fitted to

log(mk) as a function of log(sx sy sz) for the arbors

represented in (A) with k = 0,1,2,..20. 95% confi-

dence intervals for each slope is less than the

radius of the plot symbol. The regression line

plotted over the data points has a slope = 1.035 ±

0.001 and an intercept = 0.332 ± 0.011.

(C) Intercepts of the regression lines that appear in

(A) as a function of moment order. The error bars

indicate 95% confidence intervals. The line

through the data points is predicted from a

Gaussian arbor density function that is truncated

at 1.7 standard deviations. For comparison, the

predictions of a Gaussian arbor density function

truncated at 2.7 standard deviations (top smooth

line) and an arbor density function (normalized to

have the observed intercept for k = 2) with

constant density inside a spherical boundary.
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(upper theoretical curve) and a three-dimensional pill-box

density function that has constant density within the arbor

boundaries (lower theoretical curve) are displayed (see Experi-

mental Procedures: Intercepts for self-similarity test) and are

outside the 95% confidence limits. We can say, then, that a

truncated Gaussian gives, in a statistical sense, a satisfactory

description of our population of three-dimensional mammalian

arbors. The 17,831 data points in Figure 4A (and 33,852 data

points in Figure S5) are described (neglecting scatter) by just

two numbers: the intercept of the line in Figure 1B (0.332) and

the location of the truncation of the Gaussian fitted to the data

(1.7 standard deviations).

DISCUSSION

We have shown that the density functions for all of the arbors we

have examined share two qualitative properties: the density

functions are very close to being self-similar and separable.

When we started our analysis, we had anticipated that arbors

would fall into a number, possibly a large number, of distinct

classes, each characterized by its own functional form for its

arbor density function. But—within the limits of our resolu-

tion—we find that all arbors can be described by a single density

function. On reflection, this observation is perhaps less

surprising than we first thought. Because the genetic networks

responsible for pattern formation are frequently conserved

through evolution, comparable structures with different sizes

often are described by self-similar functions (Stevens, 2009),

and one might anticipate that a single set of pattern formation

rules could be used to generate most or all arbors.

How sensitive is the test we have used for self-similar func-

tions? That is, how firm is our conclusion that the arbor density

function is, indeed, self-similar and to what extent can we confi-

dently conclude that all arbors are described by the same func-
tional form? It is a remarkable fact that the functions describing

the smooth stretching and shrinking of the arbors must, if the

arbor density function is self-similar, be power functions (see

Stevens, 2009, for a proof and references). This is the origin for

the requirement that the lines in Figures 2B and 4A are straight

rather that being curved, and there are many examples of func-

tions for which curved lines occur in these plots (see, for example,

Supplemental Experimental Procedures: Self-similar functions

for families of functions that would not pass our test for self-simi-

larity). This is also the source of the requirement that the plots in

Figures 2C and 4B have a slope of 1 and, again, the first test for

self-similarity might be passed and the second not. In both cases,

the predictions made by the requirements of self-similarity are

not, in the statistical sense, significantly different from the data.

What we can say, then, is that, within the scatter of the data, all

arbors can be described by a single self-similar arbor density

function. We do not know what fraction of the scatter observed

in our plots is the result of noise in estimating density function

moments from sparse arbors and what fraction might arise from

small departures from self-similarity or the presence of very

similar multiple functional forms for the arbor density functions.

We can also conclude that all of our data can be adequately

described—in the sense that predictions based on a truncated

Gaussian are not statistically different from the data—by a

density function that is a truncated Gaussian. Figures 2D and

4C demonstrate that the properly truncated Gaussian gives a

good fit and that two alternative candidate density functions—

a Gaussian truncated at one additional standard deviation

and a uniform density—can clearly be excluded. Obviously,

though, a range of potential arbor density functions cannot be

excluded, those that are close enough to the best-fitting trun-

cated Gaussian to fall within our window of uncertainty.

Our final conclusion is that arbor structure is governed by a

simple general principle (all arbors are described by a truncated
Neuron 66, 45–56, April 15, 2010 ª2010 Elsevier Inc. 51
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Gaussian density function), but often general principles have

exceptions. Are there arbors whose density function cannot be

described by a truncated Gaussian? We have not examined inver-

tebrate arbors, but we expect that some, perhaps many, may

depart from the description given above. For vertebrates, one

obvious nonconforming case is the class of arbors formed by

cerebellar parallel fiber axons that must fit a one-dimensional

pill-box density function. Another potential case that comes at

once to mind is the class of two-dimensional mammalian arbors

like the dendritic trees of cerebellar Purkinje cells and hippo-

campal neurons grown in cell culture. The databases available

unfortunately have only a small numberof mammalian two-dimen-

sional arbors. Those arbors that are available, however, appear to

have the same density function as the fish arbors, because their

moments fall along the least-squares lines fitted to fish axonal

and dendritic arbors in Figure 2B (see Figure S6 for Purkinje cell

dendritic arbors and hippocampal neuron dendritic arbors grown

in cell culture). Because the sample size is small, we feel that no

definite conclusions can be drawn about the available mammalian

two-dimensional arbors, but we have no evidence that these

arbors differ from the two-dimensional fish arbors.

The simple design principle for arbor structure we have

discovered immediately leads to two classes of questions.

How is this principle implemented during the development of

arbors? And why did evolution select this particular principle?

Arbors seem to grow by extending trial branches that are either

stabilized by synapse formation or withdrawn (Cline, 2001; Niell

and Smith, 2005). Furthermore, the branches of an arbor avoid

one another and do not touch (Gao, 2007). Such a process can

be described as a self-avoiding random walk, and it is therefore

surprising that a Gaussian density function results. It is well known

that a random walk will generate a Gaussian density function, but

it is also well known that self-avoiding random walks result in non-

Gaussian density functions (de Gennes, 1979). This means that

there must be some special feature of arbor growth that distin-

guishes it from the self-avoiding random walks that have been

studied. When this feature is identified, an important biological

question will also have been identified: what is the molecular bio-

logical basis for those particular arbor growth rules that are

responsible for generating Gaussian arbor density functions.

The question of why evolution selected the Gaussian arbor

density function can be answered in different ways. One way is

to consider the computational advantages of a Gaussian density

function, and a second way relates to the development of neural

circuits.

The Gaussian is a unique function with properties that should be

advantageous for arbors whose job is to distribute and sample

information displayed inneuralmaps. One of the special properties

of Gaussians, their separability, has been discussed above. A

second unique property is that the Gaussian is the function of

a given size (measured by the standard deviation) that has the

maximum entropy. What this means is that a Gaussian arbor

distributes or samples information in the most random way over

its territory so that synaptic partners will have the best chance of

finding their correct mate and arbor ‘‘traffic jams’’ would be mini-

mized. A recent study of pyramidal cell basal dendrites (Wen

et al., 2009) also used a statistical approach to describe arbors

and found that the same spatial correlation function could fit the
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data from many of the arbors in their sample. These workers also

argued that the arbor structure maximizes entropy for a given arbor

length and territory size (related to our second product moment).

Although our understanding of axon guidance, map formation,

and neuronal fate determination has grown rapidly in recent years

(Bertrand et al., 2002; Charron and Tessier-Lavigne, 2007;

Clandinin and Feldheim, 2009; Flanagan and Vanderhaeghen,

1998; Hsieh and Gage, 2004; Jessell, 2000; Louvi and Artava-

nis-Tsakonas, 2006; Luo and Flanagan, 2007; Price et al., 2006;

Tessier-Lavigne and Goodman, 1996), we still know little about

how synaptic partners are selected, a crucial step in the formation

of neural circuits. One popular theoretical possibility is that each

synaptic connect is uniquely specified. Another possibility is

that connections are made at random with a probability that is

related to the chances that pre- and postsynaptic partners

happen to find each other and the probability that the particular

partners will form a synapse depending on the cell types involved.

The first alternative involves, as noted in the Introduction, the use

of a vast quantity of information, whereas the second possibility

seems, given what is known about map formation (Clandinin

and Feldheim, 2009; Luo and Flanagan, 2007; Price et al., 2006),

to be a more easily believable alternative for the vertebrate brain.

The simplicity of arbor form that we have discovered makes

the second possibility even easier to implement and could be

the reason evolution has selected this simple design principle

for arbor structure. The economy of a single density function

for all arbors means that any arbor can be described by just a

few parameters: location in the brain of the arbor’s center of

mass (three parameters), orientation in the brain (two parame-

ters), and a dilation factor in three orthogonal directions (three

parameters). This minimal characterization of arbors suggests

a rather simple model for circuit development. Neurons have

an identity that depends on their location and time and place

of birth, and each neuron needs to know where to put its arbors,

what orientation the arbor should have, and how far it is to grow

in each of three directions. Synapses are then made in a way that

depends on the probability that one arbor (an axon, for example)

will be able to contact another arbor (a dendrite)—this probability

depends jointly on the arbor density functions—and on the prob-

ability that one cell type will make or accept a synapse with

another cell type. Such a view is very simple, and the most

difficult part is how one cell decides to synapse with another,

something that is poorly understood.

An even simpler mechanism can be envisioned. One might

suppose that a cell uses spatial cues to decide where its arbor

should reside and then makes synapses with acceptable targets

in that region until the number of targets has been exhausted.

This type of model could perhaps, with the proper rules,

generate the arbors with the properties we describe and account

for how circuits are formed.

EXPERIMENTAL PROCEDURES

Arbor Visualization

Goldfish (Carassius auratus) were obtained from local pet stores and zebrafish

(Danio rerio) were maintained in the Salk Institute animal facility. Fish were

anesthetized with 0.1% tricane methanesulfonate and perfused through an

intracardiac catheter constructed from a glass micropipette. For perfusion,

phosphate-buffered saline (0.8 M PBS), followed by 4% paraformaldehyde



Neuron
was used. For DiI (Molecular Probes, Eugene, OR) staining of retinotectal

arbors, the brain was removed from the fish, fixed in 4% paraformaldehyde

for 2 hr, and a small crystal of DiI was inserted into a nick in the optic nerve.

The brain was maintained in fixative at 37�C for about 5 days and then

whole-mounted in fixative and scanned with a confocal microscope

(LSM510; Carl Zeiss, Thornwood, NY). Arbors in the confocal stack were

reconstructed with Neurolucida (Microbrightfield, Williston, VT).

For Figures 1 and 2, we also used retinal ganglion cell dendritic arbors from

zebrafish and goldfish of different sizes. These arbors have been described

earlier (Lee and Stevens, 2007).

Arbors (Figures 3 and 4) from various neocortical areas and hippocampus

and including various cell types and species (rat, cat, monkey, and human),

reconstructed in Neurolucida by 22 laboratories, were downloaded from the

database at Neuromorpho.org; we used all of the arbors available on June

13, 2007, for ‘‘cortex’’ (1091) and for ‘‘hippocampus’’ (521), except that hippo-

campal neurons grown in culture were excluded. The hippocampal arbors

from cultured cells and cerebellar Purkinje cell dendritic arbors gave data for

Figure S6. All of the mammalian neurons that we have studied can be viewed

and additional information about them found at Neuromorpho.org.

Calculation of Arbor Moments

How are arbor moments calculated? Teleost (zebrafish and goldfish) retinal

ganglion cell arbors, which we consider first, are flat, disk-like structures

(Figure 1A) that can be reconstructed as a stick figure consisting of many

straight, short segments; the center of the ith segment is at location (xi, yi)

and the length of this segment is wi. The total length m0 of the arbor is, for

an arbor approximated by N segments, just the sum of the lengths of all of

the segments; the 0th moment (denoted as m0) then is

m0 =
XN

i = 1

wi :

The (j,k)th moment mj,k is defined as

mj;k =
XN

i = 1

xi
jyi

kwi:

Although moments are defined for any pair of positive integers j and k, in

practice we will need only ones for which j = k or either j or k is zero. If j = k,

so both coordinate variables are raised to the same power, we use the short-

hand notation mk = mk,k (note the single subscript) and call this a product

moment. When the exponent for either x or y is zero, we use the notation

my
k = m0;k=

ffiffiffiffiffiffiffi
m0

p
or

mx
k = mk;0=

ffiffiffiffiffiffiffi
m0

p

and refer to these as the separated moments in the y or x direction. The

quantity ffiffiffiffiffiffiffi
m0

p

appears in the definition of the separated moments because the weights wi are

not normalized to sum to 1 (like a probability) but rather sum to the total arbor

length m0; this normalization is required later for the test of separability that

follows. Later we shall consider three-dimensional arbors. For these arbors,

the moments involve the product (xi,yi,zi), and we have, in addition, the

separated moment mz
k. Furthermore, the separated moments for the three-

dimensional arbors are normalized by m0
2/3 rather than by m0

1/2 as are the

separated moments for the two-dimensional arbors.

Because the densities of the many arbors are nearly circularly symmetric

(spherically symmetric for three-dimensional arbors), the odd-numbered

moments vanish on average. To still make use of the information contained in

the odd-numbered moments for all arbors, we calculate product moments as

mj;k;l =
X

i

jxi
jyi

kzi
l jwi ;

with l = 0 for the two-dimensional arbors, except (see next paragraph) for

the product moment m1 and the separated moments mx
1 and my

1 where the

absolute value is not used.
We take the arbor’s center of mass as the origin of the coordinate system

so that mx
1 = my

1 = 0, rotate the arbor so that the arbor’s covariance m1,1 =

Si(xiyi)wi = 0 (or m1,1,1 = 0 and mz
1 = 0 for three-dimensional arbors), and calcu-

late the first 21 moments (0 through 20) for each arbor.
Theory

The definition of a self-similar function f(x.l) is, for present purposes, that the

function conforms to the relation f(x,l) = lh f(x/l,1) for every nonnegative size

parameter l and a fixed value of h (Barrenblatt, 1996). Here f(x,l) and its

higher-dimensional versions with arguments (x,y) or (x,y,z) represent the arbor

density function. If the arbor density depends on more than a single indepen-

dent variable, then there may be a different size parameter for each dimension.

For example, for two dimensions, a self-similar arbor density f(x,y,lx,ly), with

size parameters lx and ly for the x and y spatial variables, would have the

property f(x,y,lx,ly) = (lxly)
h f(x/lx,y/ly,1,1).

For simplicity, some calculations below are carried out for a single

dimension, and any differences in applying the equations to two- and three-

dimensional arbors will be noted.

For a two-dimensional arbor density (assumed for simplicity to have a single

size parameter l), we use the product moment mk(l) that is

mkðlÞ=
Z N

�N

Z N

�N

dxdy
���xyjk fðx; y; lÞ

=

Z N

�N

dx

����xjkgðx; lÞ
Z N

�N

dy
���yjkgðy; lÞ

= mx
kðlÞm

y
kðlÞ:

The second step assumed that f(x,y,l) m0(l) = g(x,l)g(y,l) is separable and

circularly symmetric, and the third step made use of the definition of the sepa-

rated moments mx
k and my

k that are defined by the integrals in the product just

preceding. The relation above forms the basis for our separability test.

In order to use the arbor moments to test for self-similarity of the arbor

density function, we must derive a relationship between various orders of

these moments that depends essentially on the properties of self-similarity.

The kth product moment mk(l) for a two-dimensional arbor with, for conve-

nience, the same size parameter l for both independent variables, is defined

to be

mkðlÞ=
Z N

�N

dx

Z N

�N

dyfðx; y; lÞ
���xyjk

= l2h

Z N

�N

dx

Z N

�N

dyfðx=l; y=l; 1Þ
���xyjk

= l2h + 2 + 2k

Z N

�N

dx

Z N

�N

dhfðx; h; 1Þ
���xhjk

= l2ðh + 1 + kÞmkð1Þ

where the definition of self-similarity was used in the second line, the change of

variables x = x/l and h = y/l was made in the third line, and mk(1) is the kth

moment for an arbor (or density function) whose size parameter has a value

l = 1. Notice that mk(1) is just a number (whose value depends on k) that is

the same for all arbors with the same density function f. The discrete approx-

imation of the moment function above is

mkðlÞ=
X

j

���xyjkj wjðlÞ

where the j is the arbor segment index, (xj,yj) is the center of the jth segment,

and wj (l) [the discrete analog of the arbor density f(x,yl)] is the length of the

jth segment. Many arbors have nearly circularly (or spherically) symmetric

density functions, and for such circularly symmetric arbors (density functions),

the odd-numbered moments would vanish if we had not taken the absolute

value jxyj above. We have therefore modified the usual definition of moments

to the one we use here in order to ensure that the odd-numbered moments

cannot vanish, even for circularly or spherically symmetric arbors. For even-

numbered moments, our definition above coincides with the usual definition,

which does not include the absolute values.

Because arbors do not come labeled with scale factors, we must have a way

of estimating l directly from the arbors themselves. The normalized second

moment is
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s2ðlÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðlÞ=m0ðlÞ

p
= sxðlÞsyðlÞ

(note that we have assumed separability in the third step) and, if we make use

of the properties of mk(l) for arbors that are self-similar, we find that

sðlÞ=

ffiffiffiffiffiffiffiffiffiffi
lh + 3

lh + 1

s
sð1Þ= l

if s2(1) = 1 for the last step; this assignment is made here for notational

simplicity but, in fact, we normalize any theoretical arbor density function we

use so that m0(1) and m2(1) agree with the measured values. If l is eliminated

between this last equation and the expression above for mk(l), the result

mk(l) = (s2(l))h+1+kmk(1), (note that we still use l as a label for the arbor even

though it has been eliminated as a variable in the equation) or, after we take

logarithms,

logðmkðlÞÞ= sðkÞlog
�
s2ðlÞ

�
+ IðkÞ (1)

with s(k) identified as

sðkÞ= k + ðh + 1Þ (2)

and I(k) just

IðkÞ= logðmkð1ÞÞ;

notice that I(k) has a single value (that depends on k) for all arbors with the

density function f. Equation 1 says that log(mk) plotted against log(s2) should,

for various values of l, fall on a straight line if the function f(x,y,l) is self-similar;

this is the first part of the test for self-similarity. The second part of the test,

embodied in Equation 2, says the slope s(k) as a function of k should also be

a straight line with a slope of 1.

To calculate the intercepts I(k) above, one must assume a functional form for

the density function f(x,y,l). We chose a truncated Gaussian because at least

some arbors have approximately circularly symmetric density functions that

are nearly separable in Cartesian coordinates; a Gaussian (not truncated) is

the only circularly symmetric function that is separable in Cartesian coordinates.

These same equations hold for functions of many variables, the only change

being that, for example in three dimensions, l = (lxlylz), where lx is the size

parameter for the x direction, etc.
Intercepts for Self-Similarity Test (First Part)

When a double logarithmic plot of mk(l) as a function of sxsy is made, the inter-

cept is log(mk(1)). If the mk(l) are moments of a self-similar function, the inter-

cept values, for mk(1) determine the functional form of that self-similar function.

Because arbor branches terminate at the boundary of their convex hull area,

the density function that describes them must vanish beyond that boundary.

The goal here is to calculate the intercepts log(mk(1)) for several functional

forms assuming that the boundary is circular. In the following, mk(1) will be de-

noted by the shorthand mk.

If r(x,y) is the density function, the intercepts in question are found from

mk =

Z Z N

�N

dxdyðxyÞkrðx; yÞ:

The density function r is normalized so that m0 = 1 and, to agree with data,

m2 = 1 is also required.
Truncated Gaussian in 2D

A truncated Gaussian is described by

rðx; yÞ=
1

2pð1 + aÞ2C
e
� x2 + y2

2ð1 + aÞ2 if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
%Rð1 + aÞ

0
otherwise

8><
>:

where

C = 1� e�R2=2

and a(R) is a function of R that is chosen to make m2 = 1. C normalizes the

density function so that m0 = 1.
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To do business with this density function with a circular boundary, it is easier

to switch to polar coordinates (r,q). For this, we have

x = r cosq

y = r sinq

dxdy = rdrdq;

and the integral whose log gives the intercepts is

mk =
1

2pð1 + aÞ2C

Z 2p

0

dqðcosq sinqÞk
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{I1ðkÞh Z Rð1 + aÞ

0

drr2k + 1e
r2

2ð1 + aÞ2 :

The first integral I1(k) can be simplified to give

I1ðkÞ=
Z 2p

0

dqðcosq sinqÞk

=
1

2k

Z 2p

0

dq sink
�

2q
z}|{f �

=
1

2k + 1

Z 4p

0

df sink
f

= 1
2k

R 2p

0
df sink

f:

When k = 0, the value of the integral is I1(0) = 2p, and when k = 2, the value is

I1(2) = p/4.

The second integral can also be simplified by a change of variables to give

Z Rð1 + aÞ

0

drrr2ke
�

r2

2ð1 + aÞ2

zfflfflfflfflffl}|fflfflfflfflffl{x =

= ð1 + aÞ2k + 2
2k

Z R2=2

0

dxxke�x:

For mk, then, the result is

mk =
ð1 + aÞ2k

2pC

Z 2p

0

df sink
f

Z R2=2

0

xke�x:

When k = 0, the moment m0 = 1 and the normalization factor C is calculated as

m0 = 1 =
1

C

Z R2=2

0

e�x or C =

Z R2=2

0

e�x = 1� e�R2=2:

The second condition for determining the normalization is m2 = 1, and this is

m0 =
ð1 + aÞ4

2C

Z R2=2

0

dxx2e�x = 1:

This means that a(R) can be determined by finding the root of the equation

above (numerically) or by

a =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CR R2=2

0
dxx2e�x

� 14

s
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Uniform Density Inside a Circular Boundary in 2D

Another density function of interest is a ‘‘pill-box’’ function

rðx; yÞ=
1

pR2 if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
% R

0 otherwise:

;

(

a function with constant density within the arbor boundary. The change to

polar coordinates here gives

mk =
1

pR2

Z 2p

0

dqðcosq sinqÞk
Z R

0

drr2k + 1:

This function is normalized so that m0 = 1, but the only way to make m2 = 1 is

to select R so that

m2 =
R6

6,4R2
=

R4

24
= 1 or R =

ffiffiffiffiffiffi
24

4
p

= 2:213
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The moments that are used to calculate the intercepts above for the 3D case

are

m2k =

Z Z Z N

�N

dxdydzðxyzÞ2k
rðx; y; zÞ:

To change from rectangular to spherical coordinates (r,q,4), the equations

are

x = r cosq sinf

y = r sinq sinf

z = r cosf

dxdrdz = r2 sinfdrdqdf:

For a truncated Gaussian in 3D, then, the moment equation is

mk =
1

ð2pÞ3=2ð1 + aÞ3C

Z p

0

df coskf sin2k + 1
f

Z 2p

0

dq coskq sink
q,

Z Rð1 + aÞ

0

drr3k + 2e
� r2

2ð1 + aÞ2 :

As before, C is determined from the condition m0 = 1, so that

1 =
4p

ð2pÞ3=2ð1 + aÞ3C

Z Rð1 + aÞ

0

drr2e
� r2

2ð1 + aÞ2

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{x =

=
4pð1 + aÞ2

ð2pÞ3=2ð1 + aÞ3C

Z R2=2

0

dx
ffiffiffiffiffi
2x

p
ð1 + aÞe�x

=
2ffiffiffi
p
p

C

Z R2=2

0

dxx1=2e�x

=
2ffiffiffi
p
p

C

�
G
�
1 + 1=2

�
� G

�
1 + 1=2;R2=2

��

=
1

C

 
1�

2G
�
1 + 1=2;R2=2

�ffiffiffi
p
p

!
;

and C is therefore

= C

 
1�

2G
�
1 + 1=2;R2=2

�ffiffiffi
p
p

!
:

The above used Gð1 + 1=2Þ=
ffiffiffi
p
p

=2.

Given the normalization constant C for the density function, the next job is to

find the value of a that insures that the variance is 1. That is,

m2 = 1

=
p

4ð2pÞ
3
2ð1 + aÞ3C

Z p

0

df cos2f sin5
f

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{16
105

= Z Rð1 + aÞ

0

drr8e
�

r2

2ð1 + aÞ2

zfflfflfflfflffl}|fflfflfflfflffl{xh

=
4p

105ð2pÞ
3
2ð1 + aÞC

Z R2=2

0

dx
�

2ð1 + aÞ2x
�3 + 1=2

e�x

=
16ð1 + aÞ6

105
ffiffiffi
p
p

C

Z R2=2

0

dxx3 + 1=2e�x

=
ð1 + aÞ6

C

	
1� Gð4 + 1=2;R2=2Þ

Gð4 + 1=2Þ



:

Note that the relation

G
�
n + 1=2

�
=
ð2n� 1Þ!!

2n

ffiffiffi
p
p

so

G
�
4 + 1=2

�
=

105

16

ffiffiffi
p
p

was used. The second condition, then, means that a is determined by

a =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CGð4 + 1=2

��
G
�
4 + 1=2

�
� G

�
4 + 1=2;R2=2

��� 1
6

s
:

Uniform Density Inside a Spherical Boundary

For a three-dimensional ‘‘pill-box’’ arbor with a density function that is constant

inside the boundary with radius R, the kth moment that determines the inter-

cepts as above is

mk =
3

4pR3

Z p

0

df coskf sin2k + 1

Z 2p

0

dq coskq sink
q

Z R

0

drr3k + 2:

From this equation, m0 = 1. The value of R that makes m2 = 1 then is gotten

from

1 =
3

4pR3

Z p

0

df cos2f sin5
f

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{16=105 Z 2p

0

dq cos2q sin2
q

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{p=4 Z R

0

drr8

zfflfflfflffl}|fflfflfflffl{R9=9

=
R6

3,105

so that the boundary should be at

R =
ffiffiffiffiffiffiffiffi
3156
p

= 2:608
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