Seven-modular lattices and a septic base Jacobi identity

Heng Huat Chan, ${ }^{\text {a,* }}$ Kok Seng Chua, ${ }^{\mathrm{b}}$ and Patrick Sole ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Mathematics, National University of Singapore, Singapore 117543, Singapore
${ }^{\mathrm{b}}$ Institute of High Performance Computing, 1 Science Park Road, \# 01-01, The Capricorn, Singapore 117528, Singapore
${ }^{\text {c }}$ CNRS-I3S, ESSI, Route des Colles, 06903 Sophia Antipolis, France
Received 19 December 2001; revised 10 July 2002
Communicated by D. Goss

Abstract

A quadratic Jacobi identity to the septic base is introduced and proved by means of modular lattices and codes over rings. As an application the theta series of all the 6 -dimensional 7 modular lattices with an Hermitian structure over $\mathbf{Q}(\sqrt{-7})$ are derived.

© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

For $|q|<1$, let

$$
\begin{gathered}
\vartheta_{2}(q)=\sum_{n=-\infty}^{\infty} q^{(n+1 / 2)^{2}}, \\
\vartheta_{3}(q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}
\end{gathered}
$$

[^0]and
$$
\vartheta_{4}(q)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}
$$

One of Jacobi's famous identities states that

$$
\begin{equation*}
\vartheta_{3}^{4}(q)=\vartheta_{2}^{4}(q)+\vartheta_{4}^{4}(q) \tag{1.1}
\end{equation*}
$$

This identity has been generalized in various ways, in particular in the context of Vertex Operator Algebras [10].

Around 1991, Borwein and Borwein [4] discovered a cubic analogue of (1.1), namely,

$$
a^{3}(q)=b^{3}(q)+c^{3}(q)
$$

where $a(q), b(q), c(q)$ are the bi-dimensional theta series

$$
\begin{gathered}
a(q)=\sum_{m, n \in \mathbf{Z}} q^{m^{2}+m n+n^{2}}, \\
b(q)=\sum_{m, n \in \mathbf{Z}} \omega^{m-n} q^{m^{2}+m n+n^{2}}, \quad \omega=e^{2 \pi i / 3}
\end{gathered}
$$

and

$$
c(q)=\sum_{m, n \in \mathbf{Z}} q^{(m+1 / 3)^{2}+(m+1 / 3)(n+1 / 3)+(n+1 / 3)^{2}} .
$$

The aim of this note is to introduce another bi-dimensional generalization of Jacobi's identity (1.1). Our main result is

Theorem 1.1. Let

$$
\begin{gathered}
A(q)=\sum_{m, n \in \mathbf{Z}} q^{2\left(m^{2}+m n+2 n^{2}\right)}, \\
B(q)=\sum_{m, n \in \mathbf{Z}}(-1)^{m-n} q^{m^{2}+m n+2 n^{2}}
\end{gathered}
$$

and

$$
C(q)=\sum_{m, n \in \mathbf{Z}} q^{2\left((m+1 / 2)^{2}+(m+1 / 2) n+2 n^{2}\right)}
$$

Then

$$
A^{2}(q)=B^{2}(q)+C^{2}(q)
$$

The proof techniques as in [19] are a combination of codes and lattices techniques. In particular, we will follow Bachoc's approach [1] for the construction of 7-modular lattices from codes over the ring $\mathbf{F}_{2} \times \mathbf{F}_{2}$.

Like the Borweins' cubic identity, our base 7 identity was unknown to Ramanujan [2]. However, when calculating the theta series of a famous 7-modular lattice (related to the polarization of the Klein curve) we encounter a formula akin to the ones in [6,17]. It appears that our identity belongs to the septic analogue of Ramanujan's theories of elliptic functions to the alternative bases [3].

2. Notations and definitions

2.1. Codes

Let R_{4} denote the ring with 4 elements $\mathbf{F}_{2}+v \mathbf{F}_{2}$ where $v^{2}=v$. This ring contains two maximal ideals v and $(v+1)$. Observe that both of $R_{4} /(v)$ and $R_{4} /(v+1)$ are \mathbf{F}_{2}. The Chinese Remainder Theorem tells us that

$$
R_{4}=(v) \oplus(v+1),
$$

so that ring $R_{4} \cong \mathbf{F}_{2} \times \mathbf{F}_{2}$. An explicit isomorphism is

$$
v a+(v+1) b \mapsto(a, b), \quad a, b \in \mathbf{F}_{2} .
$$

A code over R_{4} is an R_{4}-submodule of R_{4}^{n}.
Let $K:=\mathbf{Q}(\sqrt{-7})$ be the quadratic number field with ring of integers $\mathcal{O}=\mathbf{Z}[\alpha]$, with $\alpha^{2}+\alpha+2=0$. Then we can regard R_{4} as $\mathcal{O} /(2)$ when v is the image of α under reduction modulo 2. Denote by a bar the conjugation which fixes \mathbf{F}_{2} and swaps v and $1+v$. The natural scalar product induced by the hermitian scalar product of \mathbf{C}^{n} is then given by

$$
\sum_{i} x_{i} \overline{y_{i}} .
$$

The Bachoc weight as defined in [1, Definition 3.1] is of course $w_{\mathrm{B}}(0)=0$. But more surprisingly $w_{\mathrm{B}}(v)=w_{\mathrm{B}}(1+v)=2$ and $w_{\mathrm{B}}(1)=1$. Define the Bachoc composition of x say, $n_{i}(x), i=0,1,2$, as the number of entries in x of Bachoc weight i. In terms of Bachoc composition, we have

$$
w_{\mathrm{B}}=n_{1}+2 n_{2} .
$$

The symmetrized weight enumerator (swe) is then the polynomial of three variables X, Y, Z, defined by

$$
\operatorname{swe}_{C}(X, Y, Z)=\sum_{x \in C} X^{n_{0}(x)} Y^{n_{1}(x)} Z^{n_{2}(x)}
$$

2.2. Lattices

An n-dimensional lattice L is a discrete subgroup of \mathbf{R}^{n}. Its theta series is

$$
\theta_{L}(q)=\sum_{x \in L} q^{x \cdot x}
$$

where $x \cdot x=\sum_{i=1}^{n} x_{i}^{2}$, and $q=\exp (\pi i z), z \in \mathscr{H}$, where

$$
\mathscr{H}:=\{z \in \mathbf{C} \mid \operatorname{Im} z>0\} .
$$

The lattice L is called integral if it is contained in its dual L^{*} defined as

$$
L^{*}:=\left\{y \in \mathbf{R}^{n}, \forall x \in L, x \cdot y \in \mathbf{Z}\right\}
$$

A topic of current interest in research is the study of modular lattices. The salient property of these lattices introduced by Quebbemann [16] is that their theta series is a modular form for a suitable subgroup of the modular group. Specifically, an integral lattice L is said to be ℓ-modular $[1,13]$ for some prime ℓ if L is isometric to $\sqrt{\ell} L^{*}$.

Theorem 2.1 (Quebbemann [16, Theorem 7]). Let

$$
\Delta_{6}(q):=q^{2} \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{3}\left(1-q^{14 n}\right)^{3}
$$

The theta series of an even 7-modular lattice is an isobaric polynomial in the two variables $A(\sqrt{q})$ and Δ_{6}.

The special cusp form Δ_{6} is called a CM-form in [15, (3.b)] where an expansion as a twisted theta series attached to the quadratic form $[1,0,7]$ is given.

3. Preliminaries

Define the construction $A_{K}(C)$ as the preimage in \mathcal{O}^{n} of $C \subseteq R_{4}^{n}$ under reduction modulo 2. Specifically,

$$
A_{K}(C):=\left\{y \in \mathcal{O}^{n} \mid y(\bmod 2) \in C\right\} .
$$

Theorem 3.1. If $C \subseteq R_{4}^{n}$ is a self-dual code then the lattice $A_{K}(C) / \sqrt{2}$ is even 7modular.

Proof. The assertion follows by Bachoc [1, Proposition 3.6] and can alternatively be derived directly by checking that \mathcal{O} is 7 -modular for the bilinear form

$$
(x, y) \mapsto \operatorname{Tr}_{K}(x \bar{y}) .
$$

To compute the theta series of a lattice $A_{K}(C)$ as a function of $s w e_{C}$ we need to define some auxiliary theta series. Following [1], we introduce

$$
\begin{aligned}
& \theta_{0}(q)=\sum_{x \in 20} q^{x \bar{x}} \\
& \theta_{1}(q)=\sum_{x \in 1+20} q^{x \bar{x}}
\end{aligned}
$$

and

$$
\theta_{2}(q)=\sum_{x \in \alpha+2 O} q^{x \bar{x}}
$$

We quote [1, Proposition 4.2] in the case at hand.
Theorem 3.2 (Bachoc). If $C \subseteq R_{4}^{n}$ is a code of length n, then the theta series of the lattice $A_{K}(C)$ satisfies

$$
\theta_{A_{K}(C)}=\operatorname{swe}_{C}\left(\theta_{0}(q), \theta_{1}(q), \theta_{2}(q)\right)
$$

4. Proof of Theorem 1.1

We first express $A(q), B(q)$ and $C(q)$ in term of Jacobi's functions $\vartheta_{i}(q), i=$ $1,2,3$.

Lemma 4.1. Let $A(q), B(q)$ and $C(q)$ be given as in Theorem 1.1. Then

$$
\begin{gather*}
A(q)=\vartheta_{3}\left(q^{2}\right) \vartheta_{3}\left(q^{14}\right)+\vartheta_{2}\left(q^{2}\right) \vartheta_{2}\left(q^{14}\right) \tag{4.1}\\
B(q)=\vartheta_{4}(q) \vartheta_{4}\left(q^{7}\right) \tag{4.2}
\end{gather*}
$$

and

$$
\begin{equation*}
C(q)=\vartheta_{2}\left(q^{2}\right) \vartheta_{3}\left(q^{14}\right)+\vartheta_{3}\left(q^{2}\right) \vartheta_{2}\left(q^{14}\right) \tag{4.3}
\end{equation*}
$$

Proof. Identity (4.1) can be found, for example, in [5, p. 1738]. For the proofs of the subsequent identities, we will need the following simple identity, namely, for any odd integer n,

$$
\begin{equation*}
\sum_{m=-\infty}^{\infty}(-1)^{m} q^{\left(m+\frac{n}{2}\right)^{2}}=0 \tag{4.4}
\end{equation*}
$$

This identity follows immediately from [20, p. 464].
Next, note that

$$
\begin{aligned}
B(q) & =\sum_{m, n=-\infty}^{\infty}(-1)^{m-n} q^{m^{2}+m n+2 n^{2}} \\
& =\sum_{m, n=-\infty}^{\infty}(-1)^{m+n} q^{\left(m+\frac{n}{2}\right)^{2}+\frac{D}{4} n^{2}}
\end{aligned}
$$

with $D=7$, and that

$$
\begin{aligned}
B(q)= & \sum_{n=-\infty}^{\infty}(-1)^{n} q^{D n^{2} / 4} \sum_{m=-\infty}^{\infty}(-1)^{m} q^{\left(m+\frac{n}{2}\right)^{2}} \\
= & \sum_{n \in 2 \mathbf{Z}}(-1)^{n} q^{D n^{2} / 4} \sum_{m=-\infty}^{\infty}(-1)^{m} q^{\left(m+\frac{n}{2}\right)^{2}} \\
& +\sum_{n \in 2 \mathbf{Z}+1}(-1)^{n} q^{D n^{2} / 4} \sum_{m=-\infty}^{\infty}(-1)^{m} q^{\left(m+\frac{n}{2}\right)^{2}} \\
= & \sum_{n \in 2 \mathbf{Z}}(-1)^{n} q^{D n^{2} / 4} \sum_{m=-\infty}^{\infty}(-1)^{m} q^{\left(m+\frac{n}{2}\right)^{2}}=\vartheta_{4}\left(q^{D}\right) \vartheta_{4}(q)
\end{aligned}
$$

by (4.4).
Finally, rewrite $C(q)$ as

$$
\begin{aligned}
C(q) & =\sum_{m, n=-\infty}^{\infty} q^{2\left(\left(m+\frac{n}{2}\right)^{2}+\frac{D}{4} n^{2}\right)} \\
& =\sum_{m \in \mathbf{Z}, n \in 2 \mathbf{Z}} q^{2\left(\left(m+\frac{n}{2}\right)^{2}+\frac{D}{4} n^{2}\right)}+\sum_{m \in \mathbf{Z}, n \in 2 \mathbf{Z}+1} q^{2\left(\left(m+\frac{n}{2}\right)^{2}+\frac{D}{4} n^{2}\right)} \\
& =\vartheta_{2}\left(q^{2}\right) \vartheta_{3}\left(q^{14}\right)+\vartheta_{3}\left(q^{2}\right) \vartheta_{2}\left(q^{14}\right) .
\end{aligned}
$$

We proceed to express $\theta_{0}(q), \theta_{1}(q)$, and $\theta_{2}(q)$ as functions of $A(q), B(q)$, and $C(q)$.
Proposition 4.2. For all $z \in \mathscr{H}$ we have

$$
\theta_{0}(q)=A\left(q^{2}\right)
$$

and

$$
\theta_{1}(q)=C\left(q^{2}\right)
$$

Proof. If we set $x=m-n \alpha$, then the norm form becomes

$$
\begin{equation*}
x \bar{x}=m^{2}+m n+2 n^{2}=: N F(m, n) . \tag{4.5}
\end{equation*}
$$

If we set $x=1+2(m-n \alpha)$, then the norm form becomes

$$
x \bar{x}=4\left[(m+1 / 2)^{2}+(m+1 / 2) n+2 n^{2}\right] .
$$

In view of these expressions it is natural to look for an expression for θ_{2} involving q^{2}. To that end, we shall require the following duplication formulas:

Lemma 4.3. For all $z \in \mathscr{H}$ we have

$$
A(q)=2 A\left(q^{2}\right)-B\left(q^{2}\right)
$$

and

$$
B(q)=A\left(q^{2}\right)-C\left(q^{2}\right)
$$

Proof. From (4.1) and (4.3), we find, after some simplification, that

$$
\begin{aligned}
A\left(q^{2}\right)-C\left(q^{2}\right) & =\left(\vartheta_{3}\left(q^{4}\right)-\vartheta_{2}\left(q^{4}\right)\right)\left(\vartheta_{3}\left(q^{28}\right)-\vartheta_{2}\left(q^{28}\right)\right) \\
& =\vartheta_{4}(q) \vartheta_{4}\left(q^{7}\right)=B(q) .
\end{aligned}
$$

This completes the proof of the second assertion. To derive the first assertion, we claim that

$$
\begin{equation*}
A(q)+B\left(q^{2}\right)=2 \sum_{m, n=-\infty}^{\infty} q^{2\left(2 m^{2}+2 m n+4 n^{2}\right)} . \tag{4.6}
\end{equation*}
$$

Indeed

$$
\begin{aligned}
A(q)+B\left(q^{2}\right) & =\sum_{m, n=-\infty}^{\infty}\left(1+(-1)^{m-n}\right) q^{2\left(m^{2}+m n+2 n^{2}\right)} \\
& =2\left[\sum_{m, n \in 2 \mathbf{Z}}+\sum_{m, n \in 2 \mathbf{Z}+1}\right] q^{2\left(m^{2}+m n+2 n^{2}\right)} \\
& =2\left[\sum_{m \in 2 \mathbf{Z}, n \in \mathbf{Z}}+\sum_{m, n \in 2 \mathbf{Z}+1}+\sum_{m \in 2 \mathbf{Z}, n \in 2 \mathbf{Z}+1}\right] q^{2\left(m^{2}+m n+2 n^{2}\right)} .
\end{aligned}
$$

From (4.4), we deduce that

$$
\begin{aligned}
& \left(\sum_{m, n \in 2 \mathbf{Z}+1}-\sum_{m \in \mathbf{Z}, n \in 2 \mathbf{Z}+1}\right) q^{2\left(m^{2}+m n+2 n^{2}\right)} \\
& \quad=-\sum_{m \in \mathbf{Z}, n \in 2 \mathbf{Z}+1} q^{2\left(m^{2}+m n+2 n^{2}\right)} \\
& \quad=-\sum_{m \in \mathbf{Z}, n \in 2 \mathbf{Z}+1} q^{2\left(\left(m+\frac{n}{2}\right)^{2}+\frac{D}{4} n^{2}\right)}
\end{aligned}
$$

Proposition 4.4. For all $z \in \mathscr{H}$, we have

$$
\theta_{2}(q)=A\left(q^{2}\right)-B\left(q^{2}\right) .
$$

Proof. Writing $x=\alpha+2(m-n \alpha)$ we see that

$$
x \bar{x}=4\left[m^{2}+2(n-1 / 2)^{2}+m(n-1 / 2)\right]
$$

or in other words,

$$
\theta_{2}(q)=\sum_{\substack{m, n \in \mathbf{Z} \\ m \text { even }, n \text { odd }}} q^{N F(m, n)}
$$

where $N F(m, n)$ is given by (4.5). Introduce for convenience

$$
\theta_{3}(q)=\sum_{\substack{m, n \in \mathbf{Z} \\ m \text { odd }, n \\ \text { odd }}} q^{N F(m, n)}
$$

Since

$$
\begin{aligned}
\mathbf{Z} \times \mathbf{Z}= & \{m, n \in \mathbf{Z} \mid m \text { even, } n \text { even }\} \cup\{m, n \in \mathbf{Z} \mid m \text { odd, } n \text { odd }\} \\
& \cup\{m, n \in \mathbf{Z} \mid m \text { odd, } n \text { even }\} \cup\{m, n \in \mathbf{Z} \mid m \text { even, } n \text { odd }\},
\end{aligned}
$$

we may split the sum over $(m, n) \in \mathbf{Z} \times \mathbf{Z}$ in A and B into four sums and obtain the following system of two equations in $\theta_{2}(q)$ and $\theta_{3}(q)$:

$$
A\left(q^{1 / 2}\right)=\theta_{2}(q)+A\left(q^{2}\right)+C\left(q^{2}\right)+\theta_{3}(q)
$$

and

$$
B(q)=-\theta_{2}(q)+A\left(q^{2}\right)-C\left(q^{2}\right)+\theta_{3}(q)
$$

Solving for θ_{2} we find that

$$
2 \theta_{2}(q)=A(\sqrt{q})-B(q)-2 C\left(q^{2}\right) .
$$

The result follows by Lemma 4.3.
We shall require the following lemma.
Lemma 4.5. For all $z \in \mathscr{H}$ we have

$$
\theta_{(\sqrt{2} O)^{2}}(q)=\left(2 A\left(q^{2}\right)-B\left(q^{2}\right)\right)^{2} .
$$

Proof. By definition

$$
\theta_{(\sqrt{2} 0)^{2}}(q)=A^{2}(q)
$$

Applying Lemma 4.3 for $A(q)$, we complete the proof of the lemma.
We now complete the proof of Theorem 1.1.
Proof of Theorem 1.1. By Scharlau [18] there exists-up to isometry-a unique 7modular lattice of dimension 4 over \mathbf{Z}. An immediate candidate is \mathcal{O}^{2}. By Theorem 3.1 another candidate is $A_{K}\left(C_{2}\right) / \sqrt{2}$ where C_{2} is the length 2 self-dual code with generator matrix $[1,1]$.

Now the swe of that code is computed in [1, p. 102] and evaluated as

$$
\operatorname{swe}_{C_{2}}(X, Y, Z)=X^{2}+Y^{2}+2 Z^{2}
$$

The theta series of $A_{K}\left(C_{2}\right)$ can then be computed on applying Theorem 3.2. By the preceding discussion it should equal $\theta_{(\sqrt{2} 0)^{2}}(q)$ computed in Lemma 4.5 as a function of $A(q), B(q)$, and $C(q)$. This yields

$$
\left(2 A\left(q^{2}\right)-B\left(q^{2}\right)\right)^{2}=A^{2}\left(q^{2}\right)+C^{2}\left(q^{2}\right)+2\left(A\left(q^{2}\right)-B\left(q^{2}\right)\right)^{2}
$$

which reduces to the desired identity.

5. Seven-modular lattices in dimension 6

5.1. Extremal case

The lattice called

- A_{6}^{2} in Craig's notation [8, Chapter 8, p. 223],
- P_{6} in Barnes notation [13, p. 131],
- J in Cohen's notation [7]
is registered as a perfect 7 -modular lattice in dimension 3 over \mathcal{O} of determinant 7^{3}, kissing number 42 and norm 4 in Nebe-Sloane Catalogue of lattices [11]. According to [18] an extremal (i.e. norm 4) 7-modular lattice in dimension 3 over \mathcal{O} is unique. The construction of [14, Section 3, p. 237] attributed to Serre shows that $A_{6}^{2}=$ $A_{K}\left(C_{3}\right)$. Here $C_{3}=v R_{3}+(1+v) R_{3}^{\perp}$ where R_{3} stands for the binary linear code of generator $[1,1,1]$. It occurred [14] in relation to the Jacobian of the Klein curve. Another geometric construction, using Mordell-Weil lattices can be found in [9] where the theta series is computed (using Quebbemann's theorem) as

$$
\theta_{A_{6}^{2}}(q)=A(q)^{3}-6 \Delta_{6}(q)
$$

Combining this information with [1] where it is shown that $\operatorname{swe}_{C_{3}}(X, Y, Z)=$ $X^{3}+Z^{3}+3 X Z^{2}+3 Z Y^{2}$, we obtain

Theorem 5.1. The theta series of A_{6}^{2} is

$$
\begin{aligned}
\theta_{A_{6}^{2}}(q)= & 5 A^{3}\left(q^{2}\right)-9 A^{2}\left(q^{2}\right) B\left(q^{2}\right)+6 A\left(q^{2}\right) B^{2}\left(q^{2}\right) \\
& +3 C^{2}\left(q^{2}\right) A\left(q^{2}\right)-3 C^{2}\left(q^{2}\right) B\left(q^{2}\right)-B^{3}\left(q^{2}\right)
\end{aligned}
$$

A third evaluation of $\theta_{A_{6}^{2}}$ can be obtained by using Ramanujan modular equations to the base 7 . Let $f(-q):=\prod_{j=1}^{\infty}\left(1-q^{j}\right)$. On applying Lemma 2.2 of [5] we get

$$
\theta_{A_{6}^{2}}(q)=\frac{f^{7}\left(-q^{2}\right)}{f\left(-q^{14}\right)}+7 \Delta_{6}(q)+49 q^{2} \frac{f^{7}\left(-q^{14}\right)}{f\left(-q^{2}\right)}
$$

On the other hand, according to Ranghachari [17, p. 370] the theta series of the lattice A_{6}^{*} admits the similar expression

$$
\theta_{A_{6}^{*}}(q)=\frac{f^{7}\left(-q^{2}\right)}{f\left(-q^{14}\right)}+7 \Delta_{6}(q)+7 q^{2} \frac{f^{7}\left(-q^{14}\right)}{f\left(-q^{2}\right)} .
$$

This comes from the fact that both theta series are invariant under $\Gamma_{0}(7)$ with the same quadratic character [6]. The corresponding space of weight 3 modular forms is
three dimensional and spanned by the three functions

$$
\frac{f^{7}\left(-q^{2}\right)}{f\left(-q^{14}\right)}, \quad \Delta_{6}(q) \quad \text { and } \quad q^{2} \frac{f^{7}\left(-q^{14}\right)}{f\left(-q^{2}\right)}
$$

5.2. Norm 2

There are two other self-dual R_{4}-codes in length 3, namely $C_{3,2}:=v\langle[0,1,1]\rangle+$ $(v+1)\langle[0,1,1]\rangle^{\perp}$ with weight enumerator

$$
X^{3}+X^{2} Z+X Y^{2}+2 X Z^{2}+Y^{2} Z+2 Z^{3}
$$

and $C_{3,3}:=v\langle[0,0,1]\rangle+(v+1)\langle[0,0,1]\rangle^{\perp}$ with weight enumerator

$$
X^{3}+3 X^{2} Z+3 X Z^{2}+Z^{3}
$$

Since $A_{K}\left(C_{3,2}\right)$ and $A_{K}\left(C_{3,3}\right)$ seem to have the same theta series

$$
\begin{aligned}
(1 & +6 q^{2}+24 q^{4}+56 q^{6}+114 q^{8}+168 q^{10}+280 q^{12} \\
& \left.+294 q^{14}+444 q^{16}+O\left(q^{18}\right)\right)
\end{aligned}
$$

we are led to conjecture the cubic relation

$$
\begin{aligned}
& -2 A^{3}\left(q^{2}\right)+A^{2}\left(q^{2}\right) B\left(q^{2}\right)+2 A\left(q^{2}\right) C^{2}\left(q^{2}\right)+2 A\left(q^{2}\right) B^{2}\left(q^{2}\right) \\
& \quad-C^{2}\left(q^{2}\right) B\left(q^{2}\right)-B^{3}\left(q^{2}\right)=0
\end{aligned}
$$

which is equivalent to

$$
\left(2 A\left(q^{2}\right)-B\left(q^{2}\right)\right)\left(A^{2}\left(q^{2}\right)-B^{2}\left(q^{2}\right)-C^{2}\left(q^{2}\right)\right)=0
$$

which is certainly true.
Proposition 5.2. The lattices $A_{K}\left(C_{3,2}\right)$ and $A_{K}\left(C_{3,3}\right)$ are isometric. Their theta series is

$$
8 A^{3}\left(q^{2}\right)-12 A^{2}\left(q^{2}\right) B\left(q^{2}\right)+6 A\left(q^{2}\right) B^{2}\left(q^{2}\right)-B^{3}\left(q^{2}\right)
$$

Proof. The first assertion follows by inspection of Schulze-Pillot's database of Hermitian lattices [12]. The second assertion follows on applying Theorem 2.2 to swe $_{C_{3,3}}$.

To conclude there are exactly two classes of \mathcal{O} lattices in (real) dimension 6 and they can both be constructed by using codes over $\mathbf{F}_{2} \times \mathbf{F}_{2}$.

References

[1] C. Bachoc, Application of coding theory to the construction of modular lattices, J. Combin. Theory Ser. A 78 (1997) 92-119.
[2] B.C. Berndt, email to Heng Huat Chan, September 2001.
[3] B.C. Berndt, S. Bhargava, F.G. Garvan, Ramanujan's theories of elliptic functions to alternative bases, Trans. Amer. Math. Soc. 347 (11) (1995) 4163-4244.
[4] J.M. Borwein, P.B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc. 323 (1991) 691-701.
[5] H.H. Chan, Y.L. Ong, On Eisenstein series and $\sum_{m, n=-\infty}^{\infty} q^{m^{2}+m n+2 n^{2}}$, Proc. Amer. Math. Soc. 127 (6) (1999) 1735-1744.
[6] K.S. Chua, The root lattice A_{n}^{*}, and Ramanujan's circular summation of theta functions, Proc. Amer. Math. Soc. 130 (1) (2002) 1-8.
[7] A.M. Cohen, Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4) 9 (3) (1976) 379-436.
[8] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups, third edition, in: Grundlehren der Mathematischen Wissenschaften, Vol. 290, Springer, New York, 1999.
[9] N.D. Elkies, The Klein quartic in coding theory, in: S. Levy (Ed.), The Eightfold Way, Vol. 35, Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge, 1999.
[10] I. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, in: Pure and Applied Mathematics, Vol. 134, Academic Press, Boston, MA, 1988.
[11] http://www.research.att.com/~njas/lattices/P6.5.html
[12] http://www.math.uni-sb.de/~ag-schulze/Hermitian-lattices/D-7/
[13] J. Martinet, Les réseaux parfaits des espaces euclidiens, Mathématiques, Masson, Paris, 1996.
[14] B. Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. 14 (1986) 207-259.
[15] K. Ono, On the circular summation of the eleventh powers of Ramanujan's theta function, J. Number Theory 76 (1999) 62-65.
[16] H-G. Quebbemann, Modular lattices in Euclidean spaces, J. Number Theory 54 (2) (1995) 190-202.
[17] S.S. Rangachari, On a result of Ramanujan on theta functions, J. Number Theory 48 (1994) 364-372.
[18] R. Scharlau, B. Hemkemeier, Classification of integral lattices with large class number, Math. Comput. 67 (1998) 737-749.
[19] P. Solé, P. Loyer, U_{n} lattices, Construction B, and $A G M$ iterations, European J. Combin. 19 (1998) 227-236.
[20] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1996.

[^0]: *Corresponding author.
 E-mail addresses: chanhh@math.nus.edu.sg (H.H. Chan), chuaks@ihpc.nus.edu.sg (K.S. Chua), ps@essi.fr (P. Solé).

