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Abstract Ins(1,4,5,6)P4, a biologically active cell constituent,
was recently advocated as a substrate of human Ins(3,4,5,6)P4

1-kinase (hITPK1), because stereochemical factors were believed
relatively unimportant to specificity [Miller, G.J., Wilson, M.P.,
Majerus, P.W. and Hurley, J.H. (2005) Specificity determinants
in inositol polyphosphate synthesis: crystal structure of inositol
1,3,4-triphosphate 5/6-kinase. Mol. Cell. 18, 201–212]. Con-
trarily, we provide three examples of hITPK1 stereospecificity.
hITPK1 phosphorylates only the 1-hydroxyl of both Ins(3,5,6)P3

and the meso-compound, Ins(4,5,6)P3. Moreover, hITPK1 has
>13,000-fold preference for Ins(3,4,5,6)P4 over its enantiomer,
Ins(1,4,5,6)P4. The biological significance of hITPK1 being
stereospecific, and not physiologically phosphorylating Ins
(1,4,5,6)P4, is reinforced by our demonstrating that
Ins(1,4,5,6)P4 is phosphorylated (Km = 0.18 lM) by inositol-
phosphate-multikinase.
Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Inositol phosphates comprise a large family of intracellular

signals which play many important roles in cell biology

[1–3]. These biological actions can be quite specific to one partic-

ular inositol phosphate. For example, Ins(3,4,5,6)P4 is the only

naturally occurring inositol phosphate that can inhibit the con-

ductance of CaMKII-activated Cl� channels [4].

In contrast, some of the enzymes that metabolize inositol

phosphates can be relatively promiscuous [5]. For example,

mammalian ITPK1 phosphorylates Ins(1,3,4)P3 at both the

5- and 6-positions [6,7] while also acting as a physiologically

reversible Ins(3,4,5,6)P4 1-kinase and Ins(1,3,4,5,6)P5 1-phos-

phatase [8,9]. This enzyme, by determining cellular Ins

(3,4,5,6)P4 levels, regulates cellular Cl� channel activities

[4]. One explanation for the catalytic versatility of ITPK1

[8] is based on a long-standing hypothesis [10] that recog-

nizes that some inositol phosphates may interact with the
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binding sites of receptors and enzymes in more than one ori-

entation (i.e., ‘‘mode’’), enabling one inositol phosphate to

mimic another by presenting to the docking site some key

recognition features. These determinants of ligand binding

are typically considered not to be restricted to the two-

dimensional arrangement of phosphates and hydroxyls

around the inositol ring, but also to include the three-dimen-

sional stereochemistry at each position of the ring. Thus, our

model for ligand binding to ITPK1 is stereochemically

based, and it proposes that the enzyme uses three different

binding modes [8] (Fig. 1): Mode 1 binding (permitting 1-ki-

nase activity) was designated for Ins(3,4,5,6)P4. We further

proposed that Ins(1,3,4)P3 could bind to the active site in

two orientations, designated mode 2 (permitting 6-kinase

activity) and mode 3 (permitting 5-kinase activity). Mode 3

also accounts for the 5-hydroxyl phosphorylation of the

non-physiological substrate, Ins(1,2,4)P3 [11]. Three substitu-

ents on the inositol ring (groups coloured red in Fig. 1), are

common to each binding mode, but by themselves, these are

insufficient to fully define ligand specificity, since all three

groups are also present on Ins(1,4)P2, which is not a sub-

strate [8,12]. We therefore proposed that ligand recognition

is combinatorial in nature, with some groups making addi-

tional contributions, but only in specific binding modes [8].

This model for ligand binding suggests that ITPK1 might

be one of those proteins [13] that utilizes both rigid and flex-

ible regions in its active site.

Efforts to test our predictions by determining the crystal

structure of the human ITPK1 (hITPK1) have so far not

been successful (G. Miller, J. Hurley and S. Shears, unpub-

lished data). It was therefore a substantial advance when

Miller et al. [14] recently solved the structure of the ITPK1

homologue which is present in Entamoeba histolytica. This

enabled the modeling of the structural determinants of ligand

specificity for the amoeboid enzyme. Miller et al. [14] also

comprehensively confirmed the nature of the active site of

the human enzyme by site-directed mutagenesis, so they ap-

plied their ligand-binding model to hITPK1. This model

[14] has the same three binding modes that we [8] originally

put forward for Ins(3,4,5,6)P4, Ins(1,3,4)P3 and Ins(1,2,4)P3,

but their hypothesis [14] still differs from ours in two key as-

pects. First, in order to rationalize the phosphorylation of

Ins(1,3,4)P3 at both the 5- and 6-hydroxyl, both of these
European Biochemical Societies.
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Fig. 1. Two models of the structural determinants of ligand specificity
for hITPK1. The figure depicts in column �a� our earlier proposal that
there are three modes of binding of inositol phosphates to hITPK1 [8].
It can be illuminating to consider these different binding modes (i.e.,
‘‘1’’, ‘‘2’’ and ‘‘3’’) as permitting 1-kinase, 6-kinase and 5-kinase
activities, respectively. These phosphorylation sites are marked with a
yellow circle. Three groups in Ins(3,4,5,6)P4, Ins(1,3,4)P3 and
Ins(1,2,4)P3 (coloured red) are conserved in all three of these proposed
binding modes. We have previously noted that these groups by
themselves are insufficient to designate substrate specificity, so we have
proposed a combinatorial recognition model in which some of the
additional groups (coloured green) contribute to ligand recognition in
a mode-specific manner [8]. Miller et al. [14] have put forward a
simpler, but more promiscuous version of this model (column �b�) in
which stereochemical factors are not significant determinants of ligand
binding. Although this model developed primarily from experiments
with ITPK1 from Entamoeba histolytica, it was proposed to be also
applicable to hITPK1. They proposed that, irrespective of stereo-
chemistry, substrate specificity was determined by the presence of
phosphates at sites �C�, �D� and �F� and not at sites �A� and �B�; in this
model, either (but not both) of the hydroxyl groups can be phosphor-
ylated. Position �E� was considered unimportant. N/A, not applicable
(i.e., model �b� does not accept that Ins(1,3,4)P3 can bind in this
orientation). See text for further details.
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acceptor groups were proposed to be sufficiently close to the

c-phosphate of ATP that either (but not both) could be phos-

phorylated by direct inline transfer [14]. In that context, only

one binding mode is necessary in order to explain the two

products of Ins(1,3,4)P3 phosphorylation (equivalent to our

mode 2; Fig. 1).

A second, and unique aspect of the model of Miller et al.

[14] is the proposal that, for the amoeboid ITPK1, ligand

specificity is not significantly affected by either the hydroxyl

groups, nor by their orientation (i.e., axial vs. equatorial),

nor by the stereochemistry at any of the six stereogenic cen-

tres of the inositol ring (Fig. 1). In the current study, we

have investigated to what extent these observations might
also apply to hITPK1. We were also intrigued by the range

of additional inositol phosphates that Miller et al. [14] pro-

posed were metabolized by both the amoeboid and human

ITPK1. Most of these additional inositol phosphates are

not constituents of mammalian cells, and as such, the verac-

ity of this proposal does not impact upon our understanding

of hITPK1 function in vivo. However, Ins(1,4,5,6)P4, which

is an intracellular constituent in mammalian cells [15], is one

of the proposed amoeboid ITPK1 substrates that was also

suggested as a substrate for hITPK1. Ins(1,4,5,6)P4 is also

biologically active; it has been shown to regulate Cl� trans-

port [16], to be a PtdIns(3,4,5)P3 antagonist [17], and to

bind tightly to some pleckstrin homology domains [18],

and finally, it may contribute to transcriptional regulation

[19]. Therefore, it is important to understand how the cellu-

lar levels of this inositol phosphate are regulated. If hITPK1

were to participate in maintaining steady-state levels of

Ins(1,4,5,6)P4, then we would need to determine the biolog-

ical impact of competition from other hITPK1 substrates.

In the current study we show that stereochemical factors are

important determinants of ligand specificity for hITPK1. In so

doing, we show that hITPK1 is not a physiologically relevant

Ins(1,4,5,6)P4 kinase; instead, we show that function is per-

formed by another enzyme, the inositol polyphosphate multi-

kinase.
2. Methods

2.1. Materials
Recombinant human ITPK1 (hITPK1) was prepared as previously

described [9,20]. Recombinant human IPMK was prepared as fol-
lows. The cDNA clone IMAGE:4510867 (GenBank2 accession no.
BG258567) was obtained from ATCC. The superfluous nucleotide
at position 451 was removed by site-directed mutagenesis, as de-
scribed in Ref. [21]. The open reading frame was completely rese-
quenced. BamHI and KpnI restriction sites were introduced at the
5 0 and 3 0 ends, respectively. Then the cDNA was subcloned into
the pTrcHisA vector and the protein was expressed in Escherichia
coli. Recombinant poly(His)-tagged protein was purified using Ni-
agarose (Clontech), which was eluted with imidazole according to
the manufacturer�s instructions.
[3H]Ins(3,4,5,6)P4 and [3H]Ins(1,4,5,6)P4 were prepared as previ-

ously described (Refs. [20,22], respectively). Non-radiolabeled
Ins(3,4,5,6)P4, Ins(1,4,5,6)P4 and Ins(1,3,4)P3 were purchased from
CellSignals Inc (Lexington, KY). Ins(3,5,6)P3 and Ins(4,5,6)P3 were
synthesized as previously described [23,24] and their identities were
confirmed by 1H, 13C and 31P NMR spectroscopy [23–25]. Previously
unpublished 1H, and 13C NMR data for Ins(4,5,6)P3 are as follows:

1H
NMR (D2O, pH 10) d 3.92 (dd, J = 2.5, 9.3 Hz, 2H, H-1 and H-3), 4.19
(q, J = 9.3 Hz, 1H, H-5), 4.25 (t, J = 2.5 Hz, 1H, H-2), 4.39 (q,
J = 9.3 Hz, 2H, H-4 and H-6); 13C NMR (D2O, pH 10) d 73.87,
74.60 (2C), 78.32 (2C), 79.10.
The purity of Ins(3,5,6)P3 and Ins(4,5,6)P3 was determined by

HPLC separation followed by metal dye detection [26] using two com-
plementary HPLC procedures that employ either an acidic or an alka-
line gradient [27]. In the acidic gradient, Ins(4,5,6)P3 has a unique
elution position that is well-resolved from all other InsP3 isomers
[8,27,28]. Ins(3,5,6)P3 was resolved from other possible InsP3 isomers
by using both gradients [8,11,27,28]. Thus, we were able to show that
Ins(4,5,6)P3 was >97% pure (the approx. 3% contaminant is
Ins(3,4,5)P3; Fig. 2 and see Section 3). Ins(3,5,6)P3 had no detectable
contaminants (Fig. 2 and see Section 3). Finally, this batch of
Ins(3,5,6)P3 has also been shown to be enantiomerically pure (i.e., it
does not contain any Ins(1,4,5)P3) because no inorganic phosphate
was released when Ins(3,5,6)P3 was incubated with Schizosaccharomy-
ces pombe synaptojanin, an active Ins(1,4,5)P3 5-phosphatase [29].
Enantiomeric contamination is not an issue for Ins(4,5,6)P3, which is
a meso-compound.
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Fig. 2. HPLC analysis of the purity of Ins(3,5,6)P3 and Ins(4,5,6)P3.
6 nmol of either Ins(3,5,6)P3 (panel A) or Ins(4,5,6)P3 (panel B) were
analyzed by HPLC using an alkaline gradient (see Section 2 and Ref.
[27]). Isomeric assignments are based on the complementary nature of
the alkaline gradient when used in parallel with an acidic gradient (see
Section 3 and Ref. [27]), which together resolve Ins(3,5,6)P3 and
Ins(4,5,6)P3 from all other InsP3 isomers.

Fig. 3. Two models of the predicted binding and phosphorylation of
Ins(3,5,6)P3, Ins(4,5,6)P3 and Ins(1,4,5,6)P4 by hITPK1. The binding
of inositol phosphates to hITPK1, and the site of phosphorylation
(yellow circle) is predicted according to the model proposed either by
Ho et al. (column �a�; Ref. [8]) or Miller et al. (column �b� and Ref. [14]).
N/A, not applicable to this model. See Fig. 1 for the significance of
other colour-coding.
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2.2. Enzyme assays
The hITPK1 activity was assayed at 37 �C in 100–200 ll buffer con-

taining 100 mM KCl, 20 mM HEPES pH 7.2, 5 mM ATP, 10 mM
phosphocreatine, 6 mM MgSO4, 0.3 mg/ml bovine serum albumin
and 3.6 U/ml phosphocreatine kinase (Calbiochem). Other assay de-
tails are given in the figure legends. Assays with radiolabeled inositol
phosphates were quenched with PCA and neutralized with K2CO3 as
previously described [30]. Some of these assays were analyzed using
gravity-fed ion-exchange columns [30]. Other assays were analyzed
by HPLC using a 12.5 · 4.6 mm Partisphere SAX column (Krackler
Scientific, NC) as previously described [31]. Kinetic parameters for
IPMK-dependent phosphorylation of [3H]Ins(1,4,5,6)P4 were deter-
mined with assays that contained a range of Ins(1,4,5,6)P4 concentra-
tions from 0.05 to 1.8 lM. Km and Vmax were determined as previously
described [32], by non-linear curve fitting to the Michaelis–Menten
equation, using SigmaPlot. Other assays that consisted entirely of
non-radiolabeled inositol phosphates were quenched by boiling for
3 min, and then processed for analysis by HPLC separation followed
by metal dye detection [26] using an acidic gradient as described by
Adelt et al. [27]. Data were exported as ASCII files into SigmaPlot.
3. Results and discussion

3.1. Is Ins(3,5,6)P3 a substrate of hITPK1?

Ins(3,5,6)P3 is not a physiologically relevant inositol phos-

phate, but it has been utilized in the current study to provide

useful information on the regioselectivity of human ITPK1

(hITPK1). Our model predicts that Ins(3,5,6)P3 is a candidate

mode 1 substrate, and, therefore, it would only be phosphory-

lated at the 1-position (column �a�, Fig. 3). An alternative model

of the activities of mammalian ITPK1 predicts that it will

phosphorylate either (although not both) of the 1- and 2-

hydroxyls of Ins(3,5,6)P3 (column �b� in Fig. 3); the latter pre-

diction is based on a structural characterization of an ITPK1

homologue from E. histolytica [14].

We tested these different ideas concerning positional specific-

ity of hITPK1 using non-radiolabeled Ins(3,5,6)P3, the metab-

olism of which was recorded using an on-line mass-detection

HPLC technique [26,27]. As a control, we also recorded the

phosphorylation of non-radiolabeled Ins(1,3,4)P3 (Fig. 4). It

should be noted that the sensitivity of this method increases

when there are a larger number of phosphate groups around

the inositol ring [26]. For example, an InsP4 will yield a larger

signal than an equivalent concentration of InsP3 [26]. This

technical point is apparent following an analysis of

Ins(1,3,4)P3 phosphorylation by ITPK1; the sizes of the peaks

of the two products (Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4) are lar-

ger than the peak of the original substrate (Fig. 4A).

There have been efforts to rationalize why two InsP4 isomers

are formed upon phosphorylation of Ins(1,3,4)P3 by ITPK1.

At least for the ITPK1 homologue in E. histolytica, Miller

et al. [14] have proposed that the phosphorylation of

Ins(1,3,4)P3 at both the 5- and 6-hydroxyl is possible in one

substrate-binding mode. Both of these hydroxyl groups are
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Fig. 4. HPLC Analysis of the phosphorylation of Ins(1,3,4)P3 and
Ins(3,5,6)P3 by hITPK1. Recombinant hITPK1 (3400 ng) was incu-
bated in 200 ll assay buffer for 0 (dotted trace) or 4 h (solid trace) with
50 lM of either Ins(1,3,4)P3 (panel A) or Ins(3,5,6)P3 (panel B) as
described in Section 2. Samples were quenched by boiling and analyzed
by an on-line mass detection HPLC technique that uses an acidic
gradient (see Section 2). The absorbance at the 30 min elution time was
arbitrarily set to zero. The elution positions of the named InsP4

isomers are arrowed; these were determined using genuine standards
[11]. Note that sensitivity of this technique depends upon the number
of phosphate groups; thus, an InsP4 yields a larger signal than an
equivalent concentration of InsP3 [26,27].
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sufficiently close to the c-phosphate of ATP that either (but

not both) can, in principle, be phosphorylated by direct inline

transfer. The latter proposal is distinct from our earlier

hypothesis that mammalian ITPK1 has two binding modes

for Ins(1,3,4)P3, which separately determine whether it is the

5-hydroxyl or the 6-hydroxyl that is phosphorylated [8]. None

of the new data that are presented in the current study are able

to distinguish between these two alternate models.

In agreement with the prediction of Miller et al. [14], we

found that Ins(3,5,6)P3 was phosphorylated by hITPK1

(Fig. 4B). A single InsP4 product was identified which co-

eluted with standards of Ins(1,3,5,6)P4. No InsP5 was formed

from Ins(1,3,5,6)P4 (data not shown). More importantly, no

product accumulated with the retention times of Ins(2,3,5,6)P4

or Ins(3,4,5,6)P4 (Fig. 4B). These data are in agreement with

our stereochemically based model for ligand binding, which

does not permit phosphorylation of either the 2- or 4-hydrox-
yls of Ins(3,5,6)P3 (Fig. 4). Clearly, the stereochemistry of the

inositol ring at C-2 prevents phosphorylation of the 2-OH

group by hITPK1 in both Ins(3,4,5,6)P4 and Ins(3,5,6)P3,

either by dictating possible binding modes, and/or because

an axial hydroxyl group cannot be presented to the active site

in the correct orientation for phosphoryl transfer.

According to our model of ligand binding (Fig. 3, column

�a�), regioselective phosphorylation of Ins(3,5,6)P3 at the

1-position characterizes it as a mode 1 substrate. Since

Ins(3,4,5,6)P4 is also a mode 1 substrate (Fig. 1), we deter-

mined the affinity of hITPK1 for Ins(3,5,6)P3 to quantify the

contribution of the 4-phosphate to ligand binding. We consid-

ered this to be an important experiment because the 4-phos-

phate of Ins(3,4,5,6)P4 is not one of those groups that has an

equivalent in all three of our proposed ligand-binding modes

(Figs. 1 and 3). Therefore, this situation gave us an opportu-

nity to test our combinatorial hypothesis that the 4-phosphate

might be one of those determinants of ligand binding that are

mode-specific.

The value of the IC50 with which Ins(3,5,6)P3 inhibited

Ins(3,4,5,6)P4 phosphorylation was used to calculate the affin-

ity of the inhibitor (Fig. 5). As a control, we also checked the

affinity for Ins(1,3,4)P3 using the same method (Fig. 5). As ex-

pected, Ins(1,3,4)P3 potently inhibited hITPK1 activity to-

wards Ins(3,4,5,6)P4 (IC50 = 7.6 lM; Ki = 0.15 lM, Fig. 5A).

This method for measuring substrate affinity is validated by

the estimated affinity of Ins(1,3,4)P3 being very close to the

previously determined Km value (0.3 lM; Ref. [9]). The affinity

of Ins(3,5,6)P3 for hITPK1 (IC50 = 100 lM; Ki = 2 lM;

Fig. 5B) is around 13-fold lower than that for Ins(3,4,5,6)P4

(0.1 lM, Ref. [9]). In other words, removal of the 4-phosphate

from Ins(3,4,5,6)P4 can be concluded to reduce ligand affinity

13-fold. The 4-phosphate has this function in mode 1, and

there is a surrogate in mode 2 (Fig. 1). There is not an equiv-

alent group in mode 3 (Fig. 1). Thus, the 4-phosphate in

Ins(3,4,5,6)P4 may be one of those groups that we have

proposed makes a contribution to ligand binding in a mode-

specific manner.

3.2. Is Ins(1,4,5,6)P4 a substrate of hITPK1?

Ins(1,4,5,6)P4 is another inositol phosphate that can distin-

guish between the two different models of ligand binding de-

scribed in Figs. 1 and 3. In our model, this inositol

phosphate is not predicted to be a substrate, as it cannot pres-

ent the key recognition features to the active site in any of our

three binding modes. In contrast, Miller et al. [14] consider

Ins(1,4,5,6)P4 to be a potential substrate of hITPK1, based

on their model of the amoeboid homologue, because

Ins(1,4,5,6)P4 contains three appropriately positioned phos-

phate groups, but this would only be valid if stereochemical

factors are not significant determinants of ligand specificity

(Figs. 1 and 3). The resolution of this issue has physiological

relevance because Ins(1,4,5,6)P4 is proposed to be a biologi-

cally active constituent of mammalian cells (see Section 1). It

is therefore an important goal to understand the nature of

the enzymes that metabolize Ins(1,4,5,6)P4 in vivo.

In order to maximize the sensitivity of these kinase assays, we

incubated hITPK1 with [3H]Ins(1,4,5,6)P4, and we measured its

ability to be metabolized under first-order conditions. There

was no phosphorylation (Fig. 6A). In contrast, 42% of added

[3H]Ins(3,4,5,6)P4 was phosphorylated by a concentration of

hITPK1 (Fig. 6B) that was approx. 1600-fold lower than that
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of the Km for Ins(3,4,5,6)P4 is 0.1 lM [9].
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used in the assays with [3H]Ins(1,4,5,6)P4 (Fig. 6A). By taking

5% phosphorylation as a conservative estimate of the minimal

level of detection, we can calculate that we would have been

able to measure any Ins(1,4,5,6)P4 phosphorylation that oc-

curred at a rate that was up to 13,000-fold slower than that

of Ins(3,4,5,6)P4. We therefore conclude that Ins(1,4,5,6)P4 is

not a physiologically relevant hITPK1 substrate. This differ-

ence in the reactivity of hITPK1 towards Ins(3,4,5,6)P4 vs.

Ins(1,4,5,6)P4 is particularly pertinent to the current study be-

cause these two compounds are enantiomers; our data

(Fig. 6) therefore again verify that stereochemistry is an impor-

tant determinant of the substrate specificity of hITPK1.

While hITPK1 cannot phosphorylate Ins(1,4,5,6)P4, there is

an enzyme that was previously observed in mammalian cell ly-

sates that does show Ins(1,4,5,6)P4 3-kinase activity [15,33,34].

Majerus and colleagues [32] have proposed that this mamma-

lian 3-kinase activity is performed by IPMK (also known as

IPK2). In support of this idea, the latter group heterologously

overexpressed rat IPMK in a strain of S. cerevisiae that lacks
the inherent ability to phosphorylate Ins(1,4,5,6)P4 to InsP5; in

these yeast cells, rat IPMK rescued InsP5 synthesis [32]. We

have provided support to the latter observations by demon-

strating that Ins(1,4,5,6)P4 is phosphorylated by purified re-

combinant human IPMK (Fig. 6C). Moreover, the kinetic
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parameters that we determined for this Ins(1,4,5,6)P4 3-kinase

activity (Km = 0.18 lM; Vmax = 139 nmol/mg protein/min) are

similar to those for its other substrates [21,32]. These experi-

ments also verify the nature of the [3H]Ins(1,4,5,6)P4 substrate

used in the experiment described in Fig. 6A.
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3.3. Is Ins(4,5,6)P3 a substrate of hITPK1?

Ins(4,5,6)P3 is not a physiologically relevant inositol phos-

phate in mammalian cells. However, it is useful for studying

the importance of ring stereochemistry in determining sub-

strate specificity, because it is a meso-compound, i.e., a plane

of symmetry runs through the ring (between the 2- and 5-posi-

tions). We found Ins(4,5,6)P3 to have only weak affinity for

hITPK1; 200 lM Ins(4,5,6)P3 inhibited Ins(3,4,5,6)P4 phos-

phorylation by only 25% (Fig. 7A). Nevertheless, Ins(4,5,6)P3

was phosphorylated by hITPK1 (Fig. 7B). A single InsP4 peak

was detected, at the elution position of the Ins(3,4,5,6)P4/

Ins(1,4,5,6)P4 enantiomeric pair. Since the InsP4 was not fur-

ther phosphorylated to InsP5, we conclude the InsP4 is

Ins(1,4,5,6)P4, since that is not a physiological substrate of

hITPK1 (Fig. 6).

Despite Ins(4,5,6)P3 being a meso-compound, our data re-

veal that hITPK1 shows a preference for phosphorylating

the 1-hydroxyl rather than the 3-hydroxyl. Thus, hITPK1

can clearly distinguish between enantiotopic groups in this

substrate. This result offers further testimony to the stereo-

chemical preferences of this enzyme.
Elution time (min)

28 32 36 40 44 48 52 56

0.0

Fig. 7. Ins(4,5,6)P3 is regioselectively phosphorylated by hITPK1.
Panel A. Recombinant hITPK1 (24 ng) was incubated in 100 ll assay
buffer for 30 min with 5 lM [3H]Ins(3,4,5,6)P4 as described in Section
2, plus the indicated concentrations of Ins(4,5,6)P3. Samples were acid
quenched, neutralized, and analyzed by gravity-fed columns as
described in Section 2. Data shown are from a representative
experiment performed in duplicate (typical of three). Panel B.
Recombinant hITPK1 (3400 ng) was incubated in 200 ll assay buffer
for 0 (dotted trace) or 4 h (solid trace) with 50 lM of Ins(4,5,6)P3 as
described in Section 2. Samples were quenched by boiling and analyzed
by an on-line mass detection HPLC technique that uses an acidic
gradient (see Section 2). The absorbance at the 30 min elution time was
arbitrarily set to zero. Note that a small contaminant that was not
metabolized eluted 2 min prior to Ins(4,5,6)P3; the contaminant is
Ins(3,4,5)P3 (see text and Fig. 2). The elution positions of the named
InsP4 isomers are arrowed; these were determined using genuine
standards [11].
3.4. Concluding comments

The structural characterization of the ITPK1 from E. his-

tolytica led to the generation of a model of the active site in

which the hydroxyl groups, and their orientation, and the ste-

reochemical properties of the molecule, all do not contribute

significantly to substrate specificity [14]. It was further pro-

posed that the model could be applied to mammalian ITPK1

[14]. An investigation of the latter proposal was one of the

goals of the current study. We have used three different inositol

phosphates to show that, in each case, hITPK1 recognizes the

stereochemistry of its substrates at key positions around the

inositol ring, including the hydroxyl groups. Miller et al. [14]

have further suggested that hITPK1 mimics the ability of

ITPK1 from E. histolytica to phosphorylate either of two adja-

cent hydroxyls on a single substrate, even if one of these hydro-

xyl groups is axial to the plane of the inositol ring. Our new

data (Figs. 4 and 7) indicate that hITPK1 can only phosphor-

ylate a single, equatorial hydroxyl on either Ins(3,5,6)P3 or

Ins(4,5,6)P3. The same is true of Ins(3,4,5,6)P4 [9]. It seems that

evolutionary pressure has narrowed the substrate specificity of

the mammalian enzyme [14,35]. For example, the human en-

zyme has lost the ability to phosphorylate Ins(1,4,5)P3, which

is a notable characteristic of ITPK1 from E. histolytica [14,35].

This difference may be attributed to Ser-295 in the amoeboid

enzyme being replaced by a glycine residue in hITPK1 [14].

Our studies not only advance our insight into the nature of

the active site of mammalian ITPK1, but they also increase our

understanding of the metabolism of Ins(1,4,5,6)P4, which is

reportedly a biologically active constituent of eukaryotic cells

[16,17,19]. Our data demonstrate that it is IPMK, and not

ITPK1, that has the capacity to regulate the cellular levels of

Ins(1,4,5,6)P4 in mammalian cells. This conclusion should as-

sist our understanding of the cell biology of Ins(1,4,5,6)P4.
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