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Abstract

A quadratic Jacobi identity to the septic base is introduced and proved by means of modular
lattices and codes over rings. As an application the theta series of all the 6-dimensional 7-
modular lattices with an Hermitian structure over Q(v/—7) are derived.
© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

For |g| <1, let
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and

94(q) = i (-1)'q".

n=—ao0

One of Jacobi’s famous identities states that
95(q) = 93(9) + 9,(q)- (L.1)

This identity has been generalized in various ways, in particular in the context of
Vertex Operator Algebras [10].

Around 1991, Borwein and Borwein [4] discovered a cubic analogue of (1.1),
namely,

a(q) =b(q) + (q),

where a(q),b(q), c(q) are the bi-dimensional theta series

"12 mn Vl2
a(g) =Y ¢,

mnel
b(q) _ wm—nqm2+mn+n2 o= eZni/3
= E R =
mmnel
and

o(q) = Z q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2.

mmneZ

The aim of this note is to introduce another bi-dimensional generalization of
Jacobi’s identity (1.1). Our main result is

Theorem 1.1. Let

”‘12 mn _n2
Alg) =Y g,

mmnel

m-—n 1712 mmn n2
Blg)= Y (=1)""g"

and

C(q) — Z qZ((m+1/2)2+(m+1/2)l1+2n2).

mmnel



H.H. Chan et al. | Journal of Number Theory 99 (2003) 361-372 363
Then

A*(q) = B*(q) + C*(q).

The proof techniques as in [19] are a combination of codes and lattices techniques.
In particular, we will follow Bachoc’s approach [1] for the construction of 7-modular
lattices from codes over the ring F, x F,.

Like the Borweins’ cubic identity, our base 7 identity was unknown to Ramanujan
[2]. However, when calculating the theta series of a famous 7-modular lattice (related
to the polarization of the Klein curve) we encounter a formula akin to the ones in
[6,17]. It appears that our identity belongs to the septic analogue of Ramanujan’s
theories of elliptic functions to the alternative bases [3].

2. Notations and definitions
2.1. Codes

Let R, denote the ring with 4 elements F, + vF, where v*> = v. This ring contains
two maximal ideals v and (v + 1). Observe that both of R,/(v) and Rs/(v+ 1) are F,.
The Chinese Remainder Theorem tells us that

Ri=(0)®(v+1),
so that ring R, ~F, x F,. An explicit isomorphism is
va+ (v+ Db (a,b), a,beF,.

A code over R, is an R,-submodule of R).

Let K == Q(v/—7) be the quadratic number field with ring of integers ¢ = Z[o],
with o® + o + 2 = 0. Then we can regard R, as (//(2) when v is the image of o under
reduction modulo 2. Denote by a bar the conjugation which fixes F, and swaps v and
1 + v. The natural scalar product induced by the hermitian scalar product of C”" is
then given by

Z X:Vi.

The Bachoc weight as defined in [1, Definition 3.1] is of course wg(0) = 0. But more
surprisingly wg(v) = wg(1 4+ v) = 2 and wy(1) = 1. Define the Bachoc composition of
x say, n;(x), i =0,1,2, as the number of entries in x of Bachoc weight i. In terms of
Bachoc composition, we have

wg = n; + 2n,.
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The symmetrized weight enumerator (swe) is then the polynomial of three
variables X, Y, Z, defined by

SW@C(X, Y, Z) = Z X0 yr ) zm(x)

xeC

2.2. Lattices

An n-dimensional lattice L is a discrete subgroup of R”. Its theta series is

HL(q) = Z q,\*x’

xel

n

where x-x =" | x?, and g = exp(niz), ze #, where

i

H ={zeC|Imz > 0}.
The lattice L is called integral if it is contained in its dual L* defined as
L* ={yeR" VxeL,x-yeZ}.

A topic of current interest in research is the study of modular lattices. The salient
property of these lattices introduced by Quebbemann [16] is that their theta series is a
modular form for a suitable subgroup of the modular group. Specifically, an integral

lattice L is said to be /-modular [1,13] for some prime 7 if L is isometric to \/ZL*.

Theorem 2.1 (Quebbemann [16, Theorem 7]). Let

Ag) = T] (1— V(1 — ™).

n=1

The theta series of an even T-modular lattice is an isobaric polynomial in the two
variables A(\/q) and As.

The special cusp form 4 is called a CM-form in [15, (3.b)] where an expansion as a
twisted theta series attached to the quadratic form [1,0,7] is given.
3. Preliminaries

Define the construction Ax(C) as the preimage in (" of C < R} under reduction
modulo 2. Specifically,

A(C) ={ye@" |y (mod2)eC}.
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Theorem 3.1. If CSR] is a self-dual code then the lattice Ax(C)//2 is even 7-
modular.

Proof. The assertion follows by Bachoc [1, Proposition 3.6] and can alternatively be
derived directly by checking that @ is 7-modular for the bilinear form

(x, ) = Tr(xP).

To compute the theta series of a lattice Ax(C) as a function of swe. we need to
define some auxiliary theta series. Following [1], we introduce

Go(q) - Z qxia

xe20

xel4+20

and

()= > ¢

xeo+20

We quote [1, Proposition 4.2] in the case at hand. [

Theorem 3.2 (Bachoc). If C< R} is a code of length n, then the theta series of the
lattice Ax(C) satisfies

9AK(C) = swec(0o(q),0,(q), 02(q))-

4. Proof of Theorem 1.1

We first express A(q), B(q) and C(g) in term of Jacobi’s functions %(g), i =
1,2,3.

Lemma 4.1. Let A(q), B(q) and C(q) be given as in Theorem 1.1. Then

A(q) = 95(4°)%:(¢") + 92(4%)%:(¢"), (4.1)

B(q) = 94(9)94(q") (4.2)
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and

Clq) = H(q")%:(q") + 9:(¢*)%:(q"). (4.3)

Proof. Identity (4.1) can be found, for example, in [5, p. 1738]. For the proofs of the
subsequent identities, we will need the following simple identity, namely, for any odd
integer n,

o0

> (=" =0, (4.4)

m=—o0

This identity follows immediately from [20, p. 464].
Next, note that

m—n mz mn- n2
Blg)= > (=1)""gq"
R

with D = 7, and that

o0 o0

n n2 m _(m m2
Blg)=Y_ (=1)"¢"* > (=1)"¢""
=30 e Y g
nell m=—ow
n Z )" Dn2/4 Z (—l)mq(mg)z
ne2Z+1 m=—o0

” n2 . m _(m 32
=D (U Y (1) = 84(6")4(9)

ne2Z m=—o0

by (4.4).
Finally, rewrite C(q) as

o0

§ : m+

mn=—o0
D 2 D 2
m+ + n 2((m+5 + n
E ) =+ E q (€ ) )
meZnell meZnelZ+1

=%(4")9:(¢") + 93(¢°) % (¢"). U
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We proceed to express 0,(q), 0 (¢), and 6,(q) as functions of A(q), B(g),and C(q).

Proposition 4.2. For all ze # we have

and

Proof. If we set x = m — no, then the norm form becomes
XX =m’ +mn+ 20" =: NF(m,n). (4.5)
If we set x =1 + 2(m — na), then the norm form becomes

xx=4[(m+1/27 +(m+1/2n+2r". O

In view of these expressions it is natural to look for an expression for 0, involving
¢*. To that end, we shall require the following duplication formulas:

Lemma 4.3. For all ze A we have

and

Proof. From (4.1) and (4.3), we find, after some simplification, that

A(q?) — C(q%) = (9:(q") — 92(¢")) (9:(4™) — 9(¢™))
=9%(9)94(¢") = B(q).

This completes the proof of the second assertion. To derive the first assertion, we
claim that

0

A(q) + B(C[z) =2 Z q2(2m2+2mn+4n2). (46)

mp=—o
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Indeed

Alg)+B@) = D (14 (=) g

mpn=—o0

Z + Z ]qZ(n12+l71n+2n2)

mpne2Z mne2Z+1

2[ Z n Z n Z ] q2(n12+mn+2112).

me2Znel mne2Z+1 me2Zne2Z+1

=2

From (4.4), we deduce that

2(n12+mn+2n2)
>, = > 4
mmne2Z+1 me2Z.ne2Z+1

2(m2 +mn+2n2)

- Y g

meZ.ne2l+1

— Z qZ((erg)er% n2) ) 0

meZ.ne2l+1

Proposition 4.4. For all ze #, we have

Proof. Writing x = o + 2(m — no) we see that
XX = 4[m? +2(n—1/2) + m(n — 1/2)]
or in other words,

02 (q) _ Z qNF(nLn),

mnel
m even,n odd

where NF(m,n) is given by (4.5). Introduce for convenience

= Y

mmnel
m odd,n odd

Since
Z xZ={mneZ|m even,n even}u{m,neZ|m odd,n odd}

u{m,neZ|m odd,n even}u{m,neZ | m even,n odd},
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we may split the sum over (m,n)eZ x Z in A and B into four sums and obtain the
following system of two equations in 6,(¢) and 6;(q):

A(q"?) = 0:(q) + A(q") + C(q") + 0s(q)
and
B(q) = —0:(q) + A(q) — C(q°) + 0s(q).
Solving for 6, we find that
20(q) = A(v/q) — Blq) — 2C(q").
The result follows by Lemma 4.3. [
We shall require the following lemma.

Lemma 4.5. For all ze # we have

0z02(q) = (24(¢°) = B(g))"

Proof. By definition
6(\/5@)2 (q) = 4*(q).

Applying Lemma 4.3 for A(q), we complete the proof of the lemma.
We now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By Scharlau [18] there exists—up to isometry—a unique 7-
modular lattice of dimension 4 over Z. An immediate candidate is ¢*>. By Theorem

3.1 another candidate is Ax(C,)/v/2 where C, is the length 2 self-dual code with
generator matrix [1, 1].
Now the swe of that code is computed in [1, p. 102] and evaluated as

swec, = + + .
2(X,Y,Z) X4+ Y? 4272

The theta series of Ax(C,) can then be computed on applying Theorem 3.2. By the
preceding discussion it should equal 9( Va0)2 (¢) computed in Lemma 4.5 as a function

of A(q), B(q), and C(gq). This yields
QA(q) = B(q) = 42(¢) + C(¢) +2(A(¢) — B(¢)),

which reduces to the desired identity. [l
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5. Seven-modular lattices in dimension 6
5.1. Extremal case

The lattice called

® 4: in Craig’s notation [8, Chapter 8, p. 223],
® P in Barnes notation [13, p. 131],
® J in Cohen’s notation [7]

is registered as a perfect 7-modular lattice in dimension 3 over ¢ of determinant 7%,
kissing number 42 and norm 4 in Nebe—Sloane Catalogue of lattices [11]. According
to [18] an extremal (i.e. norm 4) 7-modular lattice in dimension 3 over ¢/ is unique.
The construction of [14, Section 3, p. 237] attributed to Serre shows that A7 =
Ak(C5). Here C; = vR; + (1 + v)Ry where R; stands for the binary linear code of
generator [1,1,1]. It occurred [14] in relation to the Jacobian of the Klein curve.
Another geometric construction, using Mordell-Weil lattices can be found in [9]
where the theta series is computed (using Quebbemann’s theorem) as

0,2(q) = A(q)" — 645(q).

Combining this information with [1] where it is shown that swec, (X,Y,72) =
X*+Z° +3XZ* +3ZY?, we obtain

Theorem 5.1. The theta series of A is

OA%(CI) =54°(q°) = 94°(¢°)B(¢*) + 6A4(¢°) B*(¢°)

+3C(q")A(q") = 3C*(q")B(q*) — B'(").-

A third evaluation of 60 42 can be obtained by using Ramanujan modular
equations to the base 7. Let f(—¢) =[], (1 —¢’). On applying Lemma 2.2 of [5] we
get

f7 _ qz f7 14
BAZ((]): ( 14) 2 ( 2).
6 J(=q") /(=)
On the other hand, according to Ranghachari [17, p. 370] the theta series of the
lattice 4% admits the similar expression

1(=4") f1(=4")
0@ =74 f(= qz)'

This comes from the fact that both theta series are invariant under I'y(7) with the
same quadratic character [6]. The corresponding space of weight 3 modular forms is

+ 746(q) + 49¢q

+746(q) + 7
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three dimensional and spanned by the three functions
(=) 2f1(=4")

Flogry Al@) and TR

5.2. Norm 2

There are two other self-dual Ry-codes in length 3, namely C;, = v<][0,1,1]) +
(v+1)<[0,1,1]>* with weight enumerator

X'+ X°Z+ XY +2X2° + Y Z +27°
and Cs; = v<[0,0,1]> + (v 4 1)<[0,0,1]> " with weight enumerator
X’ +3X°Z+3Xx2°+ Z°.
Since Ax(C;,) and Ax(C;3) seem to have the same theta series
(1+ 64" + 244" + 56¢° + 1144" + 1684" + 2804"
+294¢" + 4444" + 0(¢"))
we are led to conjecture the cubic relation
—24°(q") + 4'(¢")B(¢") +24(q°) C*(q") + 24(¢") B (")
- C¢")B(¢’) — B'(¢°) =0
which is equivalent to
(24(4") = B(@))(4*(q") — B (¢") — C*(¢")) =0,
which is certainly true.
Proposition 5.2. The lattices Ax(Cs,) and Ax(Css) are isometric. Their theta series is
84°(q") — 124°(¢")B(q*) + 64(¢")B*(¢") — B*(¢").
Proof. The first assertion follows by inspection of Schulze—Pillot’s database of

Hermitian lattices [12]. The second assertion follows on applying Theorem 2.2 to
swec, ;.-

To conclude there are exactly two classes of @ lattices in (real) dimension 6 and
they can both be constructed by using codes over F, x F,. [
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