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Nano/micron-sized reaction chamber arrays (femtoliter-chamber
arrays) enable highly sensitive and quantitative biological assays, such
as single-molecule enzymatic assays [1, 2], digital PCR [3, 4], and digital
ELISA [5]. However, the versatility of femtoliter-chamber arrays has
been limited to reactions in aqueous solutions. In this presentation, I
will introduce an arrayed lipid bilayer chamber system (ALBiC) that
displays a sub-million femtoliter chambers, each sealed with a stable
4-μm diameter lipid bilayer membrane with extremely high efficiency
(yield: ~99%). When reconstituted with a limiting amount of the
membrane transporter proteinsα-hemolysin or FoF1-ATP synthase, the
chambers of the ALBiC exhibited stochastic and quantized transporting
activities, demonstrating that the single molecule analysis of passive
and active membrane transports is achievable with the ALBiC system.
Thus, this new platform has vastly extended the versatility of femtoliter
chamber arrays and could contribute to the understanding of the
working mechanism of membrane proteins as well as to further
analytical and pharmacological applications. If time allows, I would like
to talk about new versions of the ALBiC that we recently developed.
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Purified F-ATP synthase dimers of yeast mitochondria display
Ca2+-dependent channel activity with properties resembling those
of the permeability transition pore (PTP) of mammals [1]. After
treatment with the Ca2+ ionophore ETH129, which allows electropho-
retic Ca2+ uptake, isolated yeast mitochondria undergo inner mem-
brane permeabilization due to PTP opening [2]. Yeast mutant strains
ΔTIM11 and ΔATP20 (lacking the e and g F-ATP synthase subunits,
respectively, which are necessary for dimer formation [3]) display a
striking resistance to PTP opening. These results show that the yeast PTP

originates from F-ATP synthase, and indicate that dimerization is
required for pore formation in situ.
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Single-molecule experiments of the Escherichia coli FoF1 ATP
synthase reveal for the first time the existence of an Fo-dependent
power stroke that can rotate the c-ring up to a maximum of ~36°, the
equivalent of one c-subunit, in the ATP synthase direction against the
force of F1 ATPase-driven rotation. Evidence supports a grab-and-
push mechanism in which subunit-a grabs one subunit-c near the
membrane–cytoplasm interface, then pushes the c-ring as the result
of a protonation-dependent conformational change of subunit-a. The
location at which subunit-a grabs was identified by mutations that
eliminated charged residues. These mutations decreased the ability
of subunit-a to grab the c-ring, and adversely affected ATP synthesis
and proton translocation in the ATP synthesis direction indicating
the participation of these residues in a gating mechanism for ATP
synthesis-dependent proton translocation.
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The mitochondrial FOF1ATP synthase forms long rows of dimers
in the inner membrane cristae and is composed of the catalytic F1
and the membranous FO sectors linked by central and peripheral
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stalks. Recently it was demonstrated (i) that cyclophilin D binds to
the FO OSCP subunit, resulting in partial enzyme inhibition; (ii) that
CyPD binding requires high Pi, while the CyPD inhibitor CsA
displaces CyPD from OSCP resulting in enzyme reactivation; and
(iii) that ATP synthase dimers generate Ca2+-dependent currents
indistinguishable from those of the permeability transition pore
(PTP), suggesting that the PTP forms from a Ca2+-dependent
conformational change of FOF1 dimers [1]. These findings imply that
many modulators of the PTP may act on the ATP synthase. The most
potent PTP inhibitors are H+; indeed, the pore is blocked at acidic
matrix pH that also promotes CyPD release from the inner
membrane. Diethylpyrocarbonate (DPC) prevents PTP inhibition by
H+ through carbethoxylation of His residues, and also prevents the
release of CyPD from the inner membrane induced by acidic pH [2].
We found that DPC also prevents the release of CyPD from ATP
synthase induced by acidic pH. As is the case for the PTP, the effect of
DPC was reversed by hydroxylamine, indicating that it can be traced
to carbethoxylation of His residue(s). This in turn suggests that
reversible protonation of the unique histidyl residue of OSCP (bovine
His112) may play a critical role in modulation of the CyPD–ATP
synthase interaction. Consistently, when OSCP subunit separated
from mitochondria treated with DPC was digested with trypsin and
analysed by ESI-MS, a mass shift of +72 Da of the OSCP 95-113
peptide was determined, which is consistent with carbethoxylation
of the unique His112. In conclusion, DPC is proving very useful to
address the role of OSCP His112 in modulation of CyPD binding to
ATP synthase/PTP by matrix pH, which will be further addressed by
mutagenesis.
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IF1 is an 84 amino acid length peptide that inhibits the ATP
hydrolysis activity of F1Fo-ATPase. In solution, IF1 forms homodimers
with two domains: a coiled-coil dimerization domain comprising
residues 48–84, and a N-terminal inhibitory domain, from residues 1–
45, that is intrinsically disordered. In the structure of bovine F1-ATPase
inhibited with residues 1–60 of the bovine inhibitor protein IF1, one
inhibitor protein (I1-60) interacts with five of the nine subunits of F1-
ATPase, and I1-60 is bound tightly at the αDPβDP catalytic interface.
Formation of the inhibited complex requires ATP hydrolysis. It has been
proposed that the first interaction between the inhibitor and F1-ATPase
is with the βE-subunit (the most open state), and that the inhibitor
becomes entrappedprogressively as twoATPmolecules are hydrolysed.
We have solved three novel F1–IF1 structures that support this

proposal. Crystals of F1-ATPase were grown in the presence of a large
molar excess of one of three inhibitors: I1-60His, I1-60His K39A, and
I1-60His F22WY33W. The resultant complexes all havemultiple copies
of the inhibitor bound to one F1-ATPasemolecule. The structures reveal
the binding cycle of the inhibitor to F1-ATPase showing how the
intrinsically disordered inhibitory domain of IF1 becomes gradually
more ordered as it interacts with F1-ATPase. The folding pathway of
IF1 is shown with a greater level of structure possible for IF1 as its
interactions with F1-ATPase become progressively more extensive.
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Subunit ε is an intrinsic regulator of the bacterial FoF1-ATP synthase.
The C-terminal domain of ε can extend into the central cavity formed by
the a and b subunits as revealed by the recent X-ray structure of the F1
portion of the Escherichia coli enzyme [1]. This insertion blocks the
rotation of the central g subunit and, thereby, prevents wasteful ATP
hydrolysis. We developed an experimental system including a micro-
fluidic single-molecule trap [2] to observe how epsilon inhibits the F1
portion and the holoenzyme FoF1-ATP synthase. Labeling the C-terminal
domain of the ε and g subunits specifically with two different
fluorophores for single-molecule Förster resonance energy transfer
(smFRET) allowedmonitoring of the conformation of ε of the F1 portion
[3] or the reconstituted enzyme in real time [4].
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ATP synthase (FOF1) is an important enzyme for energy
conversion in the cell and can be found in energy-transducing
membranes of bacteria, mitochondria and chloroplasts. The enzyme
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