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Abstract

In recent papers, Kumar and Sloan introduced a new collocation-type method for numerical solution of Hammerstein
integral equations. Kumar studied a discretized version of this method and obtained superconvergence rate for the
discrete approximation to the exact solution. In this paper, the asymptotic error expansion of a discrete collocation-type
method for Hammerstein integral equations is obtained. We show that when piecewise polynomials of degree p — 1 are
used and numerical quadrature is used to approximate the definite integrals occurring in this method, the approximation
solution admits an error expansion in powers of the step-size h. For a special choice of collocation points and numerical
quadrature rule, the leading terms in the error expansion for the collocation solution contain only even powers of the
step-size h, beginning with a term k%7, Thus Richardson’s extrapolation can be performed on the solution, and this will
increase the accuracy of numerical solution greatly. Some numerical results are given to illustrate this theory.

Keywords: Nonlinear integral equations; Hammerstein equations; Discrete callocation-type method; Interpolatory
quadrature rules; Superconvergence; Asymptotic error expansion; Richardson extrapolation

1. Introduction

Consider the Hammerstein integral equations of the second kind:
b

y(o)=f()+ J k(t,s) g(s, y(s)) ds, tela, b], (1.1)
where — o0 <a<b < o, f k,and g are known functions, with g(s, y) nonlinear in y, and y(t) is
the solution to be determined.

Several numerical methods for approximating the solution of Hammerstein integral equations
are known. The classical method of successive approximations was presented in the 1950s.
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A variation of the Nystrém method was introduced in [10]. The classical method of the degenerate
kernel was obtained in [6]. A new collocation-type method was developed in recent papers [7-9].
But the error expansions for numerical solutions of integral equations seem to have been discussed
in only a few places. For linear Fredholm integral equations, Marchuk and Shaidurov [13, pp.
300-309], Baker [3, pp. 466—473], and Dobrovol’ski [5] obtained the asymptotic error expansion
of the Nystrom method. Lin and Liu [11] analyzed the methods of extrapolation from the iterated
collocation solutions of Fredholm integral equations whose kernels have lower degree smoothness.
Ref. [2] dealt with error expansions for eigenvalues of integral equations. Under the assumption of
a uniform partition, McLean [14] obtained asymptotic error expansion for numerical solutions of
integral equations, including the Nystrom method, iterated collocation method, the iterated
Galerkin method. Lin et al. [12] gave a one-term asymptotic error expansion for the iterated
collocation method on an arbitrary mesh. For nonlinear integral equations, the systematic
derivation and analysis of error expansions for numerical methods have not received much
attention.

The method of Kumar and Sloan [9] is a collocation method applied not to (1.1), but rather to
an equivalent equation for the function z defined by

z(t) =g(t y(@), telab], (1.2)
or
b
z(t) = g(t,f(t) + J k(t, S)Z(S)ds). (1.3)
The desired approximation to the solution y of (1.1) is then obtained by using the equation
b
y®) =f(@) + J k(t,s)z(s)ds, te[a,b]. (1.4)

Kumar and Sloan [9] had shown that, under suitable conditions, the approximation to y converges
to the exact solution. For a special choice of the collocation points, Kumar [7] showed that the
approximation to y may exhibit (global) superconvergence. The discrete version of the Kumar and
Sloan method was considered in [8]. The superconvergence results of Kumar [7] for the exact
method were extended to the discrete case. The main aim of this paper is to give an asymptotic
error expansion of a discrete collocation-type method for (1.1). Thus Richardson’s extrapolation
can be performed on the solution, and this will increase the accuracy of numerical solution greatly.

We assume throughout this paper that the following conditions are satisfied:

(i) y* € C is an exact solution of (1.1);

(i) feC;

(iii) the kernel k(z, s) is continuous on a < t, s < b;

(iv) the function ¢g(z, y) is defined and continuous on [a, b] x R;

(v) the partial derivative g,(t, y) = (6/0y) g(t, y) exists and is continuous on [a, b] x R;

(vi) the function g, satisfies the Lipschitz condition:

195(t, y1 (1)) — g, (&, y2 ()] < 01 y1 (1) — y2 (),
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for some constant ¢ > 0, t € [a, b] and all y,, y, € B(y*, ), where
B(y*,d)={yeC:|ly — y*llo <6}, 6>0.

Under assumption (iii), the linear integral operator K, defined by

b

(Kw)(t) = f k(t, syw(s)ds,

a

i1s a compact operator.
We define another completely continuous operator T':

(Tw)(®) =f(t) + (Kw)(®)
and a continuous, bounded operator G:
Gw(@)=g(t,u(t), telab], ueC.
With the above notation, integral equation (1.1) may be written in operator form as

y=TG(y) (1.5)

and z(t) satisfies the following integral equation:

z=GT(2).

2. Collocation using piecewise polynomial functions

For any natural number N, let
AN: a=t0<t1<---<tN=b

be an equidistant partition of [a, b], and let h = (b — a)/N. For given integers p and d, with
p>d>0, S )4y) = C¥![a, b] will denote the space of piecewise-polynomial functions of
degreep — 1 whose knots are the mesh points {t,: 1 <n < N — 1}. If d = 0, there is no continuity
requirement at the knots. Note that the dimension of this space is given by dim S{_Y (4y) = Np. If
d=1, S,‘,O’ 1 (4y) denotes the space of continuous piecewise polynomial functlons of degree p — 1
whose dimension is equal to N(p — 1) + 1.

In this paper, we shall consider only the cases d = 0 and d = 1. Introduce the set

X(N)={tyitsi=tya+ch0<c;<c3< - <¢,<1,0<n<N—1}.

Clearly, | X (N)| = dim S{~}(dy), provided that the set of parameters {c;} does not contain both
Oand 1. Whend = 1, we choose ¢y = 0and ¢, = 1. Note that the choice ¢; = 0 and ¢, = 1 implies
| X (N)| = dim S{2 1 (dy).
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The collocation approximation to z is zy € S, (4y) satisfying

b

ZN(tn,i)=g<tn,iaf(tn,i)+J\ k(tn,iaS)ZN(S)ds)9 n=0711"',N_15 l= 1a29"°9p9 (21)
and this yields an approximation to y:
b
yult) = (Tzy) () = £(0) + f K(t, 2 (s) ds. 22)

We define an interpolatory projection operator Py which satisfies:

(A) Pywe S;:d—_ll) (4n);
(B) (Pyw)(t) = w(?), t € X (N).

Using operator theoretic representations, (2.1) and (2.2) can be, respectively, written as

zv = PyGT(zy), zyeSy=1" (4n) 2.3)
and

yn = Tzy. 2.4)
Note that yy is also a solution of the equation

yn = TPyG(yn). 2.5

It is clear that the integrals occurring in (2.1) and (2.2) cannot in general be obtained in analytic
form. Hence, a further discretization step is needed: the integrals have to be approximated by
suitable quadrature formulas. When this is done, a discrete form of the above collocation-type
method is obtained.

For a fixed positive integer g, let 74, 1, ..., 7, € [0, 1], and the weights w;, w,, ..., w, define the
quadrature rule

q

1
0N = 3 wfe = | fod 26

i=1

which is exact for all polynomials of degree p — 1, but not exact for some polynomial of degree p,
with p > p (that is, the quadrature rule (2.6) has degree of precision p — 1).
Defining a discrete integral operator Ky by
N-1 g¢
(Kxo)(t) = z Y hw;k(t, s;) ¢(si), tela,bl,

i=0 j=1

where §ij = t; + ‘L'jh.
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We now define a discrete form of the operator T by

Ty (#)(®) =1 (1) + (Kno)(®).
Using the operators introduced so far, the discrete analogues of zy and yy may be written as

iy =PyGTn(Zn), iveSSV(4n) 2.7
and

Jn = Tn(Ey), (2.8)
respectively. Thus jy also satisfies the following equation:

Jx = Tx PyG(Jy). 2.9

From [4], we obtain the following result.

Lemma 1. Let ue C™*! [a,b], r = p. Then, for any t € (t,, tu+1),n =0,1,..., N — 1, we have

u(t) — Pyu(t) = Zr: Hu®(t) @, (t 71 t") + O,

I=p

where @(t) = (t — ¢q) -+ (t — ¢p)[C1sevvs €y 1] (- — )}/1Y, and [cy, ..., ¢,y t]1f () is a pth divided
difference of f(t).

Proof. For any te(t,, t,+1),n=0,1,..., N — 1, it is well known that Pyu can be written as

Pyu(t)= 3 u(rn,,»)Li(t;t"), (2.10)

i=1

where

L= [1 (—c)ci—cy).

Note that
0:0) = T a1(@ L)+ [T (= edles, - 010,

i=1

we obtain

BERAY 14 SRR | 14 Y |
£y_l!i)_ .; “ “x) L= .Dl W —e)ler.. e =

. 2.11)
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Let y = x, from (2.11), we know that

(e — X)’

14
Z Li(x) = b0, I<p, 2.12)
and
Po(c; —x l p v\
) e —x) T ) Lix)=T] (x —ci)[c1s-ees c,,,x]( T ) _ oi(x), 1=p. (2.13)
i=1 i= .
If u(t)e C'*[a, b], then using Taylor’s formula we can write
d (tn.i - t)k k) r+1
u(t, ;) = kgo — )+ Om™h. (2.14)

Substituting (2.14) into (2.10) and using (2 12) and (2.13) we get

Pyu(t) = i Li< ) i “_ u(")(t)+0(h’“)
i=1 —o

- z R ® (1) z < ) Li(%yk! +O(r*Y

=u(f) — Xr: Ku®(t) (pk(t;t")+0(h’“).

k=p

The lemma is proved. []

3. Asymptotic error expansion of the discrete collocation-type method

Throughout this paper, we assume that the sum 2,’,‘; equals to zero when n, > n,. [a] denotes the

integer part of a.
Using Taylor’s expansion, we can easily get the following lemma.

Lemma 2. Let r > p be a positive integer, V(t) = Vo(t) + ¥;-, K Vi(t), Vo(t), Vi(t)e C [a,b],
I=p,...,r,and g(t, y) € C"'P1*1 ([qa, b] x R). Then for any t € [a, b], we have

g6, V(D) =gt Vo) + li H (g, (t, Vo) Vi) + fi(t) + O 1),
where

el 1 o\ ﬁ v (t)
fil) = szzs'(a_)’> g, VO(t))kl+~».Z+ks=1n=l knll):
kizp

From Lemmas 1 and 2 we obtain the following lemma.
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Lemma 3. Let V(t) = Vo(t) + X[-, BV (t), Vo() € C"* ' [a,b], Vi() e C" ' * [a,b], I = p,p + 1,...,
r,and g(t, y) € C"*1([a, b] x R). Then for any t € (t,, t,+1), n=0,1,..., N — 1, we have

Pyg(t, V(D) = g(t, Volt)) + Er: K {gy(t, Vo) Vi(t) + /1t) — g (¢, Vo () @ (t ;l t,,)

I=p

k
- Z ( ) Lgy(t, Vo) Vi-i(®) + fi-x(1)]

X(pk<t;t">}+0(h'+l),

where @,(t) and fi(t) are, respectively, defined in Lemma 1 and Lemma 2.

Lemma 4. Let f(t)e C"*'[a, b]. Then the expansion
N-1 g
h Y Y wifti+1h) ()
i=0 j=1

(Bx(P)

= Q((P)J f@)de + Z h'Q [F¢ VY- +OH™Y) (3.1)

holds, where By(t) are Bernoulli polynomials, the operator Q(f) is defined by (2.6),
[f(®)=c = f(b) — f(a).
Proof. To establish (3.1), we use the general Euler—MacLaurin summation formula:

Bz(’f)

h Z ft,+th) = ff(t)dt+ Z == YO))-a +Om™") (3.2)

valid for 0 < 7 < 1 (see [14, p. 377)).
Setting © = 1;, multiplying (3.2) by w;¢(t;), and then summing up from j =1 to j = g we can
obtain Lemma 4. [J

One of the principal results of this paper is the following theorem.

Theorem 5. Suppose the hypotheses of Lemma 3 are satisfied, and k(t,s)e C"** ([a, b] x [a, b]).
Then, for any t € [a, b], we have

TxPng(t, V(1)

— )+ f k(t,99(5, Vo(s) ds
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b
B ]

i

i f k(t, 9)[9,(5, Vo(8) Vis) +(s)1ds

b

l-n—1
+ Z (Qz(fln)"')[( ) (k(t, 5)(gy (s, Vo(s))V,.(S)+fn(S)))]

s=a

b
- f k(t, 9) (s, Vo(9)) dt Q(@1)

b

s=a

= Q(B,_nq»n)[(a

I-n-1
e §) (k5,995 Vo (s)))]

n=p

i-p k
-2 k(t S)[(d> (y(s, Vo) Vi-i(s) + fi-i(s ))}dSQ(%)

k=pJa

I-1n-p a I-n—-1 d k b
-X X [( ) (k(, S)( > (955, Vo () Va-i(5) + fa- k(s))):l

n=pk=p =a

Q((IBL ")(,:k)}+0(hr+1)

Proof. From the definition of Ty and Lemma 3 we obtain

N-1 g¢

TaPrg(t, V) =f(O) + Y Y hw;k(t, si;) Png(sij, V(sij)

i=0 j=1

N-1 g

=f(l') + Z Z hw,-k(t, s)g(S, VO(S))|5=S|‘j

i=0 j=1

r N-1 ¢
+ 2 h'{ Y Y hwik(t, 5)(gy(s, Vo) Vi(s) +/1(9)ls=s,

I=p i=0 j=1

N-1 ¢

—_ Z Z thk(t, s)g(l) (s, VO(S))|s=sij (pl(ri)

i=0 j=1

(3.3)

k
- Z Z hw;k(t, 5) Z ( s) 4y (s, Vo) Vi-i(s) + fi-1(9))s=s, Q’k(fj)}

i=0 j=1

+ O Y.

(3.4)
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Using the summation formulation (3.1), we find

N—-1 g

Z Z thk(ta s)g(s, VO(S))|s=sU

i=0 j=1

b

-1
= [ k(996 Vowras + 5 h’Q(B')[<;%> (k(, 946 Vo(S)))] + 00,

(3.5)

N-1 ¢

Z Z hwik(ts s)(gy(s, VO(S))VI(S) +fl(s))|s=s.»,-

i=0 j=1

b
- j k(t, 9)(g, (s, Vo(9) Vi(s) +fi(5)) ds

b

+Zh‘Q(B)[<as> (k(t,s)(gy(s,Vo(S))Vz(S)+f1(S)))] oW, (36

N—-1 g

Z Z thk(t, S)g(l)(s, VO(S))|s=sU qol(Tj)

i=0 j=1

b
— 0(e) j k(t,9) g (s, Vo(9))ds

b

z i "")[(63)_ (k(t, 99", Vo(S)))] +O(™), (3.7)

s=a

N—-1 ¢

k
Z Z hw]k(t S) Z < ) (gy(s VO(S))VI k(s) +ﬁ k(s))ls =s; (pk(rj)

i=0 j=1

b k
- f ts) z Q(«m)( ) (055, Vo(®) Vi-a(5) +fi-4(5))ds

a

r—1 i i-1
n Z h [(%) (k(z, s) Z Q(B; m)( > (9y(s, Vo(8)) Vi-k(s)

+ﬁ-k(s)))] +O( 7). (3.8)
Substituting (3.5)—(3.8) into (3.4), and writing them as polynomials in # we can obtain (3.3). [J

Theorem 6. Let y*(t) € C"*![a, b] be the solution of (1.1), z*(t) be the corresponding solution of
(1.3),g(t, y) e C"*([a, b] x R), k(t, s) € C"*([a, b] x [a, b]), and assume that 1 is not an eigenvalue
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of the operator (GT) (z*). Then, for sufficiently large N, yx(t) can be expanded as

) = y* @) + 3 KV + O,

I=p

(3.9

where V,(t) (I = p, ..., r) are the solutions of the following linear Fredholm integral equations:

Vi) — f k(t, 9),(5, *(5)) Vi(s) ds

a

b
j K9S s)ds+Q(B')[<as) (k. s)g(s,y*(s)))]

s=a

1 ,
+ Z c(zl(fln)n') |:< > (k(z, s)(gy (s, y*(s)) Vau(s) +fn(s)))j| B

s=a

b
— (o) j k(t,9) 9 (s, y*(s))ds

-1 l-n—1 b

n=p

b k
—f (t, s) Z Q(%)[( > gy (s, y*($)) Vi-(s) + fi- k(s)):|

I-1n-p -n—1 k
-3 ¥ Q(f’_;',)‘f")ms) (kt, s)(d) @5(5 ¥*(5) Varl8

n=pk=p

b
+f.,_k(s)))} )

s=a

Proof. Defining an operator G,:

G2 (W)(1) = g, (&, y* () w(1),

(3.10)

from [7, p. 318], we know that (I — KG,) is invertible; also its norm and that of its inverse are

uniformly bounded.

Let Vo(t) = y*(t). For any p <[ < r, it is easily seen that V,(t) is defined by a linear Fredholm
integral equation of the second kind (uniquely solvable since (I — KG,) is invertible) in which the

inhomogeneous term is expressed in terms of y*(t), V,(t),..., V-1 (2).

Clearly V,(t) is r — I + 1 times continuously differentiable if (8/0t)" ' *1 k(¢, s) is continuous for
a < t, s < b, and the right-hand side of Eq. (3.10) is r — [ + 1 times continuously differentiable. It is
simple to prove by induction that the conditions of the theorem are sufficient to guarantee this.
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Using Theorem 5 we get
V(t)— TyPNG(V)(t) = O 1). (3.11)

Let E(t) = V(t) — yn(t). Subtracting (2.9) from (3.11) and then applying the mean value formula
we obtain

(I — KnPyg,(t,ny))E =0 (1), (3.12)

where ny(¢) = 0w (t) + (1 — ) V(1) and 5y (1) — y* (1) = O(h”).
For any fixed w e L, let H(w) be the multiplicative linear operator defined by

a

(Hw)v)(t) = gy<t,f(t) + jw k(t, s)w(s)ds)v(t), tefa, b], veC,

then (3.12) becomes
(I — KyPyH(EN)E = O, (3.13)

where Ex(t) — z*(t) = O(hP).
We shall now show that (I — KyPyH(&y)) ™! exists for N sufficiently large and satisfies

I — KyPyH(EN) ™M < Cy < 0.

We recall from [15, Lemma 1] that, for sufficiently large N, (I — KyPyH(z*))"! exists and is
uniformly bounded. Note that

I — KyPyH(EN)) — (I — KyPyH(Y) | < C2 | HEw) — HZ*)|| < C31dn — 2*,

which approaches zero as N — oo. Using [1, Proposition 1.3], we conclude that
(I — KyPyH(&y)) ™! exists and is uniformly bounded for all sufficiently large N. So we have

IE| = O ™).

The theorem is thus proved. []

Remark. When p=g¢q, and ¢;=1;, i=1,2,...,p. Then Q(¢;) =0, Q(B;p;) =0. In this case,
Egs. (3.10) become

b
Vilt) — f K(t,9)9,(5, y*(5)) Vils) ds

b
f k(t, ) f(s)ds +Q§,"[<as) ((t,s)g(s,y*(s)))]

s=a

- b
N Z f(ll(ftn)n}[( ) (K(t, 5@y (5, Y*(5)) V(o) +f,.(s)))] - (3.10)

s=a
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Corollary 7. Suppose that the hypotheses of Theorem 6 are satisfied. W e have the following results:
(i) If p = p, the collocation parameters {c;} have been chosen so that c,_;+1=1-¢,
i=1,2,...,p, the basic quadrature rule (2.6) is symmetric, i.e., suppose T,_;+1=1—1; and
We—i+1 =W; for 1 <i< g. Then V,(t) = 0 whenever | is odd. In this case, expression (3.11) becomes
[r/2]
WO =y*®O+ Y RVy@+0mTh).
1=[(p+1)/2]
@ Ifp=q,ci=1,i=1,2,...,p, are the Gauss points in the interval (0, 1), the basic quadrature
rule (2.6) is an interpolatory quadrature rule. Then, for sufficiently large N, jx(t) can be expanded as
[r/2]
In@ =y*@©)+ ¥ B'Vyt) + O@™1).
I=p
(i) If p=q,c1=11=0,¢c,=1,=1,¢;,=1,i=2,3,...,p — 1, are the Lobatto points in the
interval (0, 1), the basic quadrature rule (2.6) is an interpolatory quadrature rule. Then, for sufficiently
large N, jx(t) can be expanded as
ir/21
In®=y*®)+ ¥ H'Vu@®)+O0m*Y).
I=p—-1
Proof. (i) Suppose that ¢,_;,; =1—c¢;, i=1,2,...,p, 14—j+1 =1 —17; and w,_;,; = w; for all
1 < j < g, then using the facts

Bit)=(=1)Bi(1—¢t), @) =(—1D ol —12),

it follows that
Q(B;)=0 wheniis odd, (3.14)
Q(Bip;)) =0 when i+ [is odd. (3.15)

From (3.14) and (3.15), it is easily seen that the right-hand side term of Eq. (3.9) is equal to zero
whenever [ is odd. So, V;(t) = 0 when [ is odd.

(1)) Now consider the special case when ¢; =1, i=1,2,..., p, are the Gauss points in the
interval (0, 1). For p <1< 2p — 1, note that f;(t) = 0, from (3.10’) we have

b 1 b
v - [ koo o rovios =22 (L) weagsron|

a

Using the fact of Q(B;) = 0, we get V,(t) whenever [ < 2p — 1. From this and (i) we obtain (ii).
Similarly, we can prove (iii). The corollary is proved. [
4. Richardson extrapolation and numerical illustration

We now present a method, the Richardson extrapolation method, for increasing accuracy based
on the asymptotic error expansion. We assume that, p=gq, ¢; =1, i=1,2,..., p, are the Gauss



Han Guogiang [ Journal of Computational and Applied Mathematics 61 (1995) 73-86 85

points in the interval (0, 1), the basic quadrature rule (2.6) is an interpolation quadrature rule. Other
cases are similar. We construct two grids 4y and 4,y with mesh-sizes # and 4k and solve
approximations (2.7) and (2.9). Let 7 and 7% be the solutions of these problems (the accuracy of
each solution being of order O (h??)).

The first step Richardson extrapolation gives

~(0) ~(0)
f(l) — 47y n — IN
N 1

From the asymptotic error expansion, it is easy to see that the function 7 approximates y* with
accuracy of order O(h2?+?2),
For general positive integer m, we have the mth step Richardson extrapolation:

+m—-1 ~x(m—1) ~(m—1)
~(m) _ 47" " Yon  — I
yN - 4p+m*1 _ 1

The function y” approximates y* with accuracy of order O (h2?*2™).
Wes now give an example which illustrates the results of the previous section.
Consider the example

y(t) = t2 + sin() jq exp( — 2s)(y(s))*ds, te[ —1,1].

The equation has two solutions, one of which is
y*(t) = t* + Csin(z),

where C = 195778398647 ... .

We choose uniform partitions with mesh length h = 2/N, N = 2,4, 8, 16, 32, 64. The above
equation was solved using the discrete collocation-type method, with a collocation method for z*
based on discontinuous piecewise linear functions (d = 0, p = 2), and a set of collocation points
consisting of the two Gauss points in the interval (0, 1), the basic quadrature rule (2.6) selecting the
Gauss 2-point rule. The maximum absolute errors of the example are given in Table 1.

Table 1

N EY a® EY o EQ o2
2 2.181072 4.71 5671074 485 1.10:10°% 7.58
4 8.31-1074 4.63 1971073 5.75 5.8410°8 7.90
8 3.35.1073 4.28 3.6510°7 5.94 2.44:10~1° 7.98

16 1.75-10°6 4,08 5.9510°° 5.99 9.65-10~ 13

32 1.04-10°7 4.02 9.38-10~ 11

64 6.40-107°

Notation: Ey” = max{|y*(t) — S\ (@)]: ¢ € [a, 1}; o« = log, (EV/ESH).
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