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Abstract

Categorization models often assume an intermediate stimulus representation by units implementing ‘‘distance functions’’, that is,
units that are activated according to the distance or similarity among stimuli. Here we show that a popular example of these models,
ALCOVE, is able to account for the performance of monkeys during category learning when it takes the perceived similarity among
stimuli into account. Similar results were obtained with a slightly different model (ITCOVE) that included experimentally measured tun-
ing curves of neurons in inferior temporal (IT) cortex. These results show the intimate link between category learning and perceived sim-
ilarity as represented in IT cortex.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The term ‘visual categorization’ refers to the process by
which a possibly infinite number of visual input patterns
are grouped into a relatively small number of output cate-
gories. Many models of visual categorization have been
proposed (e.g., Ashby & Waldron, 1999; Kruschke, 1992;
Kruschke, 2005; Medin & Schaffer, 1978; Nosofsky,
1984). Despite major differences in how stimuli and
response selection are modeled in each of these theories,
most quantitative models of visual categorization assume
some sort of spatial stimulus representation. In these mod-
els stimuli are represented as points or regions in a stimulus
space so that the discriminability among any two stimuli is
related to their distance in stimulus space.
0042-6989/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Spatial categorization models have been implemented in
neural networks (Ashby & Waldron, 1999; Kruschke,
1992). In these networks, stimuli are represented by means
of units that implement ‘distance functions’. Each of these
units has a maximum value when the input corresponds to
one particular position in the input space (the ‘preferred’
stimulus) and it falls off with increasing distance between
the input and the preferred position. Here we investigate
whether the concept of distance functions and the related
models are consistent with (i) the behavior of rhesus mon-
keys in a categorization task and (ii) the observed tuning
properties of single neurons in inferior temporal (IT)
cortex.
1.1. Distance functions and category learning

Probably the most frequently used neural network imple-
mentation of spatial categorization models is ALCOVE, a
three-layer network for categorization (Kruschke, 1992;
see Fig. 1). The inputs to the ALCOVE network are the val-
ues of exemplar stimuli along each stimulus dimension. The
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Fig. 1. The standard architecture of the ALCOVE network (see Sections
1.1 and 2.5; figure based on Kruschke, 1992).
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hidden units implement distance functions centered at the
locations in stimulus space that correspond to the learned
exemplars. The tuning function of each hidden unit is char-
acterized by its position in stimulus space. The output layer
contains as many units as there are categories to learn. The
network learns to associate each input pattern with the cor-
rect output unit by adapting two sets of weights with error-
driven learning. First, the overall weight of each stimulus
dimension is gated by an attention strength factor (a1 and
a2 in Fig. 1) that reflects the learned relevance of that dimen-
sion for the categorization task. Second, the weights
between hidden units and output units (wkj in Fig. 1) are
adapted during learning.

The standard ALCOVE is a neural network implemen-
tation of one specific class of categorization models,
namely exemplar models (e.g., Medin & Schaffer, 1978;
Nosofsky, 1984). Exemplar models provide a very good
account of human and monkey behavior in categorization
tasks (e.g., Kruschke, 1992; Nosofsky & Johansen, 2000;
Sigala, Gabbiani, & Logothetis, 2002). The success of these
models and of the ALCOVE model in particular suggests
that humans and monkeys represent visual stimuli in terms
of distance functions.

One reason for the popularity of the ALCOVE architec-
ture is that some other spatial categorization models can be
implemented with only slight modifications in architecture
(Johansen & Palmeri, 2002). For example, ALCOVE turns
into an implementation of prototype models of categoriza-
tion if the hidden layer contains one hidden unit for each
category (a distance function tuned to the prototype of a
category). ALCOVE has also been adapted to include
hybrid forms of spatial representations and feature-based
representations (e.g., Lee & Navarro, 2002; Verguts,
Ameel, & Storms, 2004).
1.2. Distance functions in the brain

A likely candidate site for the implementation of the
intermediate representations that are involved in visual
shape categorization in macaque monkeys is the infero-
temporal (IT) cortex in the ventral visual stream (Logo-
thetis & Sheinberg, 1996; Riesenhuber & Poggio, 1999).
Several theoretical analyses have suggested that stimuli
might be represented in the brain by a recoding of the
visual input into distance functions (Edelman, 1999; from
a theoretically point of view, these distance functions
form a set of basis functions, see Poggio & Girosi,
1990; Pouget & Snyder, 2000). Single-cell recordings in
IT cortex have demonstrated the usefulness of the concept
of ‘distance functions’ in understanding the representation
of shape in high-level visual cortex (Logothetis, Pauls, &
Poggio, 1995; Op de Beeck, Wagemans, & Vogels,
2001). In our study (Op de Beeck et al., 2001), we used
a stimulus set created by a parametric manipulation of
shape contour. This set was composed of three groups
of 8 shapes with the two-dimensional configurations in
parameter space as shown in Fig. 2A. Behavioral tests
showed that the parametric configurations are, to a large
degree, faithfully represented by human and monkey sub-
jects, as shown in Fig. 2B for each stimulus group. The
stimulus order in the representational space and its
dimensionality agreed with the stimulus order and dimen-
sionality of the parametric configurations. Nevertheless,
some metric deviations were also noted, resulting in small
but consistent deformations of the representational space
with respect to parametric space.

The single-cell recordings in macaque IT cortex revealed
a close correspondence between pair-wise shape distances
in this behavioral representational space, and pair-wise dif-
ferences in the IT population responses. Even the small
deformations of the behavioral representational space com-
pared to parametric space were present in the population
responses. At the level of individual neurons, most IT neu-
rons responded maximally to the presentation of one par-
ticular shape in a stimulus group, and responses
diminished gradually for shapes located more distantly in
stimulus space, exactly as expected when implementing
‘distance functions’.

Although these results indicate that IT neurons may
implement distance functions, the neuronal tuning curves
showed a high level of diversity. Computational models
such as the models introduced by Kruschke (1992) and
Edelman (1999) contain units with identical tuning prop-
erties that differ only in their preferred position in stimu-
lus space. The IT response profiles, however, displayed
great diversity in their tuning properties. There was a
wide range of tuning widths with some neurons respond-
ing to only one stimulus but other neurons responding to
almost all stimuli. Furthermore, although the tuning pro-
files of many neurons showed a close correspondence with
shape similarity, a minority deviated from this general
picture.



Fig. 2. Stimuli used in the behavioral and neurophysiological experiments. (A) The three stimulus groups (a–c), with stimulus position in each group
representing the position of stimuli in parametric space. (B) MDS-derived configurations with stimulus position representing the position of stimuli
according to perceived similarity (as described by Op de Beeck et al., 2001). (C) Illustration of the three category rules. The black or white color of the
stimuli represents their category membership according to each rule. Capital letters denote stimuli with a particular position in stimulus space with respect
to the category border (A–D for the linear rule, and E–F for the quadrant rule). The pairing of rule and stimulus group as shown in panel C (linear,
quadrant, and arbitrary rule for stimulus group a, b, and c, respectively) corresponds to the learning scheme of monkey 1, the pairing in monkey 2 is shown
in panel D.
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1.3. The present investigation

Up to now, two lines of evidence were used to support
the hypothesis that the visual system recodes its input into
a set of distance functions for categorization: (i) the corre-
spondence between the performance of a distance function
network such as ALCOVE and behavior and (ii) neuronal
tuning curves in IT cortex. None of the previous studies
combined these two lines of evidence by showing that a net-
work with empirical neuronal tuning curves can account
for categorization behavior. In particular, previous imple-
mentations of ALCOVE have not considered the effect of
the diverse nature of neuronal tuning curves. Not only
might such diversity directly affect network performance
and modeling capacity, but it also evokes questions about
how particular tuning functions in the intermediate repre-
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sentation are selected while the network learns the input/
output transformation needed for categorization: Which
units will be selected by which category rules? How is this
selection related to other parameters of the model such as
attention weights? Would the diversity and the neuronal
selection influence performance of the network? These
questions will be addressed in the present work.

2. Methods
2.1. Stimuli

The stimulus set included 3 groups of 8 stimuli (Fig. 2A). The square
arrangement of the stimuli within each stimulus group represents the
parameter-space configuration of the stimuli. Op de Beeck et al. (2001)
measured the perceptually weighted similarity space of these stimuli
(shown in Fig. 2B) from the performance of two monkeys in a sequential
matching task.

2.2. Category rules

The category learning tasks included three different category rules,
referred to as the linear rule, the quadrant rule, and the arbitrary rule
(Fig. 2C–D). In these rules, exemplar stimuli could differ in the average
similarity of an exemplar to all other exemplars in its category (within-cat-
egory similarity) and its average similarity to exemplars of other categories
(between-category similarity). For example, stimulus 1 in the left panel of
Fig. 2C belongs to one category together with stimuli 6, 7, and 8, but stim-
ulus 1 is relatively different from these other exemplars of its category (rel-
atively low average within-category similarity) and relatively similar to
some exemplars of the other category (especially stimulus 2). In contrast,
stimulus 7 in the same panel is more representative for its category and
very different from all exemplars of the other category. Despite these stim-
ulus differences, some stimuli are equivalent in within-category and
between-category similarity in parametric space due to the construction
of the stimulus space and category rules. For example, stimuli 1 and 5
in the left panel of Fig. 2C are equivalent according to these metrics, only
Fig. 3. Performance of monkey 1 on each category rule as a function of
discretized learning blocks of 600 trials each. Whiskers indicate 95%
confidence intervals. These data have been published in another format by
Op de Beeck et al. (2001).
their category differs, e.g. the within-category similarity of stimulus 1 for
the category of stimuli shown in black is the same as the within-category
similarity of stimulus 5 for all white stimuli. For our analyses we have
pooled ‘‘equivalent’’ exemplars with the same within-category and
between-category similarity in parametric space, and the result is shown
in Fig. 2C–D by capital letters. This distinction is only made for the linear
and quadrant rule, since for the arbitrary rule, all exemplars of a category
have the same within-category and between-category similarity.

2.3. Behavioral data during category learning

The behavioral data of this paper have been published by Op de Beeck
et al. (2001), and were obtained from different monkeys than the monkeys
used to measure the perceptual similarity space. Two monkeys (in the
present paper referred to as monkey 1 and monkey 2) learned to categorize
the stimuli of each stimulus group into two categories. Monkey 1 learned
the linear, quadrant and arbitrary rule for stimulus group a, b, and c,
respectively (Fig. 2C). His performance during training is shown in
Fig. 3. Monkey 2 learned the linear rule for stimulus group c and the arbi-
trary rule for groups a and b (Fig. 2D).

2.4. Neuronal recordings

As described previously (Op de Beeck et al., 2001), we recorded the
responses of 124 neurons in the IT cortex of two monkeys (monkey 1
and 2) while they performed a categorization task. The responses of each
neuron were normalized by dividing all responses by the response to the
preferred stimulus.

2.5. ALCOVE implementations

The network architecture as used in this paper followed Kruschke
(1992) and included three layers (Fig. 1). The activation of hidden unit j

for the exemplar stimulus e is given by

ahid
je ¼ exp½�cRiaijhji � ain

ie j� ð1Þ

where c is a scaling parameter determining the specificity of the unit
(large values imply a narrow activation profile), ai is the weight that
is given to dimension i (attention strength), hji is the position of hidden
unit j along dimension i, and aie

in is the value of the input stimulus e

along dimension i.
Two output nodes correspond to the possible response categories and

their activation is given by:

aout
ke ¼ Rjwkjahid

je ð2Þ

where wkj is the association weight between hidden unit j and output node
k. These weights and the attention strengths are adjusted by gradient des-
cent error learning (the ‘humble teacher’ version of Kruschke, 1992). In
order to compare model performance with behavioral performance the
network output is transformed to response probabilities as given by

P eðKÞ ¼ expð/aout
ke Þ=Rkexpð/aout

ke Þ ð3Þ

where Pe(K) is the probability that exemplar e is categorized in category K

and / is a response mapping parameter (Kruschke, 1992). The reported
results were obtained with a response mapping parameter of / ¼ 2:0, a
learning rate for the weights wkj of kw = .01, and a learning rate for the
attention strengths aI of ka = .0011.All the reported results were consistent
across different parameter settings (except for parameter c, of which the
effect is reported in Section 3).

2.6. ITCOVE implementations

We constructed a variant of ALCOVE, referred to as ITCOVE, in
which the output of the hidden layer was based on the responses of the
recorded IT neurons. This layer contains 124 units, one for each recorded
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neuron. As the responses of each neuron were recorded for the three
groups of eight stimuli, we actually constructed three ITCOVE networks,
one for each stimulus group.

The output of the hidden layer in ALCOVE is deterministic, that is, the
output is always the same for a particular input pattern. For ITCOVE, we
constructed not only a deterministic variant, but also a variant that
included trial-by-trial variability in the output of the network units. The
response of each unit to each presentation of an exemplar was selected
from a normal distribution with mean and variance estimated using the
observed mean response strength and response variance during the record-
ings. The inclusion of trial-by-trial variance of the neuronal responses
leads to some variability in network performance between simulations,
so all simulations of ITCOVE were repeated ten times and averaged for
each stimulus group (the mean result averaged over stimulus groups is pre-
sented here, except where the results deviated between networks).

Several versions of ALCOVE and ITCOVE are compared in the
Results section, with the number of hidden units or neurons varying from
8 (ALCOVE) to 124 (ITCOVE), and with variations in the selectivity of
these units. These two parameter variations have strong implications for
the overall speed of learning in the network (faster learning with more
units and with more selective units), but they do not change the relative
order of learning of rules or specific stimuli. Nevertheless, the effects of
these two parameters on overall network performance make it difficult
to compare different networks, for example in Fig. 4. We solved this prob-
lem by selecting the reported learning blocks so that the average perfor-
mance within each block was comparable to the average behavioral
performance (a ‘‘learning block’’ includes one presentation of each stimu-
lus to the network). This average performance is calculated across all stim-
ulus groups, learning rules, and in the case of ALCOVE across the
implementations with tuning in parametric and perceptual space. In every
case, the rank order in the performance for different rules or different stim-
uli in the selected blocks proved to be consistent with those in the other
learning blocks. In this report we will focus on the order of learning dif-
ferent rules, and we will investigate in addition which specific stimuli are
learned better, and the conclusions were not affected by the specific learn-
ing block that is used when comparing rules or stimuli.

2.7. Category selectivity (CS)

The category selectivity of a unit or neuron, CS, is given by
Fig. 4. Performance of models and monkeys for stimuli with a particular positi
of the monkeys and the ITCOVE model for stimuli with a particular position w
the ALCOVE model with units tuned for parametric or for perceptual similar
group a, ‘‘linear group c’’ is the linear category rule applied to stimulus group
stimulus group b). The behavioral data for linear group a and the quadrant rul
from monkey 2 (see Fig. 2).
CSjk ¼ Re2K aje � Re62K aje ð4Þ

where Re2K denotes a summation across all exemplars that belong to cat-
egory K. This index compares the average response to exemplars of cate-
gory K with the average response to the other stimuli.

All correlations between neural tuning properties and weights pre-
sented in this paper compare sets of values with N = 124 (the number of
recorded neurons or units in ITCOVE). Correlations greater than 0.18
are statistically significant (p < 0.05, N = 124).

2.8. Analyses of neuronal response profiles

In addition to CS as an index for category selectivity (formula (4)), two
indices were used to describe the tuning of each neuron within each stim-
ulus group. The first index, the depth of selectivity (DOS), was introduced
by Rainer and Miller (2000) and is given by

DOS ¼ ½S � ðRi¼1:SRiÞ=maxðRÞ�=ðS � 1Þ ð5Þ

With S the number of stimuli in each group (8).
The second index (RR), described by Op de Beeck et al. (2001) (see

also Worgötter & Eysel, 1987) was based on a Fourier transform of a
polar plot constructed using the radial position of each stimulus with
respect to the center of the parametric configuration. A high RR value
indicates that the relationship between radial position and response
strengths can be captured by a unimodal sinusoidal modulation, and it will
decrease as a consequence of any deviation from this highly regular mod-
ulation (e.g., bimodal tuning).

3. Results

We compared the performance of different versions of
ALCOVE with the previously reported behavior of mon-
keys that learned three category rules (Fig. 2; see Op de
Beeck et al., 2001): the linear, quadrant, and arbitrary rule.
First, we will describe some important aspects of the
behavioral data. Second, we will describe the performance
of the ALCOVE model and how it matches monkey perfor-
mance. Third, we describe the results obtained with a net-
work, labeled ITCOVE, in which we have substituted the
on with respect to the linear and quadrant category rules. (A) Performance
ith respect to the linear and quadrant category rules. (B) The predictions of
ity. ‘‘Linear group a’’ refers to the linear category rule applied to stimulus
c, and ‘‘quadrant’’ refers to the quadrant rule (which was only applied to

e were obtained from monkey 1, and the behavioral data for linear group c



Fig. 5. Performance of the standard ALCOVE network with c = 7. The
line plots show the performance for each category rule as a function of
time.
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responses of real IT neurons for the mathematically defined
hidden units. We will describe the performance of ITCOVE
and finally we will discuss the importance of the diversity of
tuning profiles in ITCOVE’s stimulus representation.

3.1. Behavioral performance of the monkeys

Monkey 1 learned the linear, quadrant and arbitrary rule
for stimulus group a, b, and c, respectively (Fig. 2C). His
performance during learning is shown in Fig. 3. Monkey
2 learned the linear rule for stimulus group c and the arbi-
trary rule for groups a and b (Fig. 2D). The level of perfor-
mance in these two subjects depended on the category rule.
Monkey 1 performed better for the linear rule than for the
quadrant rule, and better for the quadrant rule than for the
arbitrary rule. Monkey 2 displayed a similar difference in
performance between linear and arbitrary rules, that is,
showing better performance with the linear rule.

These differences between learning rules have been
described in Op de Beeck et al. (2001), but in addition there
were difference in performance among the stimuli within a
stimulus group, as shown in Fig. 4. Exemplar models
(Medin & Schaffer, 1978) assume that the performance
for a given exemplar depends on the average similarity of
that exemplar to all other exemplars in its category
(within-category similarity) and its average similarity to
exemplars of other categories (between-category similar-
ity). The pooling of exemplars with the same within-cate-
gory and between-category similarity is represented in
Fig. 2C–D by capital letters (see Section 2 for details).
Within-category and between-category similarity was
defined in parametric space. This parametric space is the
same for all stimulus groups, but Op de Beeck et al.
(2001) showed that the perceived stimulus differences are
not equal to parametric or physical stimulus differences
(Fig. 2B; see Introduction). For this reason, different stim-
ulus groups are not pooled in Fig. 4. Monkey 1 learned the
linear rule for stimulus group a (‘‘linear group a’’ in Fig. 4)
and monkey 2 for stimulus group c (‘‘linear group c’’ in
Fig. 4). The data for the two groups (or monkeys) are con-
sistent in that performance for exemplar stimuli ‘C’ and ‘D’
is better than performance for exemplars ‘A’ and ‘B’. How-
ever, a marked difference was found in that for linear group
a performance was better for exemplar stimuli ‘A’ than for
exemplars ‘B’ (95% versus 84%, p < .01) while for linear
group c performance was worse for exemplars ‘A’ than
for exemplars ‘B’ (86% versus 91%, p < .01; see Fig. 4A).
In the next section we will use ALCOVE to show that these
differences between stimulus spaces are due to the devia-
tions between the parametric stimulus space and the per-
ceived stimulus space that were found by Op de Beeck
et al. (2001).

3.2. ALCOVE implementations

First, we implemented the ALCOVE network in its stan-
dard format. There were two input units, one for each of
the two input dimensions. The values assigned to these
units ranged from zero to four and represented the values
of stimuli on the two parametric dimensions (e.g., stimuli
1–3 of Fig. 2 were associated with value zero of one input
unit, and stimuli 5–7 with value four of the same unit).
There was one hidden unit for each exemplar (8 hidden
units), and one output unit for each category (2 units).
The network learned a category rule by changing the atten-
tion weight that is given to each input dimension and by
changing the weights between hidden units and output
units (see Section 2 for details).

The performance of ALCOVE for the three category
rules (linear, quadrant, and arbitrary) depended on param-
eter c, the selectivity of the hidden units. Fig. 5 displays the
performance for each rule during learning when the hidden
units were relatively selective (c = 7). In this case, the hid-
den unit that prefers exemplar 1 will respond to exemplar 2
with only 25% of the response to exemplar 1. This network
learned the three category rules in the same order as the
monkeys did: first the linear rule, and last the arbitrary
rule. Although the relative order of rule learning was con-
sistent across a wide range of c values, there were some
important quantitative effects of this parameter. With less
selectivity (small c values), the linear rule was learned much
faster than the two other rules. In fact, a decrease in selec-
tivity slowed learning for each rule, but less so for the linear
rule than for the other two rules. For example, with
c = 1.2, the quadrant and the arbitrary rule were associated
with a performance of only 61% and 54%, respectively, in
the same learning block (block 100) for which performance
reached 90% correct for the linear rule. The difference in
performance between the three rules became progressively
smaller with larger c values.
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These effects of parameter c suggest that a stimulus rep-
resentation having units with a low selectivity is less suited
for learning non-linear rules than for learning a linear rule
(the term ‘less suited’ applies to the speed of learning;
asymptotic performance of the ALCOVE model after an
infinite number of learning blocks is always nearly 100%
correct, no matter which rule has to be learned). A similar
conclusion was drawn by Baldi and Heiligenberg (1988).
The adapted attention strengths in ALCOVE support this
conclusion. Increasing both attention strengths results in
hidden units with a higher selectivity along both dimen-
sions, and thus we would expect a larger increase of atten-
tion strengths during learning of a non-linear rule than
during learning of a linear rule. Indeed, the initial attention
strength of 1 for each dimension was increased in the last
learning block to 1.3 and 1.6 for the quadrant and the arbi-
trary rule, respectively. For the linear rule, the attention
strength also increased to 1.2 for the horizontal dimension
in Fig. 2 (the most relevant dimension for this rule), but it
decreased to .5 for the vertical dimension. Thus, the fact
that the attention strengths can be adapted was useful for
each learning rule, for the linear rule because the hidden
units became sensitive to the difference in the relevance of
the two input dimensions, and for the non-linear rules in
order to increase the general selectivity of hidden units.
As a consequence, the same network architecture, but lack-
ing the ability to change attention strengths, learned each
rule more slowly although the order in which it learned
the different rules was identical to that of the network with
adaptive attention strengths.

This standard ALCOVE network failed to model sub-
jects’ performance on individual stimuli within stimulus
groups (Fig. 4B). The network’s performance in the last
learning block for stimuli ‘A’, ‘B’, ‘C’, and ‘D’ in the linear
rule was 96%, 85%, 98%, and 98%, respectively. As noted
before, monkey performance showed a comparable rank
order when the linear rule was learned for stimulus group
a, but the ranking of the behavioral performance was
opposite to that of the network for stimuli ‘A’ and ‘B’ of
group c (Fig. 4). For the quadrant rule, ALCOVE showed
the same levels of performance for stimuli ‘E’ and ‘F’ (91%
and 92%, respectively), while monkey behavior showed far
better performance for stimuli ‘E’ than for stimuli ‘F’
(p < 0.01).

A likely explanation of the discrepancy between network
performance and behavioral data is that the parametric
stimulus space is not represented faithfully in perceptual
space. Some stimulus differences are perceived as being lar-
ger or smaller than would be expected from the distance
between stimuli in parametric space. If this explanation is
correct, then ALCOVE should be able to model monkey
behavior provided that its input represents the value of
stimuli along the two dimensions that form the perceptual
space, rather than using the parametric dimensions. The
three sets of data points in Fig. 4 were obtained with differ-
ent stimulus groups, and so each dataset should be com-
pared with the performance of ALCOVE implemented
with the perceptual configuration of the corresponding
stimulus group, instead of using the parametric configura-
tion (which was the same for all stimulus groups). The
results revealed that this adapted version of ALCOVE is
able to model the aforementioned significant differences
between stimuli in how well they are learned by monkeys
(Fig. 4B). The performance of ALCOVE with perceived
similarities in the last learning block (as well as in previous
learning blocks) was better for ‘A’ exemplars than for ‘B’
exemplars for stimulus group a (A: 94% correct, B: 89%),
and better for ‘B’ exemplars than for ‘A’ exemplars for
group c (A: 85%, B: 95%). When ALCOVE with perceived
similarities learned the quadrant rule for stimulus group b,
its performance showed the expected difference between ‘E’
and ‘F’ exemplars (85% and 80%, respectively).

Across all 10 datapoints in Fig. 4, the correlation
between behavioral performance and the performance of
ALCOVE with perceived similarities was 0.82, compared
to a correlation of 0.57 between behavioral performance
and the performance of ALCOVE with parametric
similarities.

Thus, overall, the power of ALCOVE in predicting
which stimuli will be learned best is greatly enhanced when
the network input reflects the perceptual stimulus space,
although small quantitative differences remain between
the behavioral results and the ALCOVE predictions. Note
that this fit of ALCOVE with categorization behaviour is
all the more striking since the perceptual stimulus space
and the categorization learning performance was obtained
in different groups of animals.

3.3. ITCOVE implementations

The hidden units with mathematically defined distance
functions in ALCOVE were replaced in ITCOVE by the
response profiles of 124 neurons recorded in the inferotem-
poral cortex of two macaque monkeys as described by Op
de Beeck et al. (2001). Three different networks were con-
structed since the responses of each neuron were recorded
with three stimulus groups. Results were usually consistent
between stimulus groups and, unless otherwise noted, the
average performance is shown here.

Technically, ITCOVE is no longer a three-layer network
since only one set of weights is applied, to the connections
between each neuron and the two output units. A version
of ALCOVE without adaptable attention strengths would
also be a two-layer instead of a three-layer network. The
contribution of attention strengths to category learning in
the present context is doubtful for several reasons. First,
the fit between ALCOVE and monkey behavior was the
same whether or not attention strengths were adaptable
in the model. Second, our previous study (Op de Beeck
et al., 2001) showed that the tuning of IT neurons was
not influenced by learning a linear, quadrant, or arbitrary
rule. As such, there was no indication that attention
strengths were adapted during learning. Third, as we will
argue in more detail later, some of the findings in the liter-
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ature that seem to confirm the importance of attention
strengths might be accounted for without adaptive atten-
tion strengths once one accepts that stimuli are represented
with a diversity of tuning functions.
3.4. ITCOVE and monkey behavior

In a first implementation of ITCOVE, we used the mean
response of each neuron across trials. The order in which
ITCOVE learned the three category rules (Fig. 6A) was
similar to the ranking found behaviorally. However, unlike
the monkey performance, the difference in ITCOVE per-
formance between the quadrant and the arbitrary rule
was very small. As such, the performance of ITCOVE
resembles the findings of ALCOVE when hidden units were
broadly tuned (small c value). Thus, one way to interpret
the ITCOVE performance is that it was caused by a rela-
tively low selectivity of the recorded neurons, and that
ITCOVE provided no acceptable fit with monkey behavior.

However, we implemented ITCOVE with the mean
response of each neuron across trials, and as such we
neglected the trial-by-trial variance in neuronal responses.
Some of the averaged neuronal tuning curves could be rel-
atively unreliable, and if ITCOVE were to rely on such a
subset of neurons to learn one of the rules (e.g., the arbi-
trary rule), then this could enhance performance in an arti-
ficial way. This problem was addressed by simulating the
trial-by-trial variance of the neuronal responses (see Sec-
tion 2). The introduction of trial-by-trial response variance
increased the correspondence between model and monkey
performance (Fig. 6B), with a larger difference between
the quadrant and arbitrary rule than observed in the imple-
mentation with no response variance. The learning of the
linear rule was hardly affected by the presence of response
Fig. 6. Performance of ITCOVE for the three category rules as a function of t
Error bars in (B) reflect the typical range in standard error of the mean acros
variability (overall reduction in percentage correct of 3%),
but more pronounced effects were found for the quadrant
and arbitrary rule (reductions of 11% and 18%,
respectively).

As found for monkey behavior and ALCOVE imple-
mented using perceived similarities, ITCOVE learned
exemplars ‘A’ better than exemplars ‘B’ with stimulus
group a, but exemplars ‘B’ better than exemplars ‘A’ with
stimulus group c (Fig. 4A). Furthermore, ITCOVE showed
better performance for stimuli E than for stimuli F. Across
all 10 datapoints in Fig. 4A, the correlation between behav-
ioral performance and the performance of ITCOVE was
0.92. We suggested previously (Op de Beeck et al., 2001)
that the deviations in the perceptual space of stimuli com-
pared to the parametric space were also present in the neu-
ronal representation of the stimuli. The correspondence
between ITCOVE performance, monkey behavior, and
ALCOVE based on perceived but not parametric similarity
indicates that such deviations between neuronal and para-
metric space are also an important factor for predicting
category learning.
3.5. ITCOVE and neuronal tuning properties

As with previous implementations of ALCOVE
described in the literature, our implementation involved
few hidden units (one for each exemplar) with a regular
exponential tuning in stimulus space. Learning affected
which output unit a hidden unit is connected to by a posi-
tive and a negative weight, but the absolute values of these
weights did not differ between hidden units. So, in
ALCOVE, the weights to the two output units of different
hidden units had nearly the same absolute value, only the
sign differs. As a consequence, there was no substantial
ime, (A) without trial-by-trial variance and (B) with trial-by-trial variance.
s simulations.
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selection of hidden units in that there was almost no differ-
ence between hidden units in their connection strength to
the output layer—connection strength being defined here
as the absolute value of the weights to the two output units.
This indicates that all hidden units were almost equally use-
ful for learning each of the three category rules. However,
we might have a completely different situation in the
ITCOVE network as this network included many units
with a wide diversity of tuning properties. So we wondered
whether and how the tuning properties of a neuron influ-
ence its usefulness during category learning.

One such tuning property is the tuning width or selectiv-
ity of a neuron, which we measured by computing the
‘depth of selectivity’ or ‘DOS’ (Rainer & Miller, 2000). This
index varies between 0 (the same response to all stimuli)
and 1 (response to only one stimulus). The mean DOS of
the neurons was .38 (for comparison, the DOS for the hid-
den units in ALCOVE was .38 with c = 1.2). We computed
the correlation between DOS and the connection strength
of each neuron in ITCOVE after the last learning block
with each category rule. The results revealed a higher con-
nection strength for more selective units when ITCOVE
learned a linear or a quadrant rule (resulting in significant
correlations between connection strength and DOS, r = .24
and .21, respectively), but not significantly so in the case of
an arbitrary rule (r = .07, ns). These correlations are con-
sistent with the fact that the standard version of ALCOVE
performed best with very selective hidden units.

A second tuning property is regularity, that is, the degree
to which the tuning of a neuron can be described by a func-
tion with a single optimum in stimulus space and a gradual
fall-off towards other positions in stimulus space. Op de
Beeck et al. (2001) used RR as an index for tuning regular-
ity, a value that quantifies to what degree the polar plots of
neuronal tuning deviate from a unimodal sinusoidal modu-
lation. A large RR value means that the ordinates given by
the responses to the 8 stimuli can be well fitted by a sinus
when the responses are plotted as a function of the stimulus
numbers 1–8 (in this way, the two-dimensional circular
stimulus configuration is converted to one dimension as is
often done for orientation tuning). The mean RR for the
hidden units in ALCOVE with c = 1.2 (which are units with
a very regular tuning) was 3.8. The median RR value in the
neuronal population and in ITCOVE was 1.7. There was a
rule-dependent correlation between RR and connection
strength in ITCOVE after learning. In the case of a linear
category rule, there was a positive correlation (.41), no sig-
nificant correlation was found for the quadrant rule (�.14,
Table 1
Model performance (proportion correct and SEM across simulations) with va

Rule High selectivity Low selectivity

Linear .90 (.01) .81 (.02)
Quadrant .73 (.02) .66 (.02)
Arbitrary .68 (.02) .63 (.02)
ns), and a significant negative correlation (�.22) was pres-
ent for the arbitrary rule.

Thus, the tuning width and the tuning regularity of a
neuron have implications for the neuron’s usefulness for
learning different category rules. This is supported by a
comparison of the performance of networks that are com-
posed of units with selected tuning properties. Networks
were constructed that consisted of 40 units randomly
selected from the population of 124 neurons but restricted
to either high selectivity (DOS>.4), low selectivity
(DOS < .4), regular tuning (RR>1.7), or irregular tuning
(RR < 1.7), or with no restrictions at all. Table 1 shows
the performance of these networks after 60 learning blocks.
Compared to the unrestricted control condition, a
restricted selection resulted in higher or lower performance
in a way that agreed with the correlations, described above,
between tuning properties and connection strength. A high
DOS network always outperformed a low DOS network,
showing that a high selectivity is beneficial for category
learning. Learning a linear category rule was improved
with a high tuning regularity, while the other two category
rules were learned best with irregular tuning properties.

Tuning width and regularity are two properties of a neu-
ronal tuning curve that are defined in stimulus space in a
way that is independent of the input/output mapping (cat-
egory rule) that has to be learned. Most probably, an index
that takes into account how well a neuronal tuning curve
separates all exemplars of a given category from all other
stimuli would be a better choice for predicting the connec-
tion strength of a neuron. A straightforward index for cat-
egory selectivity of a neuron is CS (see formula (4) in
Section 2), which is the difference between the sum of the
responses of a neuron for all exemplars of one category
minus the sum of the responses for all other stimuli. The
CS predicted the connection strength after learning
between a neuron and an output unit almost perfectly
(mean r = .95). Thus, the basic factor determining the con-
nection strengths in ITCOVE is the degree to which a neu-
ron responds more to all exemplars from one category than
to all exemplars from the other category.

4. Discussion

We showed that the performance of the ALCOVE
model fits monkey categorization behavior only when the
input to the model is based on the perceived similarities
which can differ from the parametric similarities. The fact
that discrepancies between perceived and parametric shape
rious types of tuning properties as a function of rule

High regularity Low regularity No selection

.91 (.01) .73 (.02) .86 (.01)

.67 (.01) .73 (.02) .70 (.01)

.58 (.02) .67 (.02) .63 (.02)
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changes needed to be incorporated into ALCOVE for it to
reproduce categorization behavior confirms the importance
of these differences for behavioral performance. First of all,
this result confirms the pervasiveness of these incongruen-
cies across individuals, since the categorization task and
the same/different task involved different subjects. Second,
the incongruencies influenced behavioral performance in
two fundamentally different tasks: same/different and cate-
gorization. These results illustrate that perceived shape dif-
ferences need to be quantified since they are not necessarily
equivalent to parametric or physical shape differences (for
some stimulus sets it has been suggested that such incon-
gruencies do not exist, see Peters, Gabbiani, & Koch,
2003).

We showed in addition that the correspondence between
network performance and behavior is also high when the
intermediate stimulus representation in the ALCOVE
model is replaced with the responses of real IT neurons
(‘ITCOVE’ model), at least when the trial-by-trial variance
of these responses is taken into account. This correspon-
dence is not trivial, as the behavioral and neuronal data
were obtained in different groups of animals, and given that
our initial ALCOVE implementation (based on parametric
differences) failed to predict several aspects of behavior.
This result provides evidence for a link between category
learning and neuronal responses in IT cortex. A general
link between behavior in tasks that require shape and
object recognition and neural processing in IT cortex is
also supported by recent evidence that the trial-by-trial var-
iation in neural responses is related to behavioral choices
(Uka, Tanabe, Watanabe, & Fujita, 2005), and by behav-
ioral effects of microstimulation of face cells (Afraz, Kiani,
& Esteky, 2006).

The successful combination of a computational network
with neurophysiological data supports the idea that dis-
tance functions constitute a type of basis function set that
can account for behavioral data and that is biologically
plausible. However, the neurons of which the responses
are incorporated in ITCOVE displayed a high diversity in
tuning properties, more so than the units in the ALCOVE
model. We showed that the diversity in the properties of
actual neuronal tuning profiles is associated with a strong
selection of which neurons influence the output of the net-
work. A simple index for category selectivity (CS) pre-
dicted almost perfectly whether or not a particular unit
would acquire a high weight during supervised category
learning by ITCOVE. There is a close relationship between
this CS index and the ordinal difference index used by Tho-
mas, Van Hulle, and Vogels (2001). Their difference index
predicted the importance of a unit for an unsupervised
clustering of stimuli into natural categories such as trees
versus non-trees. Thus, the importance of a given neuron
for learning a particular category distinction appears to
depend upon the same tuning properties in both supervised
and unsupervised categorization. The degree to which a
category distinction corresponds to an intrinsic clustering
in stimulus space will be related to the relative frequency
of neurons with a high CS value. These neurons are rela-
tively abundant for natural categories such as trees versus
non-trees or animate versus inanimate (Kiani, Esteky, Mir-
pour, & Tanaka, 2007), probably somewhat less so for arti-
ficially defined linear category rules, and they are rare for
more complex rules such as the quadrant and arbitrary
rules. Nevertheless, the diversity in real tuning profiles
increases the odds that neurons with a high CS index exist
even for complex category rules.

4.1. Neuronal selection: At which stage and for which stimuli

does it happen?

Is the remarkably high diversity in neuronal tuning
properties and the associated neuronal selection relevant,
that is, should we care about the observation that the stim-
ulus representation in the real brain is more diverse and
complex than the representations included in computa-
tional models? In our data, we found a close agreement
in the output performances of ALCOVE (without such
diversity) and ITCOVE (with such diversity), so maybe
we should conclude that the tuning diversity and the
related selection/weighting of neurons might be irrelevant
after all. However, our behavioral paradigm was not
designed to assess the behavioral effects of this diversity,
nor to assess the effects of attention strengths. In fact, evi-
dence in the literature for the importance of attention
strengths (e.g., Kruschke, 1992; Nosofsky, 1984) could be
used to argue in favor of the behavioral implications of
tuning diversity. Ashby and Lee (1991) have already
argued that behavioral data do not allow one to distinguish
selection mechanisms lying between input and intermediate
representations (attention strengths) from later selection
mechanisms (the neuronal selection we have discussed in
the present paper). A similar discussion applies to the inter-
pretation of learning effects in other behavioral paradigms
(e.g., Dosher & Liu, 1999). Neurophysiological data have
suggested that attentional mechanisms influence the coding
of stimuli in visual cortex (for a review, see Treue, 2001).
Most relevant is a study by Sigala and Logothetis (2002)
arguing that category learning enhances the selectivity of
IT neurons for dimensions that are relevant for the learned
category rule. Although these studies suggest that adapt-
able attention strengths do play a role in some circum-
stances, we cannot exclude the possibility that part of the
learning-induced increase in behavioral sensitivity for rele-
vant stimulus properties would be caused by selection at
later stages in the information processing hierarchy
(Ghose, Yang, & Maunsell, 2002; Mirabella et al., 2007).
Most likely the two types of selection (early and late selec-
tion) should both be taken into consideration.

One possible explanation of the fact that some but not
all relevant studies show attention effects is related to the
use of different sorts of stimulus dimensions. Sigala and
Logothetis (2002) used category rules for which the rele-
vant stimulus differences were located in other parts of
the stimuli (e.g., the eyes of a face) compared to the irrele-
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vant stimulus differences (e.g., changes in the mouth and
the nose). As a consequence, spatial attention could explain
these results. Op de Beeck et al. (2001) used parametric
dimensions that changed the global contour of the shapes,
and spatial attention could not enhance the processing of
relevant compared to irrelevant stimulus differences. So,
the degree to which dimensions can be selectively attended
to is determined by the specific combination of dimensions.
In fact, this proposal was made long ago by Garner (1974),
who labeled dimensions that can be selectively attended to
as ‘separable’ dimensions, and other dimensions as ‘inte-
gral’. The stimuli of Sigala and Logothetis (2002) vary
along separable dimensions, whereas we showed in another
study that our stimuli vary along integral dimensions (Op
de Beeck, Wagemans, & Vogels, 2003). Thus, it is conceiv-
able that the discrepancy between the results of these two
studies is related to the distinction between separable and
integral dimensions. With integral dimensions, attention
strengths might not be adapted and neuronal selection
might be restricted to a later stage, that is, the stage at
which visual responses are mapped onto the output catego-
ries (the connection between hidden layer and output layer
in ALCOVE).

4.2. How useful is the concept of ‘‘distance functions’’?

Is the concept of distance functions still valid given the
diversity in IT tuning profiles? One source of diversity
was tuning selectivity. This factor is easily incorporated
into the framework of distance functions by changing the
variance of the exponential tuning between units. Further-
more, neurons can vary in the dimensions that they are
most sensitive to. As such, neuronal selection is able to
increase the sensitivity for a relevant stimulus dimension
relative to an irrelevant dimension. Op de Beeck et al.
(2003) (see also Kayaert, Biederman, Op de Beeck, &
Vogels, 2005; Wagemans, Wichmann, & Op de Beeck,
2005) suggested how the distinction between integral and
separable dimensions could be related to the way in which
different units differ in their sensitivity for individual
dimensions.

A second source of diversity was found in tuning regu-
larity, which is more difficult to incorporate into the frame-
work of distance functions. Can irregular tuning curves still
be regarded as distance functions? An important point of
consideration here is that the responses of these neurons
were recorded within a restricted stimulus space. Op de
Beeck et al. (2001) argued that a parametric variation of
similarity in stimulus space is necessary to determine
whether the responses of neurons are related to stimulus
distance within this space. However, even with this sort
of parametric manipulation, we know only what a neuron’s
responses are within that limited stimulus space. Given this
restricted knowledge, it is possible that a neuron that seems
to be a counterexample of distance functions in our
restricted stimulus space is in fact tuned to stimulus similar-
ity in another stimulus space characterized by other dimen-
sions. In the present case, the parametric dimensions
characterize global shape changes, but there are undoubt-
edly some neurons in our sample that are sensitive to
changes in only a restricted part of the stimuli, or to
higher-order shape characteristics. The tuning profiles of
such neurons could be irregular in the stimulus space that
is characterized by global shape changes, while at the same
time being regular in the broader stimulus space that also
takes into account other shape dimensions.

This account of the diversity of tuning profiles is biolog-
ically plausible. It has been known for several decades that
the primate brain processes visual input in a number of
hierarchical steps and that neurons at each level are tuned
to a wide variety of stimulus dimensions and features.
Given this neurophysiological background, we introduce
no new concepts here. However, spatial models of catego-
rization simplify how stimuli are represented, and this sim-
plification explains some of the failures of these models in
the cognitive literature (e.g., Erickson & Kruschke, 1998;
Lee & Navarro, 2002; Nosofsky & Johansen, 2000). A spa-
tial representation of a set of stimuli contains an explicit
representation of only a low number of dimensions (as
many as the dimensionality of the stimulus space), and as
such these models are not able to fit behavioral data in
cases where subjects solve a category rule by focusing upon
a dimension not explicitly included in the spatial represen-
tation. Spatial representations in models of visual categori-
zation have to become richer and more biologically
plausible in order to overcome these restrictions. For exam-
ple, they should incorporate the fact that visual stimuli are
processed in a hierarchical manner and that they can be
represented at multiple levels. As in the study of Peters
et al. (2003), future computational work should combine
finer-grained models of how successive stimulus representa-
tions are constructed from the visual input (e.g., Riesenhu-
ber & Poggio, 1999; Steyvers & Busey, 2001) with the
learning rules and stimulus/response mapping proposed
in more abstract models of categorization.

Recent studies have provided evidence for yet another
difference between the implementation of distance func-
tions in the brain and in computational models. These
studies showed that the preferred stimuli for which IT neu-
rons are tuned tend to be located at extreme positions in
the stimulus space that is shown during the experiments
(De Baene, Premereur, & Vogels, 2007; Kayaert et al.,
2005; Leopold, Bondar, & Giese, 2006). As a result, most
tuning curves are monotonic in this stimulus space. While
we defined the distance functions in ALCOVE as Gaussian
functions, centered at the 8 shapes in each stimulus group,
these functions are also monotonic because all 8 shapes
were located at the borders of the stimulus space. Thus, this
spatial arrangement does not allow to distinguish bell-
shaped from monotonic tuning functions – and the two
types of functions are ‘‘distance functions’’ by definition
(response declines as a function of distance to the preferred
stimulus). However, many category learning experiments
include exemplars that are located at more central posi-
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tions in stimulus space, and in such cases exemplar models
assume a stimulus representation that includes the same
number of units for the central and for the more extreme
exemplars, while prototype models assume units centered
at the category prototypes. Clearly, the distribution of pre-
ferred stimuli for IT neurons does not fit with either of
these models.

4.3. Other stages involved in category learning

We focused on the representation of stimuli as found in
IT cortex and its relation to how stimuli are represented in
computational models. Of course, it is just as important to
investigate how and where the category rule is represented
within the brain and whether the properties of this rule rep-
resentation can be accounted for by computational models
(e.g., the output layer in the ALCOVE model). After train-
ing has been completed, each category unit in the output
layer of ALCOVE responds maximally to exemplars of
one category and minimally to exemplars of other catego-
ries. This corresponds to results obtained in prefrontal cor-
tex with single-cell recordings in macaque prefrontal cortex
(Freedman, Riesenhuber, Poggio, & Miller, 2001; Jiang
et al., 2007). For example, neurons in monkey dorsolateral
prefrontal cortex are very sensitive for the category border,
with a low sensitivity for intra-category differences com-
bined with a high sensitivity for inter-categorical differences
(at least at the population level; individual units showed
less consistent category specificity). In addition to prefron-
tal cortex, other brain areas (e.g. basal ganglia) have been
implicated in the stimulus/response mapping in category
learning (e.g., Ashby & Waldron, 1999; Freedman &
Assad, 2006; Vogels, Sary, Dupont, & Orban, 2002).
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