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Abstract

Dual canonical bases of the quantum general linear supergroup are constructed which are invariant
under the multiplication of the quantum Berezinian. By setting the quantum Berezinian to identity,
we obtain dual canonical bases of the quantum special linear supergroup Oq(SLm|n). We apply the
dual canonical bases to study invariant subalgebras of the quantum supergroups under left and right
translations. In the case n = 1, it is shown that each invariant subalgebra is spanned by a part of the
dual canonical bases. This in turn leads to dual canonical bases for any Kac module constructed by
using an analogue of Borel–Weil theorem.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Crystal bases and canonical bases were introduced by Kashiwara [7,8] and Lusztig
[10,11] in the context of quantized universal enveloping algebras of symmetrizable Kac–
Moody algebras (including finite-dimensional simple Lie algebras) and the associated
quantized function algebras in the early 1990s. Since then their theories have been exten-
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sively developed, leading to many new developments in representation theory. A natural
problem is to study similar bases for the quantized enveloping superalgebras and the asso-
ciated quantized function algebras [24], the cousins of the quantized universal enveloping
algebras. Musson and Zou [15] constructed a crystal basis for each finite-dimensional irre-
ducible module over the quantized enveloping superalgebra of osp(1|2n). In [1], the crystal
basis for any highest weight module in a subcategory Oint of finite-dimensional modules
over Uq(glm|n) is constructed, also see [26]. Zou [27] also constructed crystal bases for
highest weight modules over the quantized universal superalgebra of the simple Lie super-
algebra D(2,1;α) (in Kac’s notation).

In contrast, little seems to be known about canonical bases or global crystal bases. The
purpose of this paper is to study dual canonical bases for the quantum general linear super-
group GLq(m | n) and the quantum special linear supergroup SLq(m | n). There are various
ways to approach these quantum supergroups. Manin [13,14] introduced the coordinate al-
gebra of a quantum supermatrix and its inverse supermatrix. This superalgebra has a Hopf
superalgebraic structure, thus is regarded as a version of the quantum general linear super-
group (which depends on more than one deformation parameters). The paper [24] studied
the Hopf subalgebra of the finite dual of the quantized universal enveloping superalge-
bra Uq(glm|n) generated by the matrix elements of the natural representation and its dual.
It was shown that this Hopf subalgebra separate points of Uq(glm|n) in the sense that if
x, y ∈ Uq(glm|n) are not equal, then there exists f in the Hopf subalgebra such that its
evaluations on x and y are different. This Hopf subalgebra was taken as the definition of
another version of the quantum general linear supergroup. It is not difficult to show that by
specializing the parameters of the Hopf superalgebra of [13,14], one obtains the quantum
general linear supergroup of [24]. A third version was defined in [2] by localizing the co-
ordinate algebra of a supermatrix (without the inverse) at the quantum determinants of two
sub-matrices. As the quantum determinants of these sub-matrices do not commute with
each other, properties of this localization is not immediately transparent. One of the results
of this paper is to show that the third version of the quantum general linear supergroup is
equivalent to the first two.

Any basis for the quantum general linear supergroup will be very useful for studying
its structure. In [4], a basis of the letter-place algebra (which is a generalization of coordi-
nate algebra of a quantum supermatrix) was constructed by introducing quantum minors.
In principle one may try to extend this basis to a basis for the coordinate algebra of the
quantum supermatrix together with its inverse quantum supermatrix, thus to obtain a basis
for the quantum general linear supergroup. However, as far as we are aware, this was not
achieved before, presumably because of technical difficulties. In fact, it seems that no basis
of any kind is known for the quantum general linear supergroup. In this paper we shall con-
struct bases for the quantum general linear supergroup and the associated quantum special
linear supergroup. The results are given in Theorem 4.15.

A notable feature of the bases for the quantum general linear supergroup is that they
are invariant under the multiplication of the quantum Berezinian. By setting the quan-
tum Berezinian to 1 we get bases for the quantum special linear supergroup. Also, the
basis elements consist of Z[q] combinations of certain monomials, and are invariant un-
der some bar-involution on the quantum supergroups. Therefore, we may regard the bases
constructed in Theorem 4.15 as some dual canonical bases for the quantum supergroups.
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The algebra of functions on the quantum general linear supergroup admits two actions
of the quantized universal enveloping superalgebra Uq(glm|n). For any bi-subalgebra US of
Uq(glm|n), the subspace of invariants under the left or right translation with respect to US

forms a subalgebra, which may be regarded as the algebra of functions on some quantum
homogeneous superspace [25] in the general spirit of noncommutative geometry. We apply
the dual canonical bases to study such invariant subalgebras. In the case n = 1, we show
that any subalgebra of invariants is spanned by a part of the dual canonical bases. This in
turn leads to dual canonical bases for any Kac module constructed using a Borel–Weil type
of construction [25].

The paper is organized as follows. In Section 2, we collect some results on the quantized
enveloping algebra Uq(glm|n), and the version of the quantum general linear supergroup
defined in [24]. The material of this section will be used throughout the remainder of
the paper. In Section 3, the coordinate algebra Oq(Mm|n) is presented by exhibiting its
generators and defining relations following [13,14]; quantum minors [4] in the context
of Oq(Mm|n) are discussed; and the equivalence of the various versions of the quantum
general linear supergroup is proven. In Section 4, we present the construction of the dual
canonical bases for Oq(GLm|n) and Oq(SLm|n), and finally in Section 5, we use the dual
canonical bases to study subalgebras of the quantum general linear supergroup which are
invariant under right (or left) translations of any bi-subalgebra US of Uq(glm|n).

2. Quantum general linear supergroup

2.1. The quantized enveloping algebra Uq(glm|n)

Throughout the paper, we will denote by g the complex Lie superalgebra glm|n, and
by Uq(g) the quantized enveloping superalgebra of g. Let I = {1,2, . . . ,m + n} and
I′ = I\{m + n}. The quantized enveloping superalgebra Uq(g) is a Z2-graded associative
algebra (i.e., associative superalgebra) over C(q), q being an indeterminate, generated by
{Ka, K−1

a , a ∈ I; Eb b+1, Eb+1,b, b ∈ I′}, subject to the relations [24]

KaK
−1
a = 1, K±1

a K±1
b = K±1

b K±1
a ,

KaEb,b±1K
−1
a = q

2δab−2δa,b±1
a Eb,b±1,

[Ea,a+1,Eb+1,b} = δab

(
KaK

−1
a+1 − K−1

a Ka+1
)/(

q2
a − q−2

a

)
,

(Em,m+1)
2 = (Em+1,m)2 = 0,

Ea,a+1Eb,b+1 = Eb,b+1Ea,a+1,

Ea+1,aEb+1,b = Eb+1,bEa+1,a, |a − b| � 2,

S(+)
a,a±1 = S(−)

a,a±1 = 0, a �= m,

Em−1,m+2Em,m+1 + Em,m+1Em−1,m+2 = 0,

Em+2,m−1Em+1,m + Em+1,mEm+2,m−1 = 0,
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where

S(+)
a,a±1 = (Ea,a+1)

2Ea±1,a+1±1 − (q2 + q−2)Ea,a+1Ea±1,a+1±1Ea,a+1

+ Ea±1,a+1±1(Ea,a+1)
2,

S(−)
a,a±1 = (Ea+1,a)

2,Ea+1±1,a±1 − (q2 + q−2)Ea+1,aEa+1±1,a±1Ea+1,a

+ Ea+1±1,a±1(Ea+1,a)
2,

and Em−1,m+2 and Em+2,m−1 are the a = m−1, b = m+1, cases of the following elements

Ea,b = Ea,cEc,b − q−2
c Ec,bEa,c,

Eb,a = Eb,cEc,a − q2
c Ec,aEb,c, a < c < b.

Let

[a] =
{

0, if a � m,

1, if a > m.

Then qa = q(−1)[a]
, and

[Ea,a+1,Eb+1,b} = Ea,a+1Eb+1,b − (−1)[a]+[a+1]Eb+1,bEa,a+1.

The Z2 grading of the algebra is specified such that the elements K±1
a , ∀a ∈ I, and Eb,b+1,

Eb+1,b , b �= m, are even, while Em,m+1 and Em+1,m are odd. We shall denote by n+ the
subalgebra of Uq(g) generated by Ea,a+1 for all a � m + n − 1 and by n− the subalgebra
generated by Ea+1,a for all a � m + n − 1.

It is well known that Uq(g) has the structure of a Z2 graded Hopf algebra (i.e., Hopf
superalgebra), with a co-multiplication

Δ(Ea,a+1) = Ea,a+1 ⊗ KaK
−1
a+1 + 1 ⊗ Ea,a+1,

Δ(Ea+1,a) = Ea+1,a ⊗ 1 + K−1
a Ka+1 ⊗ Ea+1,a,

Δ
(
K±1

a

)= K±1
a ⊗ K±1

a ,

co-unit

ε(Ea,a+1) = Ea+1,a = 0, ∀a ∈ I′,

ε
(
K±1

b

)= 1, ∀b ∈ I,

and antipode
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S(Ea,a+1) = −Ea,a+1K
−1
a Ka+1,

S(Ea+1,a) = −KaK
−1
a+1Ea+1,a,

S
(
K±1

a

)= K∓1
a .

Sometimes, we also use Ei and Fi to denote Ei,i+1 and Ei+1,i , respectively.
Let {εa | a ∈ I} be the basis of a vector space with a bilinear form (εa, εb) = (−1)[a]δab .

The roots of the classical Lie superalgebra glm|n can be expressed as εa − εb , a �= b,
a, b ∈ I. It is known [23] that every finite-dimensional irreducible Uq(g) module is of
highest weight type and is uniquely characterized by a highest weight. For λ =∑a λaεa ,
λa ∈ Z, we shall use the notation L(λ) to denote the irreducible Uq(g) module with a
unique (up to scalar multiples) vector vλ �= 0 such that

Ea,a+1vλ = 0, a ∈ I′,

Kbvλ = q
2λb

b vλ, b ∈ I.

We shall refer to λ as the highest weight of L(λ). Then L(λ) is finite dimensional if and
only if λ satisfies λa − λa+1 ∈ Z+, a �= m. In that case, L(λ) has the same weight space
decomposition as that of the corresponding irreducible glm|n module with the same highest
weight λ.

The natural Uq(g)-module E has the standard basis {va | a ∈ I}, such that

Kavb = q2δab
a vb, Ea,a±1vb = δb,a±1va.

The Uq(g) modules E⊗k , k ∈ Z+ (E0 = C) were shown to be completely reducible [24].
The irreducible summands of these Uq(g)-modules, referred to as irreducible contravariant
tensor modules, can be characterized in the following way. Let Z+ be the set of nonnegative
integers. Define a subset P of Zm+n+ by

P = {p = (p1,p2, . . . , pm+n) ∈ Zm+n+ | pm+1 � n, pa � pa+1, a ∈ I′}.
We associate with each p ∈ P a glm|n-weight defined by

λ(p) =
m∑

i=1

piεi +
n∑

ν=1

pm+ν∑
μ=1

εm+μ,

and let

Λ(1) = {λ(p) | p ∈P
}
. (2.1)

From results of [3,22] we know that an irreducible Uq(g)-module is a contravariant tensor
if and only if its highest weight belongs to Λ(1).

Let L(λ) be an irreducible contravariant tensor Uq(g) module with highest weight
λ ∈ Λ(1). Denote by λ̄ its lowest weight, and set λ† = −λ̄. An explicit formula for λ†
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was given in [3, Section III.B], where a more compact characterization was also given for
Λ(1) and also the set

Λ(2) := {λ† | λ ∈ Λ(1)
}
. (2.2)

We refer to that paper for details. Now the dual module L(λ)† of L(λ), which we will call
a covariant tensor module, has highest weight λ†. The most important example is the dual
module E† = L(−εm+n) of E.

The situation with tensor powers E⊗k and (E†)⊗k can be summarized into the following
proposition [24].

Proposition 2.1.

(1) Each Uq(g)-module E⊗k (respectively (E†)⊗k), k ∈ Z+, can be decomposed into a
direct sum of irreducible modules with highest weights belonging to Λ(1) (respectively
Λ(2)).

(2) Every irreducible Uq(g)-module with highest weight belonging to Λ(1) (respectively
Λ(2)) is a direct summand of some tensor powers of E (respectively E†).

2.2. The quantum general linear supergroup

Let (Uq(g))0 be the finite dual of Uq(g), which, by standard Hopf algebra theory, is
a Z2-graded Hopf algebra with structure dualizing that of Uq(g). Let us denote by π the
representation of Uq(g) on E relative to the standard basis {va | a ∈ I}:

xva =
∑

b

π(x)b,avb, x ∈ Uq(g),

then we have the elements ta,b ∈ (Uq(g))0, a, b ∈ I, defined by

ta,b(x) = π(x)a,b, ∀x ∈ Uq(g).

Note that ta,b is even if [a] + [b] ≡ 0 (mod 2), and odd otherwise.
Consider the subalgebra Gπ

q of (Uq(g))0 generated by ta,b , a, b ∈ I. The multiplication

which Gπ
q inherits from (Uq(g))0 is given by

〈
t t ′, x

〉=∑
(x)

〈
t ⊗ t ′, x(1) ⊗ x(2)

〉
=
∑
(x)

(−1)[t ′][x(1)]〈t, x(1)〉
〈
t ′, x(2)

〉
, ∀t, t ′ ∈ Gπ

q , x ∈ Uq(g).

To better understand the algebraic structure of Gπ
q , recall that the Drinfeld version of Uq(g)

admits a universal R matrix, which in particular satisfies
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RΔ(x) = Δ′(x)R, ∀x ∈ Uq(g).

Applying π ⊗ π to both sides of the equation yields

Rππ(π ⊗ π)Δ(x) = (π ⊗ π)Δ′(x)Rππ , (2.3)

where Rππ := (π ⊗ π)R is given by

Rππ = q2
∑

a∈I ea,a⊗ea,a(−1)[a] + (q2 − q−2)∑
a<b

ea,b ⊗ eb,a(−1)[b].

As we work with the Jimbo version of Uq(g) in this paper, it is problematic to talk about
a universal R matrix. However, it is important to note that Eq. (2.3) makes perfect sense in
the present setting.

We can re-interpret Eq. (2.3) in terms of ta,b in the following way. Set t =∑a,b ea,b ⊗
ta,b . Then

Rππ
12 t1t2 = t2t1R

ππ
12 . (2.4)

The co-multiplication Δ of Gπ
q is also defined in the standard way by

〈
Δ(ta,b), x ⊗ y

〉= 〈ta,b, xy〉 = π(xy)a,b, ∀x, y ∈ Uq(g).

We have

Δ(ta,b) =
∑
c∈I

(−1)([a]+[c])([c]+[b])ta,c ⊗ tc,b. (2.5)

Gπ
q also has the unit ε, and the co-unit 1Uq(g). Therefore, Gπ

q has the structures of a
Z2-graded bi-algebra.

Let π(λ) be an arbitrary irreducible contravariant tensor representation of Uq(g). Define

the elements t
(λ)
i,j , i, j = 1,2, . . . ,dimC π(λ), of (Uq(g))0 by

t
(λ)
i,j (x) = π(λ)(x)i,j , ∀x ∈ Uq(g).

These will be called the matrix elements of the irreducible representation π(λ). It is an
immediate consequence of Proposition 2.1 that for every λ ∈ Λ(1), the elements t

(λ)
i,j ∈ Gπ

q ,
for all i, j , and every f ∈ Gπ

q can be expressed as a linear sum of such elements. We have
the following result [24].

Proposition 2.2. As a vector space,

Gπ
q =

⊕
λ∈Λ(1)

T (λ), where T (λ) =
dimπ(λ)⊕
i,j=1

C(q)t
(λ)
i,j .
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Let {v̄a | a ∈ I} be the basis of E† dual to the standard basis of E, i.e.,

v̄a(vb) = δa,b.

Denote by π̄ the covariant vector irreducible representation relative to this basis. Let t̄a,b ,
a, b ∈ I, be the elements of (Uq(g))0 such that

t̄a,b(x) = π̄ (x)a,b, ∀x ∈ Uq(g).

Note that t̄a,b is even if [a]+ [b] ≡ 0 (mod 2), and odd otherwise. These elements generate
a Z2-graded bi-subalgebra Gπ̄

q of (Uq(g))0. We want to point out that the t̄a,b obey the
relation

Rπ̄π̄
12 t̄1 t̄2 = t̄2 t̄1R

π̄π̄
12 , (2.6)

where t̄ =∑a,b ea,b ⊗ t̄b,a and Rπ̄π̄ = (π̄ ⊗ π̄ )R is given by

Rπ̄π̄ = q2
∑

a∈I ea,a⊗ea,a(−1)[a] + (q2 − q−2)∑
a>b

ea,b ⊗ eb,a(−1)[b].

Also, the co-multiplication is given by

Δ(t̄a,b) =
∑
c∈I

(−1)([a]+[c])([c]+[b])t̄a,c ⊗ t̄c,b.

Similar to the case of Gπ
q , we let T̄ (λ) be the subspace of Gπ̄

q spanned by the matrix

elements of the irreducible representation with highest weight λ ∈ Λ(2). Then it follows
from Proposition 2.1 that

Proposition 2.3. As a vector space,

Gπ̄
q =

⊕
μ∈Λ(2)

T̄ (μ).

Definition 2.4. The algebra Gq of functions on the quantum general linear supergroup
GLq(m | n) is the Z2-graded subalgebra of Uq(g)0 generated by {ta,b, t̄a,b | a, b ∈ I}.

The ta,b and t̄a,b , besides obeying the relations (2.4) and (2.6), also satisfy

Rπ̄π
12 t̄1t2 = t2 t̄1R

π̄π
12 , (2.7)

where Rπ̄π := (π̄ ⊗ π)R is given by

Rπ̄π = q−2
∑

a∈I ea,a⊗ea,a(−1)[a] − (q2 − q−2)∑ eb,a ⊗ eb,a(−1)[a]+[b]+[a][b].

a<b
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As both Gπ
q and Gπ̄

q are Z2-graded bi-algebras, Gq inherits a natural bi-algebra structure.
It also admits an antipode S :Gq → Gq , which is a linear anti-automorphism given by

S(ta,b) = (−1)[a][b]+[a] t̄b,a, S(t̄a,b) = (−1)[a][b]+[b]q2(2ρ,εa−εb)tb,a. (2.8)

Therefore, Gq has the structures of a Z2-graded Hopf algebra. It was also shown in [24]
that Gq separates points of Uq(g) in the sense that for any x, y ∈ Uq(g) such that x �= y,
then there exists f ∈ Gq such that 〈f,x〉 �= 〈f,y〉.

There are two natural actions of Uq(g) on the quantized function algebra Oq(GLm|n),
which correspond to left and right translations in the classical setting. The two actions are
respectively defined, for all x ∈ Uq(g), f ∈ Oq(GLm|n), by

Rx(f ) =
∑
(f )

f(1)

〈
f(2),ω(x)

〉
,

Lx(f ) =
∑
(f )

〈
f(1),ω(x)

〉
f(2)(−1)[x][f(1)],

where we have used Sweedler’s notation Δ(f ) =∑f(1) ⊗f(2). Note that L is a left action
while R is a right action. Furthermore, the two actions commute.

For convenience, we shall use the algebra anti-automorphism ω :Uq(g) → Uq(g) given
by

ω(Ki) = Ki, ω(Ei) = Fi, ω(Fi) = Ei,

to twist the two actions. This way we obtain a left action and a right action of Uq(g) on
Oq(GLm|n), which will be denoted by x.f and f.x respectively for any x ∈ Uq(g) and
f ∈ Oq(GLm|n). The actions can be written down explicitly in terms of generators:

Ei.xkl = δi,k−1δil, Fi .xkl = δikxi+1,l , Ki.xkl = q2δik xkl, (2.9)

xkl.Ei = δi+1,lxki , xkl .Fi = δlixk,i−1, xkl .Ki = q2δli xkl . (2.10)

These actions give the Hopf superalgebra Gq a natural Uq(g)-bi-module structure.

2.3. Bar-involution on quantized function algebra

Denote by − the involution of the base field Q(q) which is given as follows:

− : Q(q) → Q(q), q → q−1.

There is an automorphism of the quantized enveloping algebra Uq(g) denoted by ¯ which
is given by:

Ēi = Ei, F̄i = Fi, K̄j = K−1, q̄ = q−1 for all i, j.
j
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We define a linear map † on Gq as follows:

〈
f †, x

〉= 〈f, x̄〉−,

for any f ∈ Gq and x ∈ Uq(g).
We have the notions of a left weight and right weight of elements of Gq with respect

to the actions (2.10) and (2.9). An element of Gq is called homogeneous if it is both a left
weight vector and right weight vector. For a homogeneous element f , we denote by wl(f )

its left weight, and by wr(f ) its right weight.

Proposition 2.5. For any homogeneous elements f,g ∈ Gq with weights wl(f ),wr(f )

and wl(g),wr(g), respectively,

(fg)† = (−1)[f ][g]q2(wl(f ),wl(g))−2(wr (f ),wr (g))g†f †.

Proof. Denote by Θ the quasi R-matrix which satisfies the following identities in the
completion of Uq(g) ⊗ Uq(g):

ΘΘ̄ = Θ̄Θ = 1 ⊗ 1,

Θ(− ⊗ −)Δ(x) = Δ(x̄)Θ.

Let Φ be the algebra automorphism of Uq(g) ⊗ Uq(g) defined by

Ei ⊗ 1 → Ei ⊗ Ki, 1 ⊗ Ei → Ki ⊗ Ei,

Fi ⊗ 1 → Fi ⊗ K−1
i , 1 ⊗ Fi → K−1

i ⊗ Fi,

Ki ⊗ 1 → Ki ⊗ 1, 1 ⊗ Ki → 1 ⊗ Ki,

for all i = 1,2, . . . ,m + n − 1. One can check easily that

Δ(x̄) = Φ ◦ (− ⊗ −) ◦ Δ′(x),

where Δ′ is the opposite co-multiplication.
Now, for any homogeneous elements f and g, we have

〈
(fg)†, x

〉= 〈fg, x̄〉− = 〈f ⊗ g,Δ(x̄)
〉−

= 〈f ⊗ g,Φ ◦ (− ⊗ −) ◦ Δ′(x)
〉−

= q2(wr (f ),wr (g))−2(wl(f ),wl(g))
〈
f ⊗ g, (− ⊗ −)Δ′(x)

〉−
= q2(wr (f ),wr (g))−2(wl(f ),wl(g))

〈
f † ⊗ g†,Δ′(x)

〉
= (−1)[f ][g]q2(wr (f ),wr (g))−2(wl(f ),wl(g))

〈
g†f †, x

〉
. �

The linear map † can be furnished into an anti automorphism in the following way:
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Lemma 2.6. The mapping ¯ :Gq → Gq defined, for any homogeneous element f ∈ Gq

with weights (wl(f ),wr(f )), by

f → q(wl(f ),wl(f ))−(wr (f ),wr (f ))f †, q → q−1

is an anti-automorphism of the superalgebra Gq .

Proof. For any homogeneous elements f,g ∈ Gq with weights (wl(f ),wr(f )) and
(wl(g),wr(g)), respectively, we have

fg = qA(f,g)(fg)† = (−1)[f ][g]qB(f,g)g†f †, (2.11)

where

A(f,g) = (wl(f ) + wl(g),wl(f ) + wl(g)
)− (wr(f ) + wr(g),wr(f ) + wr(g)

)
,

B(f,g) = A(f,g) + 2
(
wr(f ),wr(g)

)− 2
(
wl(f ),wl(g)

)
.

The far right-hand side of Eq. (2.11) can be easily shown to be equal to (−1)[f ][g]ḡf̄ , thus
completing the proof. �
3. Coordinate algebra of quantum supermatrix

Let X be an (m + n) × (m + n) quantum supermatrix. We shall always write it in block
form

X =
(

A B

C D

)
,

where A and D are respectively m×m and n×n sub-matrices of even entries, while B and
C are respectively m × n and n × m sub-matrices of odd entries. The coordinate algebra
Oq(Mm|n) [13] of X is a Z2-graded algebra (i.e., superalgebra) generated by the entries of
the quantum supermatrix X satisfying the relation

Rπ,πX1X2 = X2X1R
π,π ,

where X1 = X ⊗ 1 and X2 = 1 ⊗ X. The defining relations can be written explicitly as
follows:

xij xik = (−1)([i]+[j ])([i]+[k])q2(−1)[i]xikxij , j < k,

xij xkj = (−1)([i]+[j ])([k]+[j ])q2(−1)[j ]
xkj xij , i < k,

xij xkl = (−1)([i]+[j ])([k]+[l])xklxij , i < k, j > l,

xij xkl = (−1)([i]+[j ])([k]+[l])xklxij + (−1)[k][j ]+[k][l]+[j ][l](q2 − q−2)xilxkj ,

i < k, j < l.
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Note that the matrix A is a quantum matrix with deformation parameter q while D is also
a quantum matrix with deformation parameter q−1. We shall refer A as a q-matrix and
D as a q−1-matrix. The superalgebra Oq(Mm|n) has a bi-superalgebra structure, and it is
customary to take the following coproduct and counit:

Δ(xij ) =
∑

k

xik ⊗ xkj , ε(xij ) = δij .

Let us recall the definition of quantum minors in the present context. We shall largely
follow [4], besides some slight change in conventions. Denote

( , ) : Zm+n × Zm+n → Z, (a, b) =
∑
i>j

aibj ,

where a = (a1, a2, . . . , am+n), b = (b1, b2, . . . , bm+n) ∈ Zm+n. Also, denote by

[a] =
∑

i

ai[i] ∈ Z2 and {a} =
∑

i

ai

([i] + 1̄
) ∈ Z2.

The quantum superspace (or rather its coordinate algebra) Aq is a superalgebra gener-
ated by x1, x2, . . . , xm, . . . , xm+n with parity assignment [xi] = [i] and defining relations

x2
i = 0, if [i] = 1̄,

xixj = (−1)[i][j ]q2xjxi, for i < j.

We also introduce the superalgebra A∗
q generated by ξ1, ξ2, . . . , ξm, . . . , ξm+n with parity

assignment [ξi] = 1̄ − [i] and defining relations

ξ2
i = 0, if [i] = 0̄,

ξiξj = (−1)([i]+1̄)([j ]+1̄)q2ξj ξi, for i > j.

The ordered monomials

xa := x
a1
1 x

a2
2 · · ·xam+n

m+n

for all a = (a1, a2, . . . , am+n) ∈ Zm+ ×Zn
2, form a basis of Aq . Similarly, the ordered mono-

mials

ξb := ξ
b1
1 ξ

b2
2 · · · ξbm+n

m+n ,

for all b = (b1, b2, . . . , bm+n) ∈ Zm
2 × Zn+, form a basis of A∗

q .
The superalgebras Aq and A∗

q are comodule superalgebras of Oq(Mm|n) with the coac-
tions given below:
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Theorem 3.1. [13] There exist superalgebra morphisms

δ :Aq → Oq(Mm|n) ⊗ Aq, xi →
∑
j

xij ⊗ xj ,

δ∗ :A∗
q →Oq(Mm|n) ⊗ A∗

q, ξi →
∑
j

xij ⊗ ξj ,

which give Oq(Mm|n)-comodule structures to Aq and A∗
q .

For any a = (a1, a2, . . . , am+n), b = (b1, b2, . . . , bm+n) ∈ Zm+n, define elements
Δ(a,b) and Δ(a,b)∗ of Oq(Mm|n) by

δ
(
xa
)=∑

b

(−1)
∑

i>j aibj [i][j ]+∑i>j bibj [i][j ]
Δ(a,b) ⊗ xb,

δ∗(ξa
)=∑

b

(−1)
∑

i>j aibj ([i]+1̄)([j ]+1̄)+∑i>j bibj ([i]+1̄)([j ]+1̄)
Δ(a, b)∗ ⊗ ξb,

which will be referred to as quantum minors. Note that our definition differs from that
of [4] by a scalar. See also [16,17] for discussions of quantum minors.

The following quantum Laplace expansion can be derived directly from the definition
of the quantum minors.

Proposition 3.2.

Δ
(
a + a′, b

)= ∑
b=c+c′

(−1)[c]([a′]+[c′])(−1)
∑

i>j (aia
′
j +aic

′
j +a′

i cj +cic
′
j +cic

′
j )[i]j ]

× q2(a,a′)−2(c,c′)Δ(a, c)Δ
(
a′, c′);

Δ
(
a + a′, b

)∗ =
∑

b=c+c′
(−1){c}({a′}+{c′})(−1)

∑
i>j (aia

′
j +aic

′
j +a′

i cj +cic
′
j +cic

′
j )([i]+1̄]([j ]+1̄)

× q2(a,a′)−2(c,c′)Δ(a, c)∗Δ
(
a′, c′)∗.

Proof. Consider Δ(a,b). We have

δ
(
xa+a′ )= (−1)

∑
i>j aia

′
j [i][j ]

q2(a,a′)δ
(
xa
)
δ
(
xa′ )

= (−1)
∑

i>j aia
′
j [i][j ]

q2(a,a′)
(∑

c

(−1)
∑

i>j aicj [i][j ]+∑i>j cicj [i][j ]
Δ(a, c ) ⊗ xc

)

×
(∑

′
(−1)

∑
i>j a′

i c
′
j [i][j ]+∑i>j c′

i c
′
j [i][j ]

Δ
(
a′, c′)⊗ xc′

)

c
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=
∑

b

∑
c+c′=b

(−1)[c]([a′]+[c′])(−1)
∑

i>j (aia
′
j +aicj +cicj +a′

i c
′
j +c′

i c
′
j )[i][j ]

× q2(a,a′)−2(c,c′)Δ(a, c)Δ
(
a′, c′ )⊗ xb.

The quantum Laplace expansion for Δ(a,b)∗ can be proved similarly. �
For any r, s ∈ Z, r < s, denote by [r, s] = {r, r + 1, . . . , s}. The following quantum

minors will play important roles later. Let

detq A := Δ
([1,m], [1,m])∗,

detq−1 D := Δ
([m + 1,m + n], [m + 1,m + n]).

Then

detq A =
∑
σ∈Sm

(−q2)l(σ )
x1σ(1)x2σ(2) · · ·xmσ(m),

detq−1 D =
∑
τ∈Sn

(−q−2)l(τ )
xm+1,m+τ(1)xm+2,m+τ(2) · · ·xm+n,m+τ(n).

For r � min{m,n}, we have

Δ
([1, r], [m + 1,m + r])∗ =

∑
σ∈Sr

(−q2)l(σ )
x1,m+σ(1)x2,m+σ(2) · · ·xr,m+σ(r),

Δ
([m + 1,m + r], [1, r])= ∑

σ∈Sr

(−q−2)l(σ )
xm+1,σ (1)xm+2,σ (2) · · ·xm+r,σ (r).

As we shall see later, the quantum minors detq A and Δ([1, r], [m + 1,m + r])∗ are anni-
hilated by every Ei under left translation, while detq−1 D and Δ([m+ 1,m+ r], [1, r]) are
annihilated by every Fi under left translation. However, the following minors

Δ
([1,m], [1,m])= ∑

σ∈Sm

q−2l(σ )x1σ(1)x2σ(2) · · ·xmσ(m),

Δ
([m + 1,m + n], [m + 1,m + n])∗
=
∑
τ∈Sn

q−2l(τ )xm+1,m+τ(1)xm+2,m+τ(2) · · ·xm+n,m+τ(n)

do not behave well under the left and right translations.
Let S be the multiplicative set of products of powers of detq A and detq−1 D. Denote by

Oq(GLm|n) the localization of Oq(Mm|n) at S . Then the inverse matrix X−1 of X lies in
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Oq(GLm|n), as can be shown by an explicit calculation [18]. We shall always write X−1 in
the block form

X−1 =
(

Ā B̄

C̄ D̄

)
,

where Ā is an m × m q−1-matrix while D̄ is a n × n q-matrix [24]. In [12], the explicit
formula for the quantum Berezinian was given:

Berq = detq Adetq D̄,

which is also known to be central in Oq(GLm|n).

Remark 3.3. The commutation relations among all of the entries in the matrices X and
X−1 were given in [24] by using R matrices.

Let us define the following quantum q−1-matrix,

D′ := (yμ,ν)
m+n
μ,ν=m+1 = D − CA−1B,

the entries of which all belong to Oq(GLm|n). Also note that D′ is in fact the inverse matrix
of D̄.

Proposition 3.4. The following commutation relations hold:

detq Axij = xij detq A, detq Axμ,j = q2xμ,j detq A,

detq Axi,ν = q2xi,ν detq A, detq Ayμ,ν = yμ,ν detq A;
detq−1 D′xij = xij detq−1 D′, detq−1 D′xμ,j = q2xμ,j detq−1 D′,

detq−1 D′xi,ν = q2xi,ν detq−1 D′, detq−1 D′yμ,ν = yμ,ν detq−1 D′

for i, j = 1,2, . . . ,m, μ, ν = m + 1,m + 2, . . . ,m + n.

Moreover, detq A(detq−1 D′)−1 is central in Oq(GLm|n).

Proof. The inverse matrix of the quantum matrix A is

A−1 = ((−q2)j−i
Aji(detq A)−1),

where Aji is the determinant of the quantum matrix obtained from A by deleting the j th
row and ith column. Now the claim that detq A commutes with yμ,ν is equivalent to the
relation

detq Axμ,ν = xμ,ν detq A + (q2 − q−2)∑(−q2)l−k
xμ,kAlkxl,ν .
k,l
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We use induction on m to prove it. If m = 1, we have

x11xi+1,j+1 = xi+1,j+1x11 + (q2 − q−2)xi+1,1x1,j+1

which is one of the defining relations. In general, by quantum Laplace expansion,

detq Axμ,ν =
∑

s

(−q2)m−s
Amsxmsxμ,ν

=
∑

s

(−q2)m−s
Ams

[
xμ,νxms + (q2 − q−2)xμ,sxm,ν

]
=
∑

s

(−q2)m−s
Amsxμ,νxms

+ (q2 − q−2)∑
s

(−q2)s−m
xμ,sAmsxm,ν.

Denote by Am,l;s,k the determinant of the quantum matrix obtained from the quantum
matrix A by deleting the m, lth rows and s, kth columns. It follows from the induction
hypothesis that

∑
s

(−q2)m−s
Amsxμ,νxms

=
∑

s

(−q2)m−s
[
Amsxμ,νxms + (q2 − q−2)∑

k,l

xμ,kAm,l;s,kxl,νxms

]

= xμ,ν detq A + (q2 − q−2)∑
k,l

xμ,kAlkxl,ν .

Combining this with the last equation, we get the desired formulae.
Note that D̄ is the inverse matrix of D′. Hence, detq A commutes with all the entries

of D̄. By the relation given in [24], we can also see that detq−1 D̄ commutes with all of
the entries in A, and therefore, detq−1 D′ = (detq−1 D̄)−1 commutes with all of the entries
in A. The other formulas can be proved similarly. Consequently, detq A(detq−1 D′)−1 is a
central element. �

The following result shows that the constructions of the quantized function algebras of
the quantum general supergroup in [2,13,24] are in fact equivalent.

Theorem 3.5. As Hopf algebras,

Gq
∼= Oq(GLm|n).
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Proof. Identifying T (λ) with L(λ) ⊗ L(λ†) as Uq(g)-bimodules, we obtain

Gπ
q

∼=
⊕

λ∈Λ(1)

L(λ) ⊗ L
(
λ†),

upon using quantum Peter–Weyl theorem, Proposition 2.2.
By the universal property of Oq(Mm|n) [13, Theorem 1.6], there is a surjective homo-

morphism

Φ :Oq(Mm|n) → Gπ
q , xij → (−1)[i][j ]+[j ]q(εi ,εi )−(εj ,εj )tij , i, j = 1,2, . . . ,m + n.

The map also preserves the co-product and co-unit, as can be easily seen by inspection.
The algebra Oq(Mm|n) is Z+-graded with gradation assignment degxij = 1. Denote by

Oq(Mm|n)k the homogeneous component of degree k. Also note that Gπ
q =⊕k(G

π
q )k,

with

(
Gπ

q

)
k
∼=
⊕

λ:|λ|=k

L(λ) ⊗ L
(
λ†),

where |λ| =∑a λa for λ = (λ1, λ2, . . . , λm|λm+1, . . . , λm+n) ∈ Λ(1). By Proposition 3 of
[23], each L(λ) has the same dimension as its classical counter part, thus by Proposition 3.3
of [19],

dim
(
Gπ

q

)
k
=

k∑
r=0

(
m2 + n2 + r − 1

r

)(
2mn

k − r

)

which equals to dimOq(Mm|n)k . Hence, as bialgebras,

Gπ
q

∼= Oq(Mm|n).

The natural embedding of Gπ
q in Gq leads to an embedding of Oq(Mm|n) in Gq .

As an intermediate step to the proof of the theorem, we introduce the locali-
zation of Oq(Mm|n)[(detq A)−1] of Oq(Mm|n) at detq A. Then A is invertible in
Oq(Mm|n)[(detq A)−1], thus the entries of the matrix D −CA−1B all belong to this super-
algebra. We shall still denote this matrix by D′ by an abuse of notation. Now we localize
Oq(Mm|n)[(detq A)−1] at detq−1 D′, and denote the resulting superalgebra by O′

q(GLm|n).
Obviously O′

q(GLm|n) is isomorphic to Oq(GLm|n).
Now we want to show that Gq and O′

q(GLm|n) are isomorphic.
In the superalgebra Gq , the quantum supermatrix (tij ) is invertible with the inverse

matrix (t̄ij ). The antipode maps the quantum supermatrix to its inverse matrix. Hence, t̄ij ’s
can be obtained from tij ’s together with (detq A)−1(detq−1 D)−1. Therefore, we have a
surjection from Oq(GLm|n) to Gq , which induces a surjective map φ :O′

q(GLm|n) → Gq .
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Let k belong to the kernel of the map φ. Then by using Proposition 3.4 and the fact that
detq A and detq−1 D′ commute, we see that for some positive integer i and a sufficiently
large j ,

(detq A)i
(
detq−1 D′)j k ∈Oq(Mm|n).

This element, belonging to kerφ, must vanish. However, the quantum determinants detqA

and detq−1 D′ are invertible in O′
q(GLm|n), thus k = 0. This proves the injectivity of φ,

thus establishing that Oq(GLm|n) and Gq are isomorphic as associative superalgebras.
The fact that the co-algebraic structures of Oq(GLm|n) and Gq also coincide follows

from computations in [2], which showed that Δ(detq A) and Δ(detq−1 D) are invertible
elements of Gq ⊗ Gq . �

4. Construction of bases

We shall follow [9] to construct bases for the Hopf superalgebras Oq(GLm|n) and
Oq(SLm|n). It was shown in [13] that the ordered monomials form a basis for the super-
algebra Oq(Mm|n). However, no results seem to be available in the literature on bases for
Oq(GLm|n) and Oq(SLm|n). As we have pointed out in the previous section, some quan-
tum minors behave very well under the left and right actions of the quantum enveloping
superalgebra Uq(g). Hence, it is natural to expect that any nice basis of Oq(GLm|n) should
contain these quantum minors. Also, if a basis of Oq(GLm|n) is invariant under the mul-
tiplication of the quantum Berezinian, then we can get from it a basis for Oq(SLm|n) by
setting the quantum Berezinian to 1.

The map defined in the lemma below is inspired by the definition of the anti-
automorphism ¯ in the previous section and hence will be denoted by the same notation. It
is a main ingredient for the construction of the dual canonical bases.

Lemma 4.1.

(1) The mapping

− : xij → xij , q → q−1

extends to a superalgebra anti-automorphism of Oq(Mm|n) regarded as a superalge-
bra over Q.

(2) The anti-automorphism¯of Oq(Mm|n) extends uniquely to Oq(GLm|n) by requiring

(detq A)−1 = (detq A)−1, (detq−1 D)−1 = (detq−1 D)−1.

The lemma can be proved easily by inspecting the defining relations.
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Remark 4.2. The anti-automorphism − commutes with the isomorphism φ in the proof of
Theorem 3.5. Indeed, one can directly check that the elements (−1)[i][j ]+[j ]q(εi ,εi )−(εj ,εj )tij
are bar invariant by using Proposition 2.5 and Lemma 2.6.

Arrange the generators according to the lexicographic order, namely

x11 < x12 < · · ·x1,m+n < x21 < · · ·
< xm,1 < xm,2 < · · · < xm,m < · · · < xm+n,m+n.

For any matrix M = (mij ) ∈ Mm+n(Z+), mij = 0,1 if [i]+ [j ] = 1̄, we define a monomial
xM by

xM = x
m11
11 x

m12
12 · · ·xm1,m+n

1,m+n x
m21
21 · · ·xm2,m+n

2m+n · · ·xmm+n,m+n

m+n,m+n. (4.1)

Observe that the factors are arranged in the lexicographic order.
To construct a basis using Lusztig’s method [9], we need to modify the monomials.

Define the normalized monomials

x(M) = q
−∑i,j<k(−1)[i]mij mik−∑l,s<t (−1)[l]mslmtl xM.

We shall impose a partial order on the set of the normalized monomials by given a partial
order to the matrices M in the following way. Let M = (mij ) ∈ Mm+n(Z+). If mijmst � 1
for two pairs of indices i, j and s, t satisfying i < s, j < t , we define a new matrix M ′ =
(m′

uv) ∈ Mm+n(Z+) with

m′
ij = mij − 1, m′

st = mst − 1,

m′
it = mit + 1, m′

sj = msj + 1,

m′
uv = muv, for all other entries.

We say that the matrix M ′ is obtained from the matrix M by a 2 × 2 sub-matrix transfor-
mation. Using this we may define a partial order on the set Mm+n(Z+) such that M < N if
M can be obtained from N by a sequence of 2 × 2 sub-matrix transformations.

Given M = (mij ) ∈ Mm+n(Z+), we define the row sums ro(M) and the column sums
co(M) of the matrix, respectively, by

ro(M) =
(∑

j

m1j , . . . ,
∑
j

mm+n,j

)
= (r1(M), r2(M), . . . , rm+n(M)

)
,

co(M) =
(∑

mj1, . . . ,
∑

mj,m+n

)
= (c1(M), c2(M), . . . , cm+n(M)

)
.

j j



H. Zhang, R.B. Zhang / Journal of Algebra 304 (2006) 1026–1058 1045
Note that the 2 × 2 sub-matrix transformations keep the row sums and column sums un-
changed. Let us also introduce the following notation, which will be frequently used below:

M =
{(

M1 M2
M3 M4

) ∣∣∣∣∣M1 ∈ Mm(Z+), M2 ∈ Mm×n(Z2),

M3 ∈ Mn×m(Z2), M4 ∈ Mn(Z+)

}
.

Whenever an element of M is considered, we assume that it is in this block form. The set
M is viewed as a subset of Mm+n(Z+), and the partial order � induces a partial order on
M which is denoted also by �.

The following lemma will be needed when constructing the dual canonical basis. It
follows directly from the defining relations of the algebra Oq(Mm|n).

Lemma 4.3. For any M ∈ M,

x(M) = x(M) +
∑
T <M

cM,T x(T ),

where the coefficients cM,T ∈ Z[q, q−1].

Let H the subalgebra of Oq(Mm|n) generated by the entries of the matrices A and B ,
namely, the entries xij , i � m of the quantum supermatrix. We construct a basis for the
subalgebra.

Theorem 4.4.

(1) For any
(

M1 M2
0 0

) ∈ M, there exists a unique element Ωq

(
M1 M2
0 0

) ∈ H determined by
the following conditions:

(a) Ωq

(
M1 M2
0 0

)= Ωq

(
M1 M2
0 0

)
.

(b) Ωq

(
M1 M2
0 0

)= x
(

M1 M2
0 0

)+∑h
M2M

′
2

M1M
′
1
x
(

M ′
1 M ′

2
0 0

)
, where the sum is over

(
M ′

1 M ′
2

0 0

) ∈ M

satisfying the condition
(

M ′
1 M ′

2
0 0

)
<
(

M1 M2
0 0

)
, and h

M2M
′
2

M1M
′
1
∈ qZ[q].

(2) The elements Ωq

(
M1 M2
0 0

)
form a basis of H .

(3) The quantum minors Δ((i1, i2, . . . , ir ), (j1, j2, . . . , jr ))
∗ with 1 � i1 < i2 < · · · < ir ,

1 � j1 < j2 · · · < jr � m + n are basis elements.

Proof. We only need to prove the last statement. For simplicity, we shall only consider the
statement for Δ([1, r], [s, s +r])∗. From the definition we can see that Δ([1, r], [s, s +r])∗
are indeed of the form as that in (1)(b). Now, we show the bar invariance of these quantum
minors. It is clear that

δ∗ ◦ ψ = (− ⊗ ψ) ◦ δ∗,
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where ψ is the anti-automorphism of A∗
q fixing all generators and sending q to q−1. Note

that both sides are algebra anti-automorphisms so we only need to check the generators.
Another fact we need is

ψ(ξsξs+1 · · · ξs+r ) = qr(r+1)ξsξs+1 · · · ξs+r .

Hence,

δ∗(ψ(ξ1ξ2 · · · ξr )
)= Δ

([1, r], [s, s + r])∗ ⊗ ψ(ξsξs+1 · · · ξs+r ) + · · ·
= qr(r+1)Δ

([1, r], [s, s + r])∗ ⊗ ξsξs+1 · · · ξs+r + · · · ,

which implies Δ([1, r], [s, s + r])∗ = Δ([1, r], [s, s + r])∗. �
For any matrix M , denote by S(M) the sum of all entries in M . The quantum determi-

nant detq A of the quantum matrix A is a special quantum minor Δ([1,m], [1,m])∗ which
has the following property.

Lemma 4.5.

detq AΩq

(
M1 M2
0 0

)
= qS(M2)Ωq

(
M1 + Im M2

0 0

)
.

Proof. It is known that detq Axij = xij detq A for i, j = 1,2, . . . ,m. The same argument as
Lemma 3.3 in [6] shows that detq Axi,μ = q2xi,μ detq A, for μ = m+ 1,m+ 2, . . . ,m+n.
The relations together with part (1) of Theorem 4.4 imply that q−S(M2) detq AΩq

(
M1 M2
0 0

)
is

bar invariant. By Theorem 5.2 of [20], q−S(M2) detq AΩq

(
M1 M2
0 0

)
is of the form Ωq

(
M ′

1 M ′
2

0 0

)
which must be equal to Ωq

(
M1+Im M2

0 0

)
. �

We can perform similarly analysis for the subalgebra generated by the entries of C to
prove the following result.

Theorem 4.6. For any (m+n)× (m+n) matrix
( 0 0

M3 0

) ∈ M, there exists a unique element

Ωq−1

( 0 0
M3 0

)
with properties

(1) Ωq−1

( 0 0
M3 0

)= Ωq−1

( 0 0
M3 0

)
.

(2) Ωq−1

( 0 0
M3 0

)= x
( 0 0

M3 0

)+∑T3<M3
hT3M3x

( 0 0
T3 0

)
, where hT3M3 ∈ q−1Z[q−1].

The elements Ωq−1

( 0 0
M3 0

)
form a basis of the subalgebra generated by the entries of C.

The quantum minors Δ((i1, i2, . . . , ir ), (j1, j2, . . . , jr )) with m + 1 � i1 < i2 < · · · < ir �
m + n,1 � j1 < j2 < · · · < jr � n are basis elements for r � min{m,n}.
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Now we consider the subalgebra generated by the entries of A,B,C. It has a basis

{
N

(
M1 M2
M3 0

)
:= q−∑i ci (M1)ci (M3)Ωq

(
M1 M2
0 0

)
Ωq−1

(
0 0

M3 0

)}
,

where ci(M1) and ci(M3) are the ith column sums of M1 and M3, respectively. The basis
is ordered in accordance with the order of the matrices

(M1 M2
M3 0

)
.

From the construction, it is clear that

N

(
M1 M2
M3 0

)
:= x

(
M1 M2
M3 0

)
+ lower terms.

Hence, by Lemma 4.3, we have

Lemma 4.7.

N

(
M1 M2
M3 0

)
= N

(
M1 M2
M3 0

)
+ lower terms.

This leads to the following result.

Theorem 4.8. For any given
(M1 M2

M3 0

) ∈ M, there exists a unique element Ωq

(M1 M2
M3 0

)
de-

termined by the following conditions:

(1) Ωq

(M1 M2
M3 0

)= Ωq

(M1 M2
M3 0

)
.

(2) Ωq

(M1 M2
M3 0

)= N
(M1 M2

M3 0

)+∑h
M ′

1M
′
2M

′
3

M1M2M3
N
(M ′

1 M ′
2

M ′
3 0

)
where the summation is over all the

matrices
(M ′

1 M ′
2

M ′
3 0

)
<
(M1 M2

M3 0

)
, and h

M ′
1M

′
2M

′
3

M1M2M3
∈ qZ[q].

The elements Ωq

(M1 M2
M3 0

)
form a basis of the subalgebra generated by the entries of

A,B,C.

Arguments analogous to [6, Theorem 4.3] show that detq A q-commutes with all entries
in C. Hence, in a way similar to the proof of Lemma 4.5, we can show that

Lemma 4.9.

detq AΩq

(
M1 M2
M3 0

)
= qS(M2)+S(M3)Ωq

(
M1 + Im M2

M3 0

)
.

Recall the definition of the matrix D′. We have

Proposition 4.10. The entries of the matrix D′ = (yμ,ν) := D −CA−1B are bar invariant.
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Proof. The entries of D′ are of the form:

xμ,ν −
m∑

k,l=1

(−q2)l−k
xμ,kAlk(detq A)−1xl,ν,

where Alk is the quantum minor obtained from A by deleting the lth row and kth column
which is bar invariant by [20] Lemma 3.3.

Since xμ,ν and (detq A)−1 are bar invariant and (detq A)−1 q-commutes with xμ,k and
xl,ν , we only need to show that

dij :=
m∑

k,l=1

(−q2)l−k
xμ,kAlkxl,ν

is bar invariant. By repeatedly using quantum Laplace expansion, we have

dij = −
m∑

k,l=1

(−q2)k−l
xl,νAlkxμ,k = −

m∑
k,l=1

(−q2)m−l(−q2)m−k
xl,νxμ,kAlk

=
m∑

k,l=1

(−q2)m−k(−q2)m−l
xμ,kxl,νAlk =

m∑
k,l=1

(−q2)m−k(−q2)l−m
xμ,kAlkxl,ν

= dij . �
For any matrix M = ( 0 0

0 M4

) ∈ M, we define the ordered monomials y(M) in the same
way as x(M). The monomials y(M) form a basis of the subalgebra generated by the entries
of the quantum q−1-matrix D′. Using the same method as that in [20], we get a basis of
the subalgebra generated by the entries of D′.

Theorem 4.11. For any matrix
( 0 0

0 M4

) ∈ M, there exists a unique element Ωq−1

( 0 0
0 M4

)
with

the properties:

(1) Ωq−1

( 0 0
0 M4

)= Ωq−1

( 0 0
0 M4

)
,

(2) Ωq−1

( 0 0
0 M4

) = y
( 0 0

0 M4

) + ∑
T4<M4

hT4M4y
( 0 0

0 T4

)
where the coefficients hT4M4 ∈

q−1Z[q−1],

the elements Ωq−1

( 0 0
0 M4

)
form a basis of the subalgebra generated by the entries of D′. In

particular, all the quantum minors of the q−1-matrix D′ are basis elements.

By [20, Proposition 3.6], we have

Proposition 4.12.

detq−1 D′Ωq−1

(
0 0
0 M

)
= Ωq−1

(
0 0
0 M + I

)
.

4 4 n
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Now we proceed to the construction of a basis of Oq(GLm|n). For any a, d ∈ Z, and

M = (M1 M2
M3 M4

) ∈ M, let

Ψ (M;a, d) =
∑
j

cj (M2)cj (M4) −
∑
j

rj (M3)rj (M4) − (a + d)
(
S(M2) + S(M3)

)
,

and define

Na,d(M) := qΨ (M;a,d)(detq A)aΩq

(
M1 M2
M3 0

)
Ωq−1

(
0 0
0 M4

)(
detq D′)d .

Proposition 4.13. The elements

Na,d

(
M1 M2
M3 M4

)

form a basis of the algebra Oq(GLm|n), where a, d ∈ Z, and
(M1 M2

M3 M4

) ∈ M satisfies the
condition that M1 and M4 have at least one zero diagonal entry each.

Proof. It was proved in [13] that the ordered monomials form a basis of the algebra
Oq(Mm|n). Thus the following set of elements

P(M;a, d) := qΨ (M;a,d)(detq A)ax

(
M1 M2
M3 0

)
x

(
0 0
0 M4

)(
detq D′)d

form a basis of Oq(GLm|n), where a, d ∈ Z, and M = (M1 M2
M3 M4

) ∈ M satisfies the condi-

tion that M1 and M4 must have at least one zero diagonal entry each. The order of the
monomials x(M) induces an order on the above basis, where P(M;a, d) � P(M ′;a′, d ′)
if and only if a < a′ or a = a′ and d < d ′ or a = a′, d = d ′ but M � M ′. The element
Na,d

(M1 M2
M3 M4

)
can be written as

Na,d

(
M1 M2
M3 M4

)
= P(M;a, d) + lower terms.

Hence, the statement follows. �
For the construction of a basis, we shall need the following lemma which is derived

directly from the defining relations of the algebra Oq(Mm|n).

Lemma 4.14. For any M ∈ M and a, d ∈ Z,

Na,d(M) = Na,d(M) +
∑

Na′,d′ (T )<Na,d (M)

ca,d,a′,d ′,M,T Na′,d ′(T ),

where ca,d,a′,d ′,M,T ∈ Z[q, q−1].
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Let M0 := {M = (mij ) ∈ M | mii = mμμ = 0 for some i � m, μ � m + 1}. By using
the lemma, we can prove the following theorem, which is one of the main results of this
paper.

Theorem 4.15. There is a unique basis B∗
q of Oq(GLm|n) consisting of elements Ωq,a,d (M)

with M ∈ M0, and a, d ∈ Z, which is determined by the following conditions:

(1) Ωq,a,d (M) = Ωq,a,d (M) for all M .
(2) Ωq,a,d (M) = Na,d(M) + ∑

Na′,d′ (T )<Na,d (M) ha,a′,d,d ′(T ,M)Na′,d ′(T ), where
ha,a′,d,d ′(T ,M) ∈ qZ[q].

Similarly, there is a unique basis of Oq(GLm|n)

B∗
q−1 = {Ωq−1,a,d (M) | M ∈ M0, a, d ∈ Z

}
determined by the following conditions:

(1) Ωq−1,a,d (M) = Ωq−1,a,d (M) for all M .
(2) Ωq−1,a,d (M) = Na,d(M) + ∑

Na′,d′ (T )<Na,d (M) ha,a′,d,d ′(T ,M)Na′,d ′(T ), where

ha,a′,d,d ′(T ,M) ∈ q−1Z[q−1].

We shall refer to both B∗
q and B∗

q−1 as dual canonical bases of Oq(GLm|n). These bases
contain the quantum minors in Theorems 4.4, 4.6 and 4.11 by construction. Furthermore,
we have the following result.

Theorem 4.16. The bases B∗
q and B∗

q−1 are invariant under the multiplication of the quan-
tum Berezinian.

Proof. Actually, we can show that

Na,d(M)Berq = Na+1,d−1(M).

Write M = (M1 M2
M3 M4

)
. Since Berq is central, we have

Na,d

(
M1 M2
M3 M4

)
Berq = qΨ (M;a,d)(detq A)aΩq

(
M1 M2
M3 0

)

× Ωq−1

(
0 0
0 M4

)(
detq−1 D′)dBerq

= qΨ (M;a,d)(detq A)aΩq

(
M1 M2
M3 0

)

× detq A
(
detq−1 D′)−1

Ωq−1

(
0 0
0 M

)(
detq−1 D′)d .
4
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Now, the theorem follows from Lemma 4.9 and Proposition 4.12 and an elementary com-
putation of the power of q . �

Setting the quantum Berezinian to 1, we get the superalgebra Oq(SLm|n) of functions
on the quantum special linear supergroup SLm|n, i.e.

Oq(SLm|n) = Oq(GLm|n)/〈Berq − 1〉,

where 〈Berq − 1〉 is the ideal of Oq(GLm|n) generated by the central element Berq − 1.
Clearly, we get a basis of Oq(SLm|n) indexed by

(
Z

(
Im 0
0 0

)
+ M0

)
∪
(

M0 + Z

(
0 0
0 In

))
.

The resulting bases are called dual canonical bases of Oq(SLm|n).
We have proved that Δ([1, r], [m + n − r + 1,m + n])∗ and Δ([m + n − s + 1,

m + n], [1, s]) are dual canonical basis elements for r, s � min{m,n}. We call these quan-
tum minors covariant quantum minors. The same argument as in [5, Theorem 4.3] shows
that these covariant quantum minors q-commute with all of the generators xij . Further-
more, similar to the proof as in [20, Theorem 5.2], we can show that

Theorem 4.17. The dual canonical basis B∗
q is “invariant” under the multiplication of the

covariant minors in the following sense.

(1) For any dual canonical basis element Ωq,a,d (M) (respectively Ωq−1,a,d (M)) cor-
responding to a matrix M such that the (i,m + n − i) entries are zero for all
i = 1,2, . . . , r ,

Ωq,a,d(M)Δ
([1, r], [m + n − r + 1,m + n])∗(

respectively Ωq−1,a,d (M)Δ
([1, r], [m + n − r + 1,m + n])∗)

is also a dual canonical basis element up to a power of q .
(2) For any dual canonical basis element Ωq,a,d(M) (respectively Ωq−1,a,d (M)) corre-

sponding to a matrix M such that the (m + n − j, j) entries are all zero for all
j = 1,2, . . . , s,

Ωq,a,d (M)Δ
([m + n − s + 1,m + n], [1, s])(

respectively Ωq−1,a,d (M)Δ
([m + n − s + 1,m + n], [1, s]))

is a dual canonical basis element up to a power of q .



1052 H. Zhang, R.B. Zhang / Journal of Algebra 304 (2006) 1026–1058
5. Invariant subalgebras

Under the left and right actions of Uq(g) respectively defined by (2.10) and (2.9), the
entries of the matrix D′ have the following property.

Lemma 5.1. For any μ,ν = m + 1,m + 2, . . . ,m + n and i = 1,2, . . . ,m + n − 1,

Ei.yμ+1,ν = δiμyμ,ν, Fi.yμ,ν = δiμyμ+1,ν ,

yμ,ν .Fj = δj,ν+1yμ,ν−1, yμ,ν.Ej = δjνyμ,ν+1.

Proof. For any μ,ν = m + 1,m + 2, . . . ,m + n,

yμ,ν = xμ,ν −
m∑

k,l=1

xμ,k

(−q2)l−k
Alk(detq A)−1xl,ν .

Using the formula for the coproduct,

Δ(Ei) = Ei ⊗ KiK
−1
i+1 + 1 ⊗ Ei,

Δ(Fi) = Fi ⊗ 1 + K−1
i Ki+1 ⊗ Fi,

we have

Ei.

(
xμ+1,ν −

∑
k,l

xμ+1,k

(−q2)l−k
Alk(detq A)−1xl,ν

)

= δiμ

(
xμ,ν −

∑
k,l

xμ,k

(−q2)l−k
Alk(detq A)−1xl,ν

)
,

Fi .

(
xμ,ν −

∑
k,l

xμ,k

(−q2)l−k
Alk(detq A)−1xl,ν

)

= δiμ

(
xμ+1,ν −

∑
k,l

xμ+1,k

(−q2)l−k
Alk(detq A)−1xl,ν

)
.

The other formulae can be proved similarly. �
Lemma 5.2. For all i,

Ei.detq−1 D′ = detq−1 D′.Fi = 0, Ei.Berq = Berq .Fi = 0.

Proof. It is easy to check that Em.ym+1,ν = 0 for all ν = m+1,m+2, . . . ,m+n. Indeed,
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Em.ym+1,ν = xm,ν −
m∑

k,l=1

xm,k

(−q2)l−k
Alk(detq A)−1xl,ν

= xm,ν − δmlxl,ν = 0,

which implies that Em.detq−1 D′ = 0.
Similarly, we can show that

yμ,m+1.Fm+1,m = 0.

Clearly, Ei.detq−1 D′ = 0 for i � m. If i � m, Ei.detq−1 D′ = 0 is due to the quantum
Laplace expansion. It is known that Ei.detq A = 0 for all i. This together with the formula
Berq = detq A(detq−1 D′)−1 imply that Ei.Berq = 0 for all i.

Similarly, we can show that detq A.Fi = 0,detq−1 D′.Fi = 0,Berq .Fi = 0, for all i. �
We shall employ the dual canonical bases constructed to study invariant subalgebras of

Oq(GLm|n) and Oq(SLm|n) under left and right translations. Any subset S of the generators
{Ei,Fi,K

±1
i | i = 1,2, . . . ,m + n − 1} generates a subalgebra US of Uq(g).

Definition 5.3. LUS Oq(GLm|n) := {f ∈ Oq(SL(n)) | x.f = ε(x)f, ∀x ∈ US}.

It can be easily shown that this is a subalgebra of Oq(GLm|n). It consists of the elements
which are invariant under the left action L of US . As left and right translations commute,
LUS Oq(GLm|n) forms a right Uq(g)-module under R. Thus if T is another subset of the
Chevalley generators and the K±1

i , we can also consider

LUS Oq(GLm|n)RUT := {f ∈ LSOq(GLm|n) | f.x = ε(x)f, ∀x ∈ UT

}
.

Needless to say, this is a subalgebra of LUS Oq(GLm|n). Below we shall consider in some
detail the subalgebras Uq(n+) and Uq(n−) (recall that Uq(n+) (respectively Uq(n−)) is
generated by all the Ei ’s (respectively Fi ’s)).

Denote by Uq(g)0 the subalgebra of Uq(g) generated by all even Chevalley generators
and the Ki ’s. Then

Uq(g)0 ∼= Uq(glm) ⊗ Uq(gln).

Let Uq(p) be the subalgebra generated by all elements of Uq(g)0 and Em. For any inte-

gral dominant weight λ, denote by L
(0)
λ the irreducible right Uq(g)0 module with highest

weight λ. L
(0)
λ can be extended to a right Uq(p)-module by requiring Em to act trivially.

The Kac module is the induced module

K(λ) = Ind
Uq(g)

L
(0)

.
Uq(p) λ
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Since D′ is a q−1-matrix, we can talk about its quantum minors. In particular, we use
detq−1 D′

s to denote the quantum minor of the s × s principal sub-matrix of D′, for s � n.
We have the following observation.

Proposition 5.4. The subalgebra of invariants
LUq (n+)Oq(GLm|n)

RUq (n−) is generated by
Ber±1

q , the quantum minors Δ([1, r], [1, r])∗ for all r = 1,2, . . . ,m, and detq−1 D′
s for all

s = 1,2, . . . , n.

Proof. We can deduce from [25, Theorem 5.2] that

LUq (n+)Oq(GLm|n) ∼=
⊕

λ

K(λ),

where λ ranges over all integral dominant weights. Hence, the subalgebra
LUq (n+)Oq ×

(GLm|n)
RUq (n−) is spanned by the lowest weight vectors of all of the Kac modules. It is

known that the lowest weight of each Kac module is of multiplicity one.
Analogue to the proof of the above lemma, we can see that all these quantum minors

Δ([1, r], [1, r])∗ and detq−1 D′
s are LUq(n+) × RUq(n−) invariants. In the previous section

it was shown that the monomials in the quantum minors Δ([1, r], [1, r])∗, detq−1 D′
s , and

Ber±1
q are linearly independent. Thus in order to prove our claim, we only need to show

that the left weights of these monomials exhaust all of the integral dominant weights.
Note that the left weights of Δ([1, r], [1, r])∗, detq−1 D′

s , and Berq are respectively
given by

(1, . . . ,1︸ ︷︷ ︸
r

,0, . . . ,0 | 0, . . . ,0), (0, . . . ,0 | 1, . . . ,1︸ ︷︷ ︸
s

,0, . . . ,0),

(1, . . . ,1 | −1, . . . ,−1).

Thus the left weights of their monomials indeed exhaust all the integral dominant
weights. �

In the remainder of the paper, we specialize to n = 1 to study invariant subalgebras. To
this end, we need to have more detailed information on 2 × 2 quantum minors. For s ∈ Z+,
we define

[s]q2 = q2s − 1

q2 − 1
,

(
s

r

)
q2

= [s]q2 [s − 1]q2 · · · [s − r + 1]q2

[r]q2 [r − 1]q2 · · · [1]q2
.

For any indices 1 � j < k � m + 1, denote

Mjk := x1j x2k − q2x1kx2j .

The following lemma will be needed to define Kashiwara operators which can be proved
similarly as the proof of [21, Lemma 2.7].
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Lemma 5.5. Assume that i < k � m, j < l � m.

(
xij xkl − q2xilxkj

)s =
s∑

m=0

(−q2)m( s

m

)
q4

q4m(m−s)xs−m
ij xm

il x
m
kj x

s−m
kl ,

(
xij xm+1,m+1 − q2xi,m+1xm+1,j

)s
=

s∑
m=0

(−q2)m( s

m

)
q4

q4m(m−s)xs−m
ij xm

i,m+1x
m
m+1,j x

s−m
m+1,m+1. (5.1)

To define the Kashiwara operators Ẽ1 and F̃1, we need an appropriate basis on which
the actions of the Kashiwara operators are easy to describe.

Proposition 5.6.

(1) There exists a basis of the algebra Oq(GLm|n) consisting of the elements of the form

qlx

(
0 · · · 0 a1r a1,r+1 · · · a1n

a21 · · · a2,r−1 a2r 0 · · · 0

)∏
Mij

∏
i�3,j

x
aij

ij ,

where aij ∈ Z+ for all i, j , and the 2 × 2 quantum minors Mij are of the form
detq({1,2}, {i, j}). The product

∏
Mij of quantum minors is arranged according to

the lexicographic order, namely, Mij � Mst if j > t or j = t and i � s. For given aij ’s
and the 2 × 2 minors Mij , there is a unique choice of integer l redering the following
property satisfied.

(2) The transition matrix between this new basis and the PBW basis consisting of the
modified monomials is of the form:

⎛
⎜⎝

1 · · · qZ[q]
0 1 · · ·
· · · · · · · · ·
0 · · · 1

⎞
⎟⎠ . (5.2)

Note that when examining the actions of Ẽ1 and F̃1 on the new basis, we can ignore the
2 × 2 minors and those xij for i � 3 in the expression of the new basis elements. Now the
Kashiwara operators Ẽ1 and F̃1 for the left action are defined as follows:

Ẽ1

(
x

(
0 0 · · · a1r · · · a1n

a21 a22 · · · a2r · · · 0

))

=
∑

k

q
∑k−1

t=1 2a2t x

(
0 · · · 1 · · · a1r · · · a1n

a21 · · · a2k − 1 · · · a2r · · · 0

)
,

where the summation is over k such that a2k � 1. Also,
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F̃1

(
x

(
0 · · · a1r · · · a1n

a21 · · · a2r · · · 0

))

=
∑

k

q
∑

t>k 2a1t x

(
0 · · · a1r · · · a1k − 1 · · · a1n

a21 · · · a2r · · · 1 · · · 0

)
,

where the summation is over k such that a1k � 1. Similarly, we can define the Kashiwara
operators Ẽi , F̃i for all i = 1,2, . . . ,m + n − 1.

From the definition of Kashiwara operators and the definition of LSOq(G), we can show
easily that

Lemma 5.7. If Ei,Fj ∈ S, then

Ẽi(f ) = 0, F̃j (f ) = 0, ∀f ∈ LSOq(GLm|n),

where Ẽi and F̃j are the Kashiwara operators associated with Ei and Fj .

In the following, we let S be any subset of

{
Ei,Fi,K

±1
i | i = 1,2, . . . ,m + n − 1

}\{Fm},

and consider the subalgebra of invariants with respect to S. We have the following result.

Theorem 5.8. The subalgebra of invariants LSOq(GLm|1) is spanned by a part of the dual
canonical basis B∗

q .

Proof. When n = 1, the entries of the matrix C q-commute with each other and so the
elements Ωq−1

( 0 0
M3 0

) = x
( 0 0

M3 0

)
, for all row vectors M3 form a basis for the subalgebra

generated by entries of C. Furthermore, the basis

{
N

(
M1 M2
M3 0

)
:= q−∑i ci (M1)ci (M3)Ωq

(
M1 M2
0 0

)
Ωq−1

(
0 0

M3 0

)}
,

of the subalgebra generated by the entries of the matrices A, B and C is related to the
basis

{
x
(M1 M2

M3 0

)}
by a transition matrix of the form (5.2). Therefore, the basis elements

Ωq

(M1 M2
M3 0

)
can be expressed as Z[q] combinations of the monomials x

(M ′
1 M ′

2
M ′

3 0

)
.

The matrix D has only one element. Thus the basis
{
Ωq,a,d

(M1 M2
M3 M4

)}
can be constructed

as Z[q] combinations of elements of the monomial basis

q−(a+d)(S(M2)+S(M3))(detq A)ax

(
M1 M2
M3 M4

)(
detq−1 D′)d,

(
M1 M2
M M

)
∈ M, a, d ∈ Z.
3 4
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Now, the same argument as in [21] shows that the subalgebra of invariants is spanned by a
part of the dual canonical basis. �

Now we consider the invariants with respect to the subalgebra Uq(n+) generated by all
E1,E2, . . . ,Em, we deduce that

Theorem 5.9. Any Kac module is spanned by a part of the dual canonical basis.

Proof. By [25, Theorem 5.2],
LUq (n+)Oq(GLm|n) ∼= ⊕λK(λ), where λ range over all inte-

gral dominant weights. Using Theorem 5.8 and consider the left weight space of weight λ,
we get a basis of K(λ). �

In the case of GL1|1, the basis elements are given as:

q(d−a)(b+c)xa
11x

b
12x

c
21

(
x22 + q2x12x

−1
11 x21

)d
,

where a, d ∈ Z and b, c ∈ Z+.
In case of GL2|1, by Theorems 4.16, 4.17 and the computation for GL1|1, we only need

to consider the basis elements parametrized by matrices

(
a 0 0
0 0 1
0 1 0

)
,

where a � 1 which can be computed easily. Applying the left action of Uq(n+), we get the

subalgebra
LUq (n+)Oq(GL2|1) which is spanned by

q−aa21−ba12−a11a12−a11a21−aα−bα+aβ+bβ(detq A)αx
a11
11 x

a12
12 waxb

13x
′
33

β
,

q−2α−a11a12−a11−a12+1+2β(detq A)αx
a11
11 x

a12
12 x13x23x

′
33

β
,

q−a11a12−a12−2α+2β+1(detq A)αx13w
ax′

33
β
,

q−aα−α+βx
a11
11

(
x11x23 − q2x13x21

)a
xb

13,

where a, b = 0,1, aij are nonnegative integers and α,β are integers. Apply the right actions

of RUq(n−), we see that the subalgebra
LUq (n+)Oq(GL2|1)

RUq (n−) is spanned by the following
elements:

qβ−lxl
12w

ax13x
′
33

β
, qbβwaxb

13x
′
33

β
, a, b = 0,1, l � 1,

q2β+1−lxl
12x13x23x

′
33

β
, q−lxl

12x13x
′
33

β
wa.

Remark 5.10. The algebra
LUq (n+)Oq(GL2|1)

RUq (n−) is not finitely generated. Indeed, any
generating set of the algebra should contain the elements xl

12x13 for all l � 1.
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