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Abstract

A quadratic Jacobi identity to the septic base is introduced and proved by means of modular

lattices and codes over rings. As an application the theta series of all the 6-dimensional 7-

modular lattices with an Hermitian structure over Qð
ffiffiffiffiffiffiffi
�7

p
Þ are derived.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

For jqjo1; let

W2ðqÞ ¼
XN

n¼�N

qðnþ1=2Þ2 ;

W3ðqÞ ¼
XN

n¼�N

qn2
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and

W4ðqÞ ¼
XN

n¼�N

ð�1Þn
qn2 :

One of Jacobi’s famous identities states that

W4

3ðqÞ ¼ W4

2ðqÞ þ W4

4ðqÞ: ð1:1Þ

This identity has been generalized in various ways, in particular in the context of
Vertex Operator Algebras [10].

Around 1991, Borwein and Borwein [4] discovered a cubic analogue of (1.1),
namely,

a3ðqÞ ¼ b3ðqÞ þ c3ðqÞ;

where aðqÞ; bðqÞ; cðqÞ are the bi-dimensional theta series

aðqÞ ¼
X

m;nAZ

qm2þmnþn2 ;

bðqÞ ¼
X

m;nAZ

om�nqm2þmnþn2 ; o ¼ e2pi=3

and

cðqÞ ¼
X

m;nAZ

qðmþ1=3Þ2þðmþ1=3Þðnþ1=3Þþðnþ1=3Þ2 :

The aim of this note is to introduce another bi-dimensional generalization of
Jacobi’s identity (1.1). Our main result is

Theorem 1.1. Let

AðqÞ ¼
X

m;nAZ

q2ðm2þmnþ2n2Þ;

BðqÞ ¼
X

m;nAZ

ð�1Þm�n
qm2þmnþ2n2

and

CðqÞ ¼
X

m;nAZ

q2ððmþ1=2Þ2þðmþ1=2Þnþ2n2Þ:
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Then

A2ðqÞ ¼ B2ðqÞ þ C2ðqÞ:

The proof techniques as in [19] are a combination of codes and lattices techniques.
In particular, we will follow Bachoc’s approach [1] for the construction of 7-modular
lattices from codes over the ring F2 � F2:

Like the Borweins’ cubic identity, our base 7 identity was unknown to Ramanujan
[2]. However, when calculating the theta series of a famous 7-modular lattice (related
to the polarization of the Klein curve) we encounter a formula akin to the ones in
[6,17]. It appears that our identity belongs to the septic analogue of Ramanujan’s
theories of elliptic functions to the alternative bases [3].

2. Notations and definitions

2.1. Codes

Let R4 denote the ring with 4 elements F2 þ vF2 where v2 ¼ v: This ring contains
two maximal ideals v and ðv þ 1Þ: Observe that both of R4=ðvÞ and R4=ðv þ 1Þ are F2:
The Chinese Remainder Theorem tells us that

R4 ¼ ðvÞ"ðv þ 1Þ;

so that ring R4DF2 � F2: An explicit isomorphism is

va þ ðv þ 1Þb/ða; bÞ; a; bAF2:

A code over R4 is an R4-submodule of Rn
4:

Let K :¼ Qð
ffiffiffiffiffiffiffi
�7

p
Þ be the quadratic number field with ring of integers O ¼ Z½a
;

with a2 þ aþ 2 ¼ 0: Then we can regard R4 as O=ð2Þ when v is the image of a under
reduction modulo 2. Denote by a bar the conjugation which fixes F2 and swaps v and
1þ v: The natural scalar product induced by the hermitian scalar product of Cn is
then given by X

i

xiyi:

The Bachoc weight as defined in [1, Definition 3.1] is of course wBð0Þ ¼ 0: But more
surprisingly wBðvÞ ¼ wBð1þ vÞ ¼ 2 and wBð1Þ ¼ 1: Define the Bachoc composition of
x say, niðxÞ; i ¼ 0; 1; 2; as the number of entries in x of Bachoc weight i: In terms of
Bachoc composition, we have

wB ¼ n1 þ 2n2:
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The symmetrized weight enumerator (swe) is then the polynomial of three
variables X ;Y ;Z; defined by

sweCðX ;Y ;ZÞ ¼
X
xAC

X n0ðxÞY n1ðxÞZn2ðxÞ:

2.2. Lattices

An n-dimensional lattice L is a discrete subgroup of Rn: Its theta series is

yLðqÞ ¼
X
xAL

qx�x;

where x � x ¼
Pn

i¼1 x2
i ; and q ¼ expðpizÞ; zAH; where

H :¼ fzAC j Im z > 0g:

The lattice L is called integral if it is contained in its dual Ln defined as

Ln :¼ fyARn;8xAL; x � yAZg:

A topic of current interest in research is the study of modular lattices. The salient
property of these lattices introduced by Quebbemann [16] is that their theta series is a
modular form for a suitable subgroup of the modular group. Specifically, an integral

lattice L is said to be c-modular [1,13] for some prime c if L is isometric to
ffiffiffi
c

p
Ln:

Theorem 2.1 (Quebbemann [16, Theorem 7]). Let

D6ðqÞ :¼ q2
YN
n¼1

ð1� q2nÞ3ð1� q14nÞ3:

The theta series of an even 7-modular lattice is an isobaric polynomial in the two

variables Að ffiffiffi
q

p Þ and D6:

The special cusp form D6 is called a CM-form in [15, (3.b)] where an expansion as a
twisted theta series attached to the quadratic form ½1; 0; 7
 is given.

3. Preliminaries

Define the construction AKðCÞ as the preimage in On of CDRn
4 under reduction

modulo 2. Specifically,

AKðCÞ :¼ fyAOn j y ðmod 2ÞACg:
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Theorem 3.1. If CDRn
4 is a self-dual code then the lattice AKðCÞ=

ffiffiffi
2

p
is even 7-

modular.

Proof. The assertion follows by Bachoc [1, Proposition 3.6] and can alternatively be
derived directly by checking that O is 7-modular for the bilinear form

ðx; yÞ/TrKðx %yÞ:

To compute the theta series of a lattice AKðCÞ as a function of sweC we need to
define some auxiliary theta series. Following [1], we introduce

y0ðqÞ ¼
X
xA2O

qx %x;

y1ðqÞ ¼
X

xA1þ2O

qx %x

and

y2ðqÞ ¼
X

xAaþ2O

qx %x:

We quote [1, Proposition 4.2] in the case at hand. &

Theorem 3.2 (Bachoc). If CDRn
4 is a code of length n; then the theta series of the

lattice AKðCÞ satisfies

yAK ðCÞ ¼ sweCðy0ðqÞ; y1ðqÞ; y2ðqÞÞ:

4. Proof of Theorem 1.1

We first express AðqÞ; BðqÞ and CðqÞ in term of Jacobi’s functions WiðqÞ; i ¼
1; 2; 3:

Lemma 4.1. Let AðqÞ; BðqÞ and CðqÞ be given as in Theorem 1.1. Then

AðqÞ ¼ W3ðq2ÞW3ðq14Þ þ W2ðq2ÞW2ðq14Þ; ð4:1Þ

BðqÞ ¼ W4ðqÞW4ðq7Þ ð4:2Þ
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and

CðqÞ ¼ W2ðq2ÞW3ðq14Þ þ W3ðq2ÞW2ðq14Þ: ð4:3Þ

Proof. Identity (4.1) can be found, for example, in [5, p. 1738]. For the proofs of the
subsequent identities, we will need the following simple identity, namely, for any odd
integer n;

XN
m¼�N

ð�1Þm
qðmþn

2
Þ2 ¼ 0: ð4:4Þ

This identity follows immediately from [20, p. 464].
Next, note that

BðqÞ ¼
XN

m;n¼�N

ð�1Þm�n
qm2þmnþ2n2

¼
XN

m;n¼�N

ð�1Þmþn
qðmþn

2
Þ2þD

4
n2 ;

with D ¼ 7; and that

BðqÞ ¼
XN

n¼�N

ð�1Þn
qDn2=4

XN
m¼�N

ð�1Þm
qðmþn

2
Þ2

¼
X
nA2Z

ð�1Þn
qDn2=4

XN
m¼�N

ð�1Þm
qðmþn

2
Þ2

þ
X

nA2Zþ1

ð�1Þn
qDn2=4

XN
m¼�N

ð�1Þm
qðmþn

2
Þ2

¼
X
nA2Z

ð�1Þn
qDn2=4

XN
m¼�N

ð�1Þm
qðmþn

2
Þ2 ¼ W4ðqDÞW4ðqÞ

by (4.4).
Finally, rewrite CðqÞ as

CðqÞ ¼
XN

m;n¼�N

q2ððmþn
2
Þ2þD

4
n2Þ

¼
X

mAZ;nA2Z

q2ððmþn
2
Þ2þD

4
n2Þ þ

X
mAZ;nA2Zþ1

q2ððmþn
2
Þ2þD

4
n2Þ

¼ W2ðq2ÞW3ðq14Þ þ W3ðq2ÞW2ðq14Þ: &
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We proceed to express y0ðqÞ; y1ðqÞ; and y2ðqÞ as functions of AðqÞ; BðqÞ; and CðqÞ:

Proposition 4.2. For all zAH we have

y0ðqÞ ¼ Aðq2Þ

and

y1ðqÞ ¼ Cðq2Þ:

Proof. If we set x ¼ m � na; then the norm form becomes

x %x ¼ m2 þ mn þ 2n2 ¼: NFðm; nÞ: ð4:5Þ

If we set x ¼ 1þ 2ðm � naÞ; then the norm form becomes

x %x ¼ 4½ðm þ 1=2Þ2 þ ðm þ 1=2Þn þ 2n2
: &

In view of these expressions it is natural to look for an expression for y2 involving

q2: To that end, we shall require the following duplication formulas:

Lemma 4.3. For all zAH we have

AðqÞ ¼ 2Aðq2Þ � Bðq2Þ

and

BðqÞ ¼ Aðq2Þ � Cðq2Þ:

Proof. From (4.1) and (4.3), we find, after some simplification, that

Aðq2Þ � Cðq2Þ ¼ ðW3ðq4Þ � W2ðq4ÞÞðW3ðq28Þ � W2ðq28ÞÞ

¼ W4ðqÞW4ðq7Þ ¼ BðqÞ:

This completes the proof of the second assertion. To derive the first assertion, we
claim that

AðqÞ þ Bðq2Þ ¼ 2
XN

m;n¼�N

q2ð2m2þ2mnþ4n2Þ: ð4:6Þ
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Indeed

AðqÞ þ Bðq2Þ ¼
XN

m;n¼�N

ð1þ ð�1Þm�nÞq2ðm2þmnþ2n2Þ

¼ 2
X

m;nA2Z

þ
X

m;nA2Zþ1

" #
q2ðm2þmnþ2n2Þ

¼ 2
X

mA2Z;nAZ

þ
X

m;nA2Zþ1

þ
X

mA2Z;nA2Zþ1

" #
q2ðm2þmnþ2n2Þ:

From (4.4), we deduce that

X
m;nA2Zþ1

�
X

mA2Z;nA2Zþ1

 !
q2ðm2þmnþ2n2Þ

¼ �
X

mAZ;nA2Zþ1

q2ðm2þmnþ2n2Þ

¼ �
X

mAZ;nA2Zþ1

q2ððmþn
2
Þ2þD

4
n2Þ: &

Proposition 4.4. For all zAH; we have

y2ðqÞ ¼ Aðq2Þ � Bðq2Þ:

Proof. Writing x ¼ aþ 2ðm � naÞ we see that

x %x ¼ 4½m2 þ 2ðn � 1=2Þ2 þ mðn � 1=2Þ


or in other words,

y2ðqÞ ¼
X

m;nAZ
m even;n odd

qNFðm;nÞ;

where NFðm; nÞ is given by (4.5). Introduce for convenience

y3ðqÞ ¼
X

m;nAZ
m odd;n odd

qNFðm;nÞ:

Since

Z� Z ¼fm; nAZ j m even; n eveng,fm; nAZ j m odd; n oddg

,fm; nAZ j m odd; n eveng,fm; nAZ j m even; n oddg;
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we may split the sum over ðm; nÞAZ� Z in A and B into four sums and obtain the
following system of two equations in y2ðqÞ and y3ðqÞ:

Aðq1=2Þ ¼ y2ðqÞ þ Aðq2Þ þ Cðq2Þ þ y3ðqÞ

and

BðqÞ ¼ �y2ðqÞ þ Aðq2Þ � Cðq2Þ þ y3ðqÞ:

Solving for y2 we find that

2y2ðqÞ ¼ Að ffiffiffi
q

p Þ � BðqÞ � 2Cðq2Þ:

The result follows by Lemma 4.3. &

We shall require the following lemma.

Lemma 4.5. For all zAH we have

yð
ffiffi
2

p
OÞ2ðqÞ ¼ ð2Aðq2Þ � Bðq2ÞÞ2:

Proof. By definition

yð
ffiffi
2

p
OÞ2ðqÞ ¼ A2ðqÞ:

Applying Lemma 4.3 for AðqÞ; we complete the proof of the lemma.
We now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By Scharlau [18] there exists—up to isometry—a unique 7-

modular lattice of dimension 4 over Z: An immediate candidate is O2: By Theorem

3.1 another candidate is AKðC2Þ=
ffiffiffi
2

p
where C2 is the length 2 self-dual code with

generator matrix ½1; 1
:
Now the swe of that code is computed in [1, p. 102] and evaluated as

sweC2
ðX ;Y ;ZÞ ¼ X 2 þ Y 2 þ 2Z2:

The theta series of AKðC2Þ can then be computed on applying Theorem 3.2. By the
preceding discussion it should equal yð

ffiffi
2

p
OÞ2ðqÞ computed in Lemma 4.5 as a function

of AðqÞ; BðqÞ; and CðqÞ: This yields

ð2Aðq2Þ � Bðq2ÞÞ2 ¼ A2ðq2Þ þ C2ðq2Þ þ 2ðAðq2Þ � Bðq2ÞÞ2;

which reduces to the desired identity. &
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5. Seven-modular lattices in dimension 6

5.1. Extremal case

The lattice called

* A2
6 in Craig’s notation [8, Chapter 8, p. 223],

* P6 in Barnes notation [13, p. 131],
* J in Cohen’s notation [7]

is registered as a perfect 7-modular lattice in dimension 3 over O of determinant 73;
kissing number 42 and norm 4 in Nebe–Sloane Catalogue of lattices [11]. According
to [18] an extremal (i.e. norm 4) 7-modular lattice in dimension 3 over O is unique.

The construction of [14, Section 3, p. 237] attributed to Serre shows that A2
6 ¼

AKðC3Þ: Here C3 ¼ vR3 þ ð1þ vÞR>
3 where R3 stands for the binary linear code of

generator ½1; 1; 1
: It occurred [14] in relation to the Jacobian of the Klein curve.
Another geometric construction, using Mordell–Weil lattices can be found in [9]
where the theta series is computed (using Quebbemann’s theorem) as

y
A2
6
ðqÞ ¼ AðqÞ3 � 6D6ðqÞ:

Combining this information with [1] where it is shown that sweC3
ðX ;Y ;ZÞ ¼

X 3 þ Z3 þ 3XZ2 þ 3ZY 2; we obtain

Theorem 5.1. The theta series of A2
6 is

y
A2
6
ðqÞ ¼ 5A3ðq2Þ � 9A2ðq2ÞBðq2Þ þ 6Aðq2ÞB2ðq2Þ

þ 3C2ðq2ÞAðq2Þ � 3C2ðq2ÞBðq2Þ � B3ðq2Þ:

A third evaluation of yA2
6

can be obtained by using Ramanujan modular

equations to the base 7. Let f ð�qÞ :¼
Q

N

j¼1 ð1� qjÞ: On applying Lemma 2.2 of [5] we

get

y
A2
6
ðqÞ ¼ f 7ð�q2Þ

f ð�q14Þ þ 7D6ðqÞ þ 49q2 f 7ð�q14Þ
f ð�q2Þ :

On the other hand, according to Ranghachari [17, p. 370] the theta series of the
lattice An

6 admits the similar expression

yAn
6
ðqÞ ¼ f 7ð�q2Þ

f ð�q14Þ þ 7D6ðqÞ þ 7q2 f 7ð�q14Þ
f ð�q2Þ :

This comes from the fact that both theta series are invariant under G0ð7Þ with the
same quadratic character [6]. The corresponding space of weight 3 modular forms is

H.H. Chan et al. / Journal of Number Theory 99 (2003) 361–372370



three dimensional and spanned by the three functions

f 7ð�q2Þ
f ð�q14Þ; D6ðqÞ and q2 f 7ð�q14Þ

f ð�q2Þ :

5.2. Norm 2

There are two other self-dual R4-codes in length 3; namely C3;2 :¼ v/½0; 1; 1
Sþ
ðv þ 1Þ/½0; 1; 1
S> with weight enumerator

X 3 þ X 2Z þ XY 2 þ 2XZ2 þ Y 2Z þ 2Z3

and C3;3 :¼ v/½0; 0; 1
Sþ ðv þ 1Þ/½0; 0; 1
S> with weight enumerator

X 3 þ 3X 2Z þ 3XZ2 þ Z3:

Since AKðC3;2Þ and AKðC3;3Þ seem to have the same theta series

ð1þ 6q2 þ 24q4 þ 56q6 þ 114q8 þ 168q10 þ 280q12

þ 294q14 þ 444q16 þ Oðq18ÞÞ

we are led to conjecture the cubic relation

� 2A3ðq2Þ þ A2ðq2ÞBðq2Þ þ 2Aðq2ÞC2ðq2Þ þ 2Aðq2ÞB2ðq2Þ

� C2ðq2ÞBðq2Þ � B3ðq2Þ ¼ 0

which is equivalent to

ð2Aðq2Þ � Bðq2ÞÞðA2ðq2Þ � B2ðq2Þ � C2ðq2ÞÞ ¼ 0;

which is certainly true.

Proposition 5.2. The lattices AKðC3;2Þ and AKðC3;3Þ are isometric. Their theta series is

8A3ðq2Þ � 12A2ðq2ÞBðq2Þ þ 6Aðq2ÞB2ðq2Þ � B3ðq2Þ:

Proof. The first assertion follows by inspection of Schulze–Pillot’s database of
Hermitian lattices [12]. The second assertion follows on applying Theorem 2.2 to
sweC3;3

:

To conclude there are exactly two classes of O lattices in (real) dimension 6 and
they can both be constructed by using codes over F2 � F2: &
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