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Abstract 

In recent papers, Kumar and Sioan introduced a new collocation-type method for numerical solution of Hammerstein 
integral equations. Kumar studied a discretized version of this method and obtained superconvergence rate for the 
discrete approximation to the exact solution. In this paper, the asymptotic error expansion of a discrete collocation-type 
method for Hammerstein integral equations is obtained. We show that when piecewise polynomials of degree p - 1 are 
used and numerical quadrature is used to approximate the definite integrals occurring in this method, the approximation 
solution admits an error expansion in powers of the step-size h. For a special choice of collocation points and numerical 
quadrature rule, the leading terms in the error expansion for the collocation solution contain only even powers of the 
step-size h, beginning with a term h 2p. Thus Richardson's extrapolation can be performed on the solution, and this will 
increase the accuracy of numerical solution greatly. Some numerical results are given to illustrate this theory. 

Keywords: Nonlinear integral equations; Hammerstein equations; Discrete callocation-type method; Interpolatory 
quadrature rules; Superconvergence; Asymptotic error expansion; Richardson extrapolation 

1. Introduction 

C o n s i d e r  the  H a m m e r s t e i n  in tegra l  e q u a t i o n s  of  the second  kind: 

y(t) = f ( t )  + f~ k(t, s) #(s, y(s)) ds, t ~ [a, b], (1.1) 

where - oo < a < b < oo ,f,  k, and g are known functions, with g(s, y) nonlinear in y, and y(t) is 
the solution to be determined. 

Several numerical methods for approximating the solution of Hammerstein integral equations 
are known. The classical method of successive approximations was presented in the 1950s. 
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A variation of the Nystr6m method was introduced in [10]. The classical method of the degenerate 
kernel was obtained in [6]. A new collocation-type method was developed in recent papers [7-9]. 
But the error expansions for numerical solutions of integral equations seem to have been discussed 
in only a few places. For linear Fredholm integral equations, Marchuk and Shaidurov [13, pp. 
300-309], Baker [3, pp. 466-473], and Dobrovol'ski [5] obtained the asymptotic error expansion 
of the Nystrom method. Lin and Liu [11] analyzed the methods of extrapolation from the iterated 
collocation solutions of Fredholm integral equations whose kernels have lower degree smoothness. 
Ref. [2] dealt with error expansions for eigenvalues of integral equations. Under the assumption of 
a uniform partition, McLean [14] obtained asymptotic error expansion for numerical solutions of 
integral equations, including the Nystr6m method, iterated collocation method, the iterated 
Galerkin method. Lin et al. [12] gave a one-term asymptotic error expansion for the iterated 
collocation method on an arbitrary mesh. For nonlinear integral equations, the systematic 
derivation and analysis of error expansions for numerical methods have not received much 
attention. 

The method of Kumar and Sloan [-9] is a collocation method applied not to (1.1), but rather to 
an equivalent equation for the function z defined by 

z(t) = g(t, y(t)), t e [a, b], (1.2) 

o r  

z ( t )=g( t , f ( t )+ f f k ( t , s ) z ( s )d s ) .  (1.3) 

The desired approximation to the solution y of (1.1) is then obtained by using the equation 

y(t) =f ( t )  + f f  k(t, s)z(s)ds, t e [a, b]. (1.4) 

Kumar and Sloan [9] had shown that, under suitable conditions, the approximation to y converges 
to the exact solution. For a special choice of the collocation points, Kumar [7] showed that the 
approximation to y may exhibit (global) superconvergence. The discrete version of the Kumar  and 
Sloan method was considered in [8]. The superconvergence results of Kumar [7] for the exact 
method were extended to the discrete case. The main aim of this paper is to give an asymptotic 
error expansion of a discrete collocation-type method for (1.1). Thus Richardson's extrapolation 
can be performed on the solution, and this will increase the accuracy of numerical solution greatly. 

We assume throughout this paper that the following conditions are satisfied: 
(i) y* ~ C is an exact solution of (1.1); 

(ii) f E C; 
(iii) the kernel k(t, s) is continuous on a ~< t, s ~< b; 
(iv) the function g (t, y) is defined and continuous on [a, b] x R; 
(v) the partial derivative gy (t, y) = (O/Oy) g (t, y) exists and is continuous on [a, b] x E; 
(vi) the function gr satisfies the Lipschitz condition: 

Ioy(t, y~ (t)) - gr(t, y2(t)) I ~< al y, (t) - y2(t)[, 
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for some constant  tr > 0, t ~ [a, b] and  all y~, Y2 ~ B(y* ,  6), where 

n ( y * , 6 )  = { y~C:  I lY-Y*I[~  ~<6}, ~ > 0 .  

Unde r  assumpt ion  (iii), the linear integral operator  K, defined by 

(Kw)(t)  = f [  k(t,  s )w(s)ds ,  

is a compac t  operator .  
We define another  completely cont inuous  operator  T: 

(Tw)(t)  = f ( t )  + (Kw)(t)  

and a cont inuous ,  bounded  opera tor  G: 

G ( u ) ( t ) = # ( t , u ( t ) ) ,  t ~ [ a , b ] ,  u ~ C .  

With the above notat ion,  integral equat ion (1.1) may be written in opera tor  form as 

y = T G ( y )  

and z(t) satisfies the following integral equation: 

z = GT(z) .  

75 

(1.5) 

2. Collocation using piecewise polynomial functions 

For  any natural  number  N, let 

AN: a = t o < t l <  "" < t N = b  

be an equidistant  par t i t ion of [a, b], and let h = ( b -  a)/N. For  given integers p and d, with 
p > d >>. O, S~d_-I~(AN) c C d- ~ [a, b] will denote  the space of piecewise-polynomial functions of 
degree p - 1 whose knots  are the mesh points  {t,: 1 ~< n ~< N - 1 }. I f d  = 0, there is no continui ty 
requirement  at the knots.  Note  that  the dimension of this space is given by d im c t -  ~ ~,p-1 (AN) = Np.  If 
d = 1, S~ °~_ ~ (AN) denotes  the space of  cont inuous  piecewise polynomial  functions of degree p - 1 
whose d imension is equal  to N ( p  -- 1) + 1. 

In this paper, we shall consider only the cases d = 0 and d = 1. In t roduce the set 

X ( N )  = {tn.g: tn, i = tn + cih, O <~ cl < c2 < "" < cp <<. l, O ~< n ~< N - 1 } .  

Clearly, IX(N)I = d im S~-_~(AN), provided that  the set of parameters  {ci} does not  contain both  
0 and 1. When  d = 1, we choose cl = 0 and Cp = 1. Note  that  the choice cl = 0 and Cp = 1 implies 
IX(N)[ = d im ¢~o), (AN). 
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c ( d -  1) The collocation approximation to z is ZN ~ Op- 1 (AN) satisfying 

( ) ZN(t..i) = 0 t . , . f ( t . , i )  + k ( t . , .  S)ZN(S)ds , n = O, 1, . . . ,  N -- 1, i = 1, 2 . . . . .  p, (2.1) 
a 

and this yields an approximation to y: 

yN(t) = (TZN)(t) =f( t )  + f ~  k(t, S)ZN (S) ds. (2.2) 

We define an interpolatory projection operator PN which satisfies: 

c ( d -  1) (A) PNW ~ O p -  1 (AN); 
(B) (PNW)(t) = w(t), t ~ X (N). 

Using operator theoretic representations, (2.1) and (2.2) can be, respectively, written as 

ctd-  1) (AN) (2.3) ZN = PNGT(ZN),  ZN~Op-1  

and 

YN = TZN. (2.4) 

Note that YN is also a solution of the equation 

YN = TPNG(yN) .  (2.5) 

It is clear that the integrals occurring in (2.1) and (2.2) cannot in general be obtained in analytic 
form. Hence, a further discretization step is needed: the integrals have to be approximated by 
suitable quadrature formulas. When this is done, a discrete form of the above collocation-type 
method is obtained. 

For a fixed positive integer q, let zl, z2,...,  Zq ~ to, 1], and the weights wl ,  w 2 , . . . ,  Wq define the 
quadrature rule 

Q ( f ) =  ~ wif('ci)~ ; ~ f ( t ) d t ,  (2.6) 
i = 1  

which is exact for all polynomials of degree p - 1, but not exact for some polynomial of degree p, 
with p >i p (that is, the quadrature rule (2.6) has degree of precision p - 1). 

Defining a discrete integral operator Ks by 

N - 1  q 

(KNdp)(t) = ~. 2 hwjk( t ,  sij) dp(slj), t e I-a,b], 
i=o j=1 

where sij = ti + zjh. 
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We now define a discrete form of the opera tor  T by 

TN(dP)(t) = f ( t )  + (KNdp)(t). 

Using the operators  in t roduced so far, the discrete analogues of ZN and YN may be written as 

ZN = PNGTN(2N), Z N ~ S  ( d - l )  p -  1 (AN) (2.7) 

and 

f~N = TN(£N),  (2.8) 

respectively. Thus  37N also satisfies the following equation: 

YN = TN PNG(~N) .  (2.9) 

F r o m  [4-1, we obtain the following result. 

L e m m a  1. L e t  u ~ Cr + 1 [a, b], r >i p. Then ,  f o r  any  t ~ (t . ,  t .  + 1), n = O, 1 . . . .  , N - 1, we  have 

I=p 

where  ~pt(t) = (t - c l )  "" (t - Cp)[Cl . . . .  , Cp, t-1 (" - t ) t / l ! ,  and  [c l ,  . . . ,  % ,  t ] f ( ' )  is a p th  divided 
di f ference o f f ( t ) .  

Proof. For  any t e (t,, t. + ~), n = 0, 1 , . . . ,  N - 1, it is well known  that  PNU can be written as 

PNU(t) = ~ u ( t . , i ) L i  , (2.10) 
i=1 

where 

Li(t) = 
P 

I-I ( t - c j ) / ( c i - c j ) .  
j = l , j # i  

Note  that  

a , ( y )  = 
P P 

E g l ( c l ) L i ( y )  + I-I ( y  - c l ) [ c , ,  . . . ,  Cp, f ig1( ' ) ,  
i=1 i=1 

we obtain 

(y - x) l 

l! 

( e l -  x) ' P 
i=lz~ ~ L i ( y ) =  I-I ( y - - c i ) [ c l ,  cp, y_l (" - -x) '  (2.11) 

i=1 "" '  l! 
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Let y = x, from (2.11), we know that 

P (cl -l_m_T - - .  x)l Li(x) = 6t.o, I < p, (2.12) 
i = 1  

and 

P 
P (ci -- x) z Li(x)  = I-I (x - ci) [cl ,  Cp, x] (" - x)t - Z ~ ""' l! = tp,(x), l > / p .  (2.13) 

i = 1  i = 1  

If u(t) ~ C "+ 1 [a, b], then using Taylor's formula we can write 

" ( t ~ . i -  t) k utk~(t ) + O(h,+l). (2.14) 
u(t~,i) = ~ k! 

k = O  

Substituting (2.14) into (2.10) and using (2.12) and (2.13) we get 

P ( ~ _ _ ~ ) ~ = o ( t ~ " ~ t ) k u ' k ) ( t ) + O ( h  ~+~) PNU(t )= Z Li i 
i = 1  k = 

~ ( t - - t n )  k ( ~ - ~ )  
= hku(k)(t) Ci h Li /k !  + O(h "+1) 

k = O  i = 1  

= u ( t ) -  ~. hku(k)(t)tpk + O(h'+l).  
k = p  

The lemma is proved. [] 

3. Asymptotic error expansion of the discrete collocation-type method 

n2 Throughout this paper, we assume that the sum En 1 equals to zero when nl > n 2. [a] denotes the 
integer part of a. 

Using Taylor's expansion, we can easily get the following lemma. 

Lemma 2. Let  r >1 p be a positive integer, V( t )  = Vo(t) + ~ = 9  h I Vz(t), Vo(t), Vl(t) e C [a, b], 
l = p, . . . ,  r, and g(t, y) e C tr/pJ+l ([a, b] x •). Then for  any t e [a, b], we have 

g(t, V(t)) = g(t, Vo(t)) + Z 
l = p  

where 

hl(gr(t, Vo(t))V~(t) +f~(t)) + O(h ~+ 1), 

ft(t) = Z -~. g(t, Vo(t)) Z 1-I Vk~(t). 
S = 2  kl + "" + k s = l  n = l  

ki ~>p 

From Lemmas 1 and 2 we obtain the following lemma. 
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, t C , +  C , - t +  1.emma 3. Let V(t) = Vo(t) + Y4=p h Vt(t), Vo(t) ~ 1 [a, b], Vz(t) ~ t [a, b], l = p, p + 1, . . . ,  
r, and g (t, y) ~ C" + 1 ([a, b] x R). Then for any t ~ (tn, tn + 1), n = O, 1, . . . ,  N - 1, we have 

¢ PNg(t, V(t)) = g(t, Vo(t)) + ~ h t gy(t, Vo(t))Vt(t) + f~(t) -g(t)(t ,  Vo(t))~Ol 
l=p 

- E -dr [o , ( t ,  Vo(t)) 
k=p 

where tpt(t) and fl(t) are, respectively, defined in Lemma 1 and Lemma 2. 

L e m m a  4. Let f ( t )  ~ C "+ 1 [a, b]. Then the expansion 

N-1 q 
h E E wjf( t i  + "~jh)tp('cj) 

i = o  j = l  

~a ~ r 
= Q(tp) f ( t ) d t  + E hI Q(B#p) [fo_l)(t)]~=" + O(h.+X ) 

1=1 !! 
(3.1) 

holds, where Bl(t) are Bernoulli polynomials, the operator Q ( f )  is defined by (2.6), 
[f(t)]b=, =f (b)  - f ( a ) ,  

Proof. To establish (3.1), we use the general Euler-MacLaurin summation formula: 

h 2 f(t~ + zh) = f ( t ) d t  + h I [fa-1)(t)]~=. + O(h "+1) 
n = O  l = l  • 

(3.2) 

valid for 0 ~< z <~ 1 (see [14, p. 377]). 
Setting z = zj, multiplying (3.2) by wjtp(zj), and then summing up from j = 1 to j = q we can 

obtain Lemma 4. [] 

One of the principal results of this paper is the following theorem. 

Theorem 5. Suppose the hypotheses of Lemma 3 are satisfied, and k (t, s) s C" + 1 ( [a ,  b] x [a, b]).  
Then, for any t e [a, b], we have 

TNPNg(t, V (t)) 

=f( t )  + f f  k(t, s)g(s, Vo(s)) ds 
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Z=p ( ~  ~s (k(t, s)g(s, Vo(s)) ) s=a 

+ f~ k(t, s)[gr(s, Vo(s)) Vz(s) +fz(s)] ds 

' - '  y - ' - '  
+ ~" ( I -  n)! Lkes} (k(t,s)(g,(s, Vo(s))V.(s) +f.(s))) 

n=p s=a 

--.f~ k(t, s) ga)(s, Vo(s))dt O(tpz) 

' - '  ~ (B ' - ' " ) [  ( a ' V ' - '  ]~ 
- I ;  ~7-~., L\N} (k(t,s)g~"(s, Vo(s))) 

n=p 8=a 

f? ] - k(t,s) dss (O,(s, Vo(s))Vz-k(s) +fi-k(s)) dsQ(~ok) 

.=pk=p \-~s ] (k(t,s) ~ (O,(S ,  V o ( S ) ) V n - k ( S ) ' 4 - L - k ( S ) ) )  s=a 

Q(Bz-.cpk)}(l -- n)! + O(h'+ 1)" 

From the definition of TN and Lemma 3 we obtain 

N - 1  q 

TNPNg(t, V(t)) =f( t )  + 1; 1; hwjk(t, Sij)PNg(Sij, V(sij)) 
i = 0  j = l  

N - 1  q 

=f(t) + Y' 1; hw)k(t, s)g(s, Vo(S))ls=m 
i = 0  j=l 

{ N - 1  q 

+ h I 1; 1; hwjk(t,s)(gy(s, go(s))gl(s ) -t-ft(s))]s=s,i 
l = p  i = 0  j = l  

N - I  q 
-- y' 1; hwjk(t,s)g tO (s, Vo(s))l~=~,,tpz(zj) 

i = 0  j = l  

N - 1  

i = 0  j=l 

+ O(h'+ 1). 

(3.3) 

/p(d), } 
hwjk(t,s) 1; ~ (gr(s, Vo(s)) VZ-k(S) +fz-k(S))ls=s,~ q)k(Zj) 

k = p  

(3.4) 
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Using the summation formulation (3.1), we find 

N - 1  q 

E E 
i = 0  j = l  

hwjk(t, s)o(s, Vo(s))ls=m 

=;k( t , s )g(s ,  Vo(s))ds+ ~ ht-~---tt)[(d) '-1 I b ,=1  • -~s (k ( t ,  s ) g ( s .  Vo(s))) ~=. + O(h.+  1). 

(3.5) 
N - I  q 

E E hwik(t, s)(g,(s, Vo(s))Vl(s) +fl(s))[~:~,~ 
i=O j = l  

= f f  k(t, s)(gy(s, Vo(s)) Vl(s) +fl(s))ds 

+ Z h  i=, --if-. ~s (k(t,s)(g,(s, Vo(s))Vt(s) +J~(s))) s=. + O(h '+ l - t ) ,  (3.6) 

N - 1  q 

~, hwjk(t, s)gO)(s, Vo(s))ls=~ o tpz(zj) 
i=O j = l  

= Q(tpl) f~ k(t, s) go)(s, Vo(s))ds 

,-,hiQ(B, qh)[ ( ~ ~i-1 ]b O( h'+l + ,E=, i! \ N ]  (k(t,s)g°)(s, Vo(s))) ~=. + - ' ) ,  (3.7) 

N-,q ' - ' (dr  ~. 2 hwjk(t,s) 2 N (g,(s, Vo(S))VI-k(S) +J~-k(s))[~=~, q~k(zj) 
i = 0  j = l  k = p  

= k(t,s) Z Q (~P,) dss (g,(s, Vo(S))VI-k(S) +fZ-k(S))ds 
k = p  

+ E g ~s (k(t,s) E Q(Biq~k) dss (g,(s, Vo(s))Vz-k(S) 
i = 1  k = p  

b O(h'+1-t) +~_,(s ) ) )  + . (3.8) 
$ = a  

Substituting (3.5)-(3.8) into (3.4), and writing them as polynomials in h we can obtain (3.3). []  

Theorem 6. Let y*(t) • C "+1 [a, b] be the solution of (1.1), z*(t) be the corresponding solution of 
(1.3), g (t, y) • C" + x ([a, b] x R), k (t, s) • C" + x ( [a, b] x [a, b]), and assume that I is not an eigenvalue 
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of the operator (GT)'(z*). Then, for sufficiently large N, ~N(t) can be expanded as 

r 

~N(t) = y*(t) + ~ h'Vt(t) + O(hr+l), (3.9) 
l = p  

where Vz (t) (l = p . . . .  , r) are the solutions of the following linear Fredholm integral equations: 

Vl(t) -- f )  k(t, s)gr(s, y*(s)) Vt(s) ds 

-- k(t, s)f~(s)ds + N (k(t, s)g(s, y*(s))) 
• s ~ a  

+ ~" ( I -  n)T -~s (k(t ,s)(g,(s,y*(s))V.(s) +f,(s))) 
n = p  " s = a  

-- Q(~&) f )  k(t, s) ga)(s, y*(s))ds 

- -  E -0 :-ni~. -~s (k(t, s)g¢n'(s, y*(s))) 
n = p  s = a  

-- k(t,s) E Q(~Pk) ~ (gr(s,y*(s))Vt-k(S)+ft-k(S)) ds 
k = p  

-- ~" ~" ( l - -n)!  ~s (k(t,s) ~ (gy(s, y*(s))Vn-k(S ) 
n = p  k = p  

+ f.-k(S))) . (3.10) 

Proof.  Defining an opera tor  Gz: 

G2 (w) (t) = gr (t, y* (t)) w (t), 

f rom [7, p. 318], we know that  (I - KG2) is invertible; also its no rm and that  of its inverse are 
uniformly bounded• 

Let Vo(t) = y*(t). For  any p ~< l ~< r, it is easily seen that  Vt(t) is defined by a linear F redho lm 
integral equat ion  of the second kind (uniquely solvable since (I - KG2) is invertible) in which the 
inhomogeneous  term is expressed in terms of y*(t), Vp(t), . . . ,  lit-l(t).  

Clearly Vt(t) is r - l + 1 times cont inuously  differentiable if (d/Ot) "-z+~ k(t, s) is cont inuous  for 
a ~< t, s ~< b, and the r ight-hand side of Eq. (3•10) is r - l + 1 times cont inuously  differentiable. It is 
simple to prove by induct ion that  the condi t ions of the theorem are sufficient to guarantee this. 
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Using Theorem 5 we get 

V(t) - TsPNG(V)(t)  = O(h '+ l ) .  (3.11) 

Let E (t) = V (t) - 37N (t). Subtract ing (2.9) from (3.11) and then applying the mean  value formula 
we obtain 

(I - KNPNgr(t, ~IN))E = O(h '+ 1), (3.12) 

where r/N(t) = Ops(t) + (1 - 0)V(t) and r/N(t) - y*(t) = O(h~). 
For  any fixed w ~ L~ ,  let H(w) be the multiplicative linear opera tor  defined by 

( H ( w ) v ) ( t ) = g r ( t , f ( t ) + f ~ k ( t , s ) w ( s ) d s ) v ( t ) ,  t ~ [ a , b ] ,  v~C,  

then (3.12) becomes 

(I - KNPNH(~N))E = O(h '÷ 1), (3.13) 

where ~N (t) - z* (t) = O (he). 
We shall now show that  (I - KNPNH(¢N))- ~ exists for N sufficiently large and satisfies 

I1(I - KNPNH(~N))-~[I <<- C~ < ~ .  

We recall from [15, L e m m a  1] that, for sufficiently large N, ( I -  KNPNH(Z*))-~ exists and is 
uniformly bounded.  No te  that  

rl(I - KNPNH(¢N)) -- (I -- KNPNH(z*))II <<. C2 II H(¢N) - n(z*)l l  ~< C3 II ¢,,  - z *  II, 

which approaches  zero as N ~  ~ .  Using [1, Proposi t ion  1.3], we conclude that  
( I  - KNPNH(¢N))- ~ exists and is uniformly bounded  for all sufficiently large N. So we have 

IIEII = O(hr+~). 

The theorem is thus proved. [ ]  

Remark .  When  p = q, and ci = zi, i =  1, 2 .. . .  ,p. Then Q(q~t)= O, Q(Biq~t)= 0. In this case, 
Eqs. (3.10) become 

Vt(t) - f~  k(t, s)gr(s, y*(s)) Vz(s) ds 

ds + r 1 L \ ~s l  (k(t, s)g(s, y*(s))) .= .  

+ ~" (l -- n)! -~s (k(t, s)(o,(s, y*(s)) V,(s) +f,(s)) )  . (3.10') 
n = p  s m a  



84 Han Guoqiang / Journal of Computational and Applied Mathematics 61 (1995) 73- 86 

Corollary 7. Suppose that the hypotheses of  Theorem 6 are satisfied. We  have the following results: 
(i) I f  p >lp, the collocation parameters {ci} have been chosen so that cp-i+l = 1 -  ci, 

i =  1 , 2 , . . . , p ,  the basic quadrature rule (2.6) is symmetric, i.e., suppose zq-i+l = 1 - z i  and 
wq-i+ l = wi for 1 <~ i <~ q. Then Vl(t) = 0 whenever I is odd. In this case, expression (3.11) becomes 

[r/2] 
~N(t) = y*( t )  + ~, h E' V2,(t) + O(h "+ '). 

l = [ ( p +  1)/2] 

(ii) I f  p = q, ci = zi, i = 1, 2 , . . . ,  p, are the Gauss points in the interval (0, 1), the basic quadrature 
rule (2.6) is an interpolatory quadrature rule. Then, for sufficiently large N, ~N(t) can be expanded as 

[r/2] 
YN(t) = y*(t) + ~, h2tV2t(t) + O(h'+l).  

l=p 

(iii) I f  p = q, Cl = Zl = 0, cp = zp = 1, ci = zi, i = 2, 3 , . . . ,  p -- 1, are the Lobatto points in the 
interval (0, 1), the basic quadrature rule (2.6) is an interpolatory quadrature rule. Then, for sufficiently 
large N, YN (t) can be expanded as 

Jr/2] 
~N(t) = y*(t) + ~ h2~V21(t) + O ( h ' + l ) .  

l=p-1 

Proof.  (i) Suppose  tha t  cp-i+ l = 1 - c i ,  i =  1, 2, . . . ,  p, zq-j+ l = 1 - -c j  and  wq-j+ l = wj for all 
1 ~< j ~< q, then  using the facts 

Bi(t) = ( - 1)iBi(1 - t), qh(t) = ( - 1)/~01(1 - t), 

it follows tha t  

Q(Bi) = 0 when  i is odd,  (3.14) 

Q(Bitpt) = 0 when  i + I is odd. (3.15) 

F r o m  (3.14) and  (3.15), it is easily seen tha t  the r igh t -hand  side te rm of Eq. (3.9) is equal  to zero 
whenever  l is odd. So, Vt(t) = 0 when  l is odd. 

(ii) N o w  consider  the special case when  ci = zi, i =  1, 2 . . . .  , p, are the Gauss  points  in the 
interval  (0, 1). F o r  p ~< 1 ~< 2p - 1, note  tha t  f~(t) = 0, f rom (3.10') we have 

Y-' 1 - l ~  \~-SJ (k(t, s) g(s,y*(s))) 
" $ ~ a  " 

Using the fact of  Q(Bz) = 0, we get Vt(t) whenever  l ~< 2p - 1. F r o m  this and  (i) we obta in  (ii). 
Similarly, we can prove  (iii). The  corol lary  is proved.  [ ]  

4. Richardson extrapolation and numerical illustration 

We now present  a me thod ,  the R icha rdson  ex t rapola t ion  method ,  for increasing accuracy  based 
on the asympto t ic  e r ror  expansion.  We  assume that,  p = q, ci = zi, i = 1, 2 , . . . ,  p, are  the Gauss  
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points in the interval (0, 1), the basic quadrature  rule (2.6) is an interpolation quadrature  rule. Other  
cases are similar. We construct  two grids AN and A2N with mesh-sizes h and ½h and solve 

.-.¢o) be the solutions of these problems (the accuracy of approximations (2.7) and (2.9). Let )7~ °~ and yzN 
each solution being of order  O(h2p)). 

The first step Richardson extrapolation gives 

)~1) = 4P ~ - 3~  °) 

4 p - 1 

F rom the asymptotic error expansion, it is easy to see that the function 37~ 1) approximates y* with 
accuracy of order O (h 2p ÷ 2). 

For  general positive integer m, we have the mth step Richardson extrapolation: 

4P+m- 1 Y2N~(m- 1) - -  YN~'(ra- 1) 
y(Nm) = 4p+,.- 1 _ 1 

The function )7~ m) approximates y* with accuracy of order O (h 2p+ 2m). 
We now give an example which illustrates the results of the previous section. 
Consider the example 

y( t )  = t 2 + sin(t) f ~ l  e x p ( -  2s)(y(s))  2 ds, t ~ [ - l ,  1]. 

The equation has two solutions, one of which is 

y*( t )  = t 2 + C sin(t), 

where C = 1.95778398647 . . . .  
We choose uniform partitions with mesh length h = 2 /N ,  N = 2, 4, 8, 16, 32, 64. The above 

equation was solved using the discrete collocation-type method,  with a collocation method for z* 
based on discontinuous piecewise linear functions (d = 0, p = 2), and a set of collocation points 
consisting of the two Gauss points in the interval (0, 1), the basic quadrature  rule (2.6) selecting the 
Gauss 2-point rule. The maximum absolute errors of the example are given in Table 1. 

Table 1 

N E~ ~ ~to) E~) ~1) E~) ~2) 

2 2.18"10 -2 4.71 5.67"10 -4 4.85 1.10"10 -5 7.58 
4 8.31"10 -4 4.63 1.97"10 -5 5.75 5.84"10 -8 7.90 
8 3.35"10 -5 4.28 3.65"10 -7 5.94 2.44"10 -1° 7.98 

16 1.75-10 -6 4.08 5.95"10 -9 5.99 9.65"10 -13 
32 1.04" 10- 7 4.02 9.38' 10-11 
64 6.40"10 -9 

Notation: E~ '~ max{ly*(t) - 3~"~(t)l: t ~ [a, b]}; cd i) 1o ~ 'E(i)/E ti)~ ~ -  ~ ~b2~, N / 2 N ) "  
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