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a b s t r a c t

This paper is concerned with the existence and uniqueness of a weighted pseudo almost
automorphic mild solution to the semilinear fractional equation: Dα

t u(t) = Au(t) +

Dα−1
t f (t, u(t)), t ∈ R, 1 < α < 2 in complex Banach spaces with Sp-weighted pseudo

almost automorphic coefficients, where A is a linear densely defined operator of sectorial
type on a complex Banach space X. Moreover, we present an application to a fractional
wave equation.
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1. Introduction

Weighted pseudo almost automorphic functions have many applications in several problems for example in the theory
of functional differential equations, integral equations and abstract evolution equations [1]. The concept of weighted pseudo
almost automorphic functions was first introduced by Blot et al. [2]. In [3–6], a new generalization of the concept of almost
automorphic functions was introduced by Chang et al. [7]; such a new concept is called Stepanov-like weighted pseudo
almost automorphic functions, which generalizes the concept of Stepanov-like weighted pseudo almost periodic functions
introduced by Diagana [5] as well as weighted pseudo almost automorphic functions. Very recently, we in [8,9] established
new compositions for Sp-weighted pseudo almost automorphic functions and applications to nonautonomous evolution
equations and integral equations.

In recent years, fractional equations have gained considerable importance due to their applications in various fields of
the science, such as physics, mechanics, chemistry engineering, etc. Significant development has been made in ordinary
and partial differential equations involving fractional derivatives, we refer to the monographs of Kilbas et al. [10,11],
Diethelm [12], Hilfer [13], Podlubny [14], and the Refs. [15–18]. The study of almost automorphic solutions to fractional
differential equation were initiated by Araya and Lizama [19]. In their work, the authors investigated the existence and
uniqueness of an almost automorphic mild solution of the semilinear equation

Dα
t u(t) = Au(t) + f (t, u(t)), t ∈ R, 1 < α < 2, (1.1)

where A is a generator of an α-resolvent family andDt is a Riemann Liouville fractional derivative. In [20] Cuevas and Lizama
considered the following fractional differential equation:

Dα
t u(t) = Au(t) + Dα−1

t f (t, u(t)), t ∈ R, 1 < α < 2, (1.2)
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where A is a linear operator of sectorial negative type on a complex Banach space. Under suitable conditions on f , the
authors proved the existence and uniqueness of an almost automorphic mild solution to (1.2). See also [21], a new and
general existence and uniqueness theoremof almost automorphic solutions is obtained for (1.1)with Sp almost automorphic
coefficients. Recently, Agarwal et al. [22,23] studied the existence and uniqueness of aweighted pseudo almost periodicmild
solution and pseudo almost periodic solutions to the semilinear fractional equation (1.2).

Motivated by the above works, we study in this paper the existence and uniqueness of weighted pseudo almost
automorphic solutions to (1.2) with Sp-weighted pseudo almost automorphic coefficients, where 1 < α < 2, A : D(A) ⊂

X → X is a linear densely defined operator of sectorial type on a complex Banach space (X, ∥ · ∥). The application of the
paper follows the extended results in [22] and can be seen as a contribution to this emerging field.

The work is organized as follows. In Section 2, we recall some definitions, lemmas and preliminary results. In Section 3,
we prove the existence and uniqueness of weighted pseudo almost automorphicmild solutions for the fractional differential
equation (1.2). An example is given in Section 4 to illustrate the results obtained.

2. Preliminaries

In this section, we introduce definitions, notations, lemmas and preliminary facts which are used throughout this work.
In the paper, we assume that (X, ∥ · ∥) and (Y, ∥ · ∥Y) are two Banach spaces. Let BC(R, X) (respectively, BC(R × Y, X))
stands for the class of allX-valued bounded continuous functions fromR intoX (respectively, the class of all jointly bounded
continuous functions from R×Y into X). The space BC(R, X) equippedwith the sup norm defined by ∥f ∥∞ = supt∈R ∥f (t)∥
is a Banach space. The notation B(X, Y) stands for the space of bounded linear operators from X into Y endowed with the
uniform operator topology, and we abbreviate to B(X), whenever X = Y.

Now we give some necessary definitions.
First, let us recall that a closed and linear operator A is said to be sectorial of type ω if there exist 0 < θ < π

2 ,M >
0 and ω ∈ R such that its resolvent exists outside the sector ω + Σθ := {ω + λ : λ ∈ C, | arg(−λ)| < θ} and
∥(λ − A)−1

∥ ≤
M

|λ−ω|
, λ ∉ ω + Σθ . Sectorial operators are well studied in the literature (for more details, see [24–26]).

Definition 2.1 ([22,27]). Let 1 < α < 2. Let A be a closed and linear operator with domain D(A) defined on a Banach
space X. We say that A is the generator of a solution operator if there exists ω ∈ R and a strongly continuous function
Eα : R+ → B(X) such that {λα

: Reλ > ω} ⊂ ρ(A) and λα−1(λα I − A)−1x =


∞

0 e−λtEα(t)xdt, Reλ > ω, x ∈ X.
We note that if A is sectorial of type ω ∈ R with 0 ≤ θ < π(1 −

α
2 ), then A is the generator of a solution operator given

by

Eα(t) :=
1

2π i


ζ

eλtλα−1(λα
− A)−1dλ, t ≥ 0

where ζ is a suitable path lying outside the sector ω + Σθ .

Lemma 2.1 ([28]). Let A : D(A) ⊂ X → X be a sectorial operator in a complex Banach space X. Satisfying hypothesis ω +

Σθ := {ω+λ : λ ∈ C, | arg(−λ)| < θ} and ∥(λ−A)−1
∥ ≤

M
|λ−ω|

, λ ∉ ω+Σθ , for someM > 0, ω < 0 and 0 ≤ θ < π(1−
α
2 ).

Then there exists C > 0 such that

∥Eα(t)∥B(X) ≤
CM

1 + |ω|tα
, t ≥ 0. (2.1)

Definition 2.2 ([29–32]). A continuous function f : R → X is said to be almost automorphic if for every sequence of real
numbers {s′n}n∈N there exists a subsequence {sn}n∈N such that

g(t) := lim
n→∞

f (t + sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t − sn) = f (t)

for each t ∈ R. The collection of all such functions will be denoted by AA(X).

Now, let U denote the set of all functions ρ : R → (0, ∞), which are locally integrable over R such that ρ > 0 almost
everywhere. For a given r > 0 and for each ρ ∈ U, we set m(r, ρ) :=

 r
−r ρ(t)dt .

Thus the space of weights U∞ is defined by

U∞ := {ρ ∈ U : lim
r→∞

m(r, ρ) = ∞}.
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Now for ρ ∈ U∞, we define

PAA0(X, ρ) :=


f ∈ BC(R, X) : lim

r→∞

1
m(r, ρ)

 r

−r
∥f (t)∥ρ(t)dt = 0


;

PAA0(Y, X, ρ) :=


f ∈ C(R × Y, X) : f (·, y) is bounded for each y ∈ Y

and lim
r→∞

1
m(r, ρ)

 r

−r
∥f (t, y)∥ρ(t)dt = 0 uniformly in y ∈ Y


.

Definition 2.3 ([2]). Let ρ ∈ U∞. A function f ∈ BC(R, X) (respectively, f ∈ BC(R × Y, X)) is called weighted pseudo
almost automorphic if it can be expressed as f = g + h, where g ∈ AA(X) (respectively, AA(R × Y, X)) and h ∈ PAA0(X, ρ)
(respectively, PAA0(Y, X, ρ)). We denote byWPAA(X) (respectively,WPAA(R × Y, X)) the set of all such functions.

Lemma 2.2 ([6, Theorem 3.4]). Let ρ ∈ U∞. Suppose that PAA0(X, ρ) is translation invariant. Then the decomposition of
weighted pseudo almost automorphic functions is unique.

Lemma 2.3 ([33, Theorem 2.15]). Let ρ ∈ U∞. If PAA0(X, ρ) is translation invariant, then (WPAA(X), ∥·∥∞) is a Banach space.

Definition 2.4 ([4,34]). The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a function f : R → X is defined by

f b(t, s) := f (t + s).

Definition 2.5 ([4]). The Bochner transform f b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X of a function f : R × X → X is defined by

f b(t, s, u) := f (t + s, u) for each u ∈ X.

Definition 2.6 ([4,34]). Let p ∈ [1, ∞). The space BSp(X) of all Stepanov bounded functions, with the exponent p, consists
of all measurable functions f : R → X such that f b ∈ L∞(R, Lp(0, 1; X)). This is a Banach space with the norm

∥f ∥Sp = ∥f b∥L∞(R,Lp) = sup
t∈R

 t+1

t
∥f (τ )∥pdτ

 1
p

.

Definition 2.7 ([34,35]). The space ASp(X) of Stepanov-like almost automorphic (or Sp-almost automorphic) functions
consists of all f ∈ BSp(X) such that f b ∈ AA(Lp(0, 1; X)). In other words, a function f ∈ Lploc(R, X) is said to be Sp-almost
automorphic if its Bochner transform f b : R → Lp(0, 1; X) is almost automorphic in the sense that for every sequence of
real numbers {s′n}n∈N, there exist a subsequence {sn}n∈N and a function g ∈ Lploc(R, X) such that

lim
n→∞

 t+1

t
∥f (s + sn) − g(s)∥pds

 1
p

= 0 and lim
n→∞

 t+1

t
∥g(s − sn) − f (s)∥pds

 1
p

= 0

pointwise on R.

Definition 2.8 ([34,35]). A function f : R × Y → X, (t, u) → f (t, u) with f (·, u) ∈ Lploc(R, X) for each u ∈ Y, is said to be
Sp-almost automorphic in t ∈ R uniformly in u ∈ Y if t → f (t, u) is Sp-almost automorphic for each u ∈ Y. That means, for
every sequence of real numbers {s′n}n∈N, there exist a subsequence {sn}n∈N and a function g(·, u) ∈ Lploc(R, X) such that

lim
n→∞

 t+1

t
∥f (s + sn, u) − g(s, u)∥pds

 1
p

= 0,

and

lim
n→∞

 t+1

t
∥g(s − sn, u) − f (s, u)∥pds

 1
p

= 0,

pointwise on R and for each u ∈ Y. We denote by ASp(R × Y, X) the set of all such functions.

Definition 2.9 ([7]). Let ρ ∈ U∞. A function f ∈ BSp(X) is said to be Stepanov-like weighted pseudo almost auto-
morphic (or Sp-weighted pseudo almost automorphic) if it can be expressed as f = g + h, where g ∈ ASp(X) and
hb

∈ PAA0(Lp(0, 1; X), ρ). In other words, a function f ∈ Lploc(R, X) is said to be Stepanov-like weighted pseudo almost au-
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tomorphic relatively to the weight ρ ∈ U∞, if its Bochner transform f b : R → Lp(0, 1; X) is weighted pseudo almost
automorphic in the sense that there exist two functions g, h : R → X such that f = g + h, where g ∈ ASp(X) and
hb

∈ PAA0(Lp(0, 1; X), ρ). We denoted by WPAASp(X) the set of all such functions.

Definition 2.10 ([7]). Let ρ ∈ U∞. A function f : R × Y → X, (t, u) → f (t, u) with f (·, u) ∈ Lploc(R, X) for each u ∈ Y,
is said to be Stepanov-like weighted pseudo almost automorphic (or Sp-weighted pseudo almost automorphic) if it can be
expressed as f = g + h, where g ∈ ASp(R × Y, X) and hb

∈ PAA0 (Y, Lp(0, 1; X), ρ). We denoted byWPAASp(R × Y, X) the
set of all such functions.

Remark 2.1. It is clear that if 1 ≤ p < q < ∞ and f ∈ Lqloc(R, X) is Sq-almost automorphic, then f is Sp-almost automorphic.
Also if f ∈ AA(X), then f is Sp-almost automorphic for any 1 ≤ p < ∞.

Lemma 2.4 ([7]). Let ρ ∈ U∞. Assume that PAA0(Lp(0, 1; X), ρ) is translation invariant. Then the decomposition of a Sp-
weighted pseudo almost automorphic function is unique.

Lemma 2.5 ([7]). If f ∈ WPAA(X), then f ∈ WPAASp(X) for each 1 ≤ p < ∞. In other words, WPAA(X) ⊂ WPAASp(X).

Lemma 2.6 ([7]). Let ρ ∈ U∞. The space WPAASp(X) equipped with the norm ∥ · ∥Sp is a Banach space.

Theorem 2.1 ([7]). Let ρ ∈ U∞ and let f = g+h ∈ WPAASp(R×X, X)with g ∈ ASp(R×X, X), hb
∈ PAA0(X, Lp(0, 1; X), ρ).

Assume that the following conditions (i) and (ii) are satisfied:

(i) f (t, x) is Lipschitzian in x ∈ X uniformly in t ∈ R; that is, there exists a constant L > 0 such that

∥f (t, x) − f (t, y)∥ ≤ L∥x − y∥

for all x, y ∈ X and t ∈ R.
(ii) g(t, x) is uniformly continuous in any bounded subset K ′

⊂ X uniformly for t ∈ R.

If u = u1 + u2 ∈ WPAASp(X), with u1 ∈ ASp(X), ub
2 ∈ PAA0(Lp(0, 1; X), ρ) and K = {u1(t) : t ∈ R} is compact, then

Λ : R → X defined by Λ(·) = f (·, u(·)) belongs to WPAASp(X).

Theorem 2.2 ([8]). Let ρ ∈ U∞ and let f = g+h ∈ WPAASp(R×X, X)with g ∈ ASp(R×X, X), hb
∈ PAA0(X, Lp(0, 1; X), ρ).

Assume that the following conditions (i) (ii) and (iii) are satisfied:

(i) there exists a nonnegative function L ∈ BSp(R) with p > 1 such that for all u, v ∈ X and t ∈ R t+1

t
∥f (s, u) − f (s, v)∥pds

 1
p

≤ L(t)∥u − v∥

(ii) ρ ∈ Lqloc(R) satisfies limT→∞ sup T
1
p mq(T ,ρ)

m(T ,ρ)
< ∞.

(iii) g(t, x) is uniformly continuous in any bounded subset K ⊂ X uniformly for t ∈ R.

If u = u1 + u2 ∈ WPAASp(X), with u1 ∈ ASp(X), ub
2 ∈ PAA0(Lp(0, 1; X), ρ) and K = {u1(t) : t ∈ R} is compact, then

Λ : R → X defined by Λ(·) = f (·, u(·)) belongs to WPAASp(X).

Theorem 2.3 ([8]). Let ρ ∈ U∞ and let f : R × X → X be a Sp-weighted pseudo almost automorphic function. suppose that f
satisfies the following conditions :

(i) f (t, x) is uniformly continuous in any bounded subset K ′
⊂ X uniformly for t ∈ R,

(ii) g(t, x) is uniformly continuous in any bounded subset K ′
⊂ X uniformly for t ∈ R.

(iii) For every bounded subset K ′
⊂ X, {f (·, x) : x ∈ K ′

} is bounded in WPAASp(X).

If x = α + β ∈ WPAASp(X), with α ∈ ASp(X), βb
∈ PAA0(Lp(0, 1; X), ρ) and K = {α(t) : t ∈ R} is compact, then defined by

f (·, x(·)) belongs to WPAASp(X).

Now, we recall a useful compactness criterion.
Let h : R → R be a continuous function such that h(t) ≥ 1 for all t ∈ R and h(t) → ∞ as |t| → ∞. We consider the

space

Ch(X) =


u ∈ C(R, X) : lim

|t|→∞

u(t)
h(t)

= 0


.

Endowed with the norm ∥u∥h = supt∈R
∥u(t)∥
h(t) , it is a Banach space (see [36]).
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Lemma 2.7 ([36]). A subset R ⊆ Ch(X) is a relatively compact set if it verifies the following conditions:

(c-1) The set R(t) = {u(t) : u ∈ R} is relatively compact in X for each t ∈ R.
(c-2) The set R is equicontinuous.
(c-3) For each ϵ > 0 there exists L > 0 such that ∥u(t)∥ ≤ ϵh(t) for all u ∈ R and all |t| > L.

Lemma 2.8 ([37]Leray–Schauder Alternative Theorem). Let D be a closed convex subset of a Banach space X such that 0 ∈ D.
Let F : D → D be a completely continuous map. Then the set {x ∈ D : x = λF(x), 0 < λ < 1} is unbounded or the map F has a
fixed point in D.

3. Weighted pseudo almost automorphic mild solutions

Before starting our main results in this subsection, we recall the definition of the mild solution to Eq. (1.2).

Definition 3.1 ([22]). Assume that A generates an integrable solution operator Eα(t). A continuous function u : R → X
satisfying the integral equation

u(t) =

 t

−∞

Eα(t − s)f (s, u(s))ds, t ∈ R (3.1)

is called a mild solution on R to Eq. (1.2).

We make the following assumption:

(H1) A is a sectorial operator of type ω < 0.
(H2) f ∈ WPAASp(R × X, X), there exists a constant Lf > 0, such that

∥f (t, x) − f (t, y)∥ ≤ Lf ∥x − y∥

for all t ∈ R and each x, y ∈ X.
(H3) f ∈ WPAASp(R × X, X), there exists a nonnegative function Lf (·) ∈ BSp(R), with p > 1 such that

∥f (t, x) − f (t, y)∥ ≤ Lf (t)∥x − y∥

for all t ∈ R and each x, y ∈ X.
(H4) Let ρ ∈ Lqloc(R) satisfies

lim
T→∞

T
1
p mq(T , ρ)

m(T , ρ)
< ∞,

where 1
p +

1
q = 1 and mq(T , ρ) = (

 T
−T ρq(t)dt)

1
q .

(H5) the function f = g +h ∈ WPAASp(R×X, X)where g ∈ ASp(R×X, X) is uniformly continuous in any bounded subset
M ⊂ X uniformly in t ∈ R and hb

∈ PAA0(X, Lp(0, 1; X), ρ).

Lemma 3.1. Let S(t)t≥0 ⊂ B(X) be a strongly continuous family of bounded and linear operators such that

∥S(t)∥ ≤ ϖ(t), t ∈ R+,

where ϖ ∈ L1(R+) is nonincreasing. Then, for each f ∈ ASp(X), t

−∞

S(t − s)f (s)ds ∈ AA(X).

Proof. Let p = 1. The conclusion was given in [21, lemma 2.2]. Let p > 1. It follows from Remark 2.1 that f ∈ AS1(X). This
completes the proof. �

Lemma 3.2. Let ρ ∈ U∞. Let also f = g + h ∈ WPAASp(X, ρ) with g ∈ ASp(R, X) and hb
∈ PAA0(X, Lp(0, 1; X), ρ). Then

F(t) :=
 t
−∞

Eα(t − s)f (s)ds ∈ WPAA(X, ρ).

Proof. Let F(t) = G(t) + H(t) where

G(t) :=

 t

−∞

Eα(t − s)g(s)ds H(t) :=

 t

−∞

Eα(t − s)h(s)ds.

By (2.1), we have

∥Eα(t)∥B(X) ≤
CM

1 + |ω|tα
, t ≥ 0
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since 1 < α < 1, CM
(1+|ω|tα)

∈ L1(R+) and is nonincreasing. So Lemma 3.1 yields that G(t) ∈ AA(X). Finally, we prove that
H(t) ∈ PAA0(X, ρ).

H(t) =

 t

−∞

Eα(t − s)h(s)ds

=


∞

0
Eα(s)h(t − s)ds.

Now, we consider for each n = 0, 1, . . . , the integrals

Hn(t) =

 t−n

t−n−1
Eα(t − σ)h(σ )dσ .

∥Hn(t)∥ ≤

 t−n

t−n−1
∥Eα(t − σ)h(σ )∥dσ

≤

 n+1

n

CM
(1 + |ω|σ α)

∥h(t − σ)∥dσ

≤
CM

(1 + |ω|nα)

 n+1

n
∥h(t − σ)∥pdσ

 1
p

.

Then, for r > 0, we see that

1
m(r, ρ)

 r

−r
∥Hn(t)∥ρ(t)dt ≤

CM
(1 + |ω|nα)

1
m(r, ρ)

 r

−r

 n+1

n
∥h(t − τ)∥pdτ

 1
p

ρ(t)dt.

Using the fact that the space PAA0(X, ρ) is translation invariant, it follows that t → h(t − σ) belongs to PAA0(X, ρ). The
above inequality leads to Hn(t) ∈ PAA0(X, ρ) for each n = 0, 1, . . .. The last estimation also leads to

∥Hn(t)∥ ≤
CM

(1 + |ω|nα)
∥h∥Sp .

Notice that
∞
n=0

CM
(1 + |ω|nα)

≤


CM +

∞
n=1

 n

n−1

CM
(1 + |ω|sα)

ds



≤ CM +


∞

0

CM
(1 + |ω|sα)

ds

≤ CM


1 +

|ω|
−

1
α π

α sin


π
α

 < ∞.

Then, we deduce from the Weierstrass test that the series


∞

n=0 Hn(t) is uniformly convergent on R. Moreover,

H(t) =

 t

−∞

Eα(t − s)h(s)ds =

∞
n=0

Hn(t).

Clearly, H(t) ∈ C(R, X) and

∥H(t)∥ ≤

∞
n=0

∥Hn(t)∥ ≤ CM


1 +

|ω|
−

1
α π

α sin


π
α

 ∥h∥Sp .

Applying Hn(t) ∈ PAA0(X, ρ) and the inequality

1
m(r, ρ)

 r

−r
∥H(t)∥ρ(t)dt ≤

1
m(r, ρ)

 r

−r

H(t) −

n
k=0

Hk(t)

 ρ(t)dt

+

n
k=0

1
m(r, ρ)

 r

−r
∥Hk(t)∥ρ(t)dt,

we deduce that the uniform limit H(·) =


∞

n=0 Hn(t) ∈ PAA0(X, ρ). Therefore, F(t) = G(t) + H(t) is weighted pseudo
almost automorphic. �
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Theorem 3.1. Let ρ ∈ U∞. Assume that (H1), (H2) and (H5) hold. Then (1.2) has a uniquemild solution inWPAA(X, ρ) provided

CM|ω|
−

1
α πLf < α sin

π

α


. (3.2)

Proof. Consider the operator Q : WPAA(X, ρ) → WPAA(X, ρ) such that

(Qu)(t) :=

 t

−∞

Eα(t − s)f (s, u(s))ds, t ∈ R.

First let us prove that Q (WPAA(X, ρ)) ⊂ WPAA(X, ρ). For each u ∈ WPAA(X, ρ), by using the fact that the range of
almost automorphic functions is relatively compact with Lemma 2.5 and Theorem 2.1 one can easily see that f (·, u(·)) ∈

WPAASp(X, ρ). Hence from the proof of Lemma 3.2, we know that (Qu)(·) ∈ WPAA(X, ρ). That is Q maps WPAA(X, ρ) into
WPAA(X, ρ).

Now if u, v ∈ WPAA(X, ρ), using (2.1) and (H2), we have

∥(Qu)(t) − (Qv)(t)∥∞ = sup
t∈R

 t

−∞

Eα(t − s)[f (s, u(s)) − f (s, v(s))]ds


≤ Lf sup
t∈R


∞

0
∥Eα(s)∥B(X)∥u(t − s) − v(t − s)∥ds

≤ Lf ∥u − v∥∞CM


∞

0

1
(1 + |ω|sα)

ds


≤
CMLf |ω|

−
1
α π

α sin


π
α

 ∥u − v∥∞.

This proves that Q is a contraction, so by the Banach fixed point theorem Q has a unique fixed point, which gives rise to a
unique u ∈ WPAA(X, ρ). This completes the proof. �

A different Lipschitz condition is considered in the following result.

Theorem 3.2. Let ρ ∈ U∞. Assume that (H1), (H3), (H4) and (H5) are satisfied. Then (1.2) has a unique mild solution in
WPAA(X, ρ) whenever

∥Lf ∥SpCM


1 +

|ω|
−

1
α π

α sin


π
α

 < 1. (3.3)

Proof. Consider the nonlinear operator Q given by

(Qu)(t) :=

 t

−∞

Eα(t − s)f (s, u(s))ds, t ∈ R.

Let u ∈ WPAA(X, ρ), with Lemma 2.5 and Theorem 2.2, it follows that the function s → f (s, u(s)) is in WPAASp(R, X).
Moreover from Lemma 3.2 we infer that Qu ∈ WPAA(X, ρ). That is Q maps WPAA(X, ρ) into itself. Next, we prove that the
operator Q has a unique fixed point inWPAA(X, ρ). For each t ∈ R, u, v ∈ WPAA(X, ρ), we have

∥(Qu)(t) − (Qv)(t)∥ =

 t

−∞

Eα(t − s)[f (s, u(s)) − f (s, v(s))]ds


≤

 t

−∞

∥Eα(t − s)∥B(X)∥f (s, u(s)) − f (s, v(s))∥ds

≤

 t

−∞

CM
1 + |ω|(t − s)α

(Lf (s)∥u(s) − v(s)∥)ds

≤


∞

0

CM
1 + |ω|sα

Lf (t − s) ∥ ds∥u − v∥∞

=

∞
k=0

 k+1

k

CM
1 + |ω|sα

Lf (t − s)ds∥u − v∥∞

≤

∞
k=0

CM
1 + |ω|kα

 k+1

k
Lf (t − s)ds∥u − v∥∞
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≤

∞
k=0

CM
1 + |ω|kα

 t−k

t−k−1
∥Lf (s)∥pds

 1
p

∥u − v∥∞

≤

∞
k=0

CM
1 + |ω|kα

∥Lf ∥Sp∥u − v∥∞

≤


CM +

∞
k=1

 k

k−1

CM
1 + |ω|sα

ds


∥Lf ∥Sp∥u − v∥∞

=


CM +


∞

0

CM
1 + |ω|sα

ds


∥Lf ∥Sp∥u − v∥∞

= CM


1 +

|ω|
−

1
α π

α sin


π
α

 ∥Lf ∥Sp∥u − v∥∞.

Which gives

∥(Qu) − (Qv)∥∞ ≤ CM


1 +

|ω|
−

1
α π

α sin


π
α

 ∥Lf ∥Sp∥u − v∥∞.

In view of (3.3), Q is a contraction mapping. On the other hand, it is well know thatWPAA(X, ρ) is a Banach space under the
supremum norm. Thus, Q has a unique fixed point u ∈ WPAA(X, ρ), which satisfies

u(t) =

 t

−∞

Eα(t − s) (f (s, u(s)))ds,

for all t ∈ R. Thus Eq. (1.2) has a unique weighted pseudo almost automorphic mild solution. �

We next study the existence of weighted pseudo almost automorphic mild solutions of Eq. (1.2) when the perturbation
f is not Lipschitz continuous. For that, we require the following assumptions:

(H6) f ∈ WPAASp(R × X, X) and f (t, x) is uniformly continuous in any bounded subsetM ⊂ X uniformly for t ∈ R and for
every bounded subsetM ⊂ X, {f (·, x) : x ∈ M} is bounded in WPAASp(X).

(H7) There exists a continuous nondecreasing functionW : [0, ∞) → (0, ∞) such that

∥f (t, x)∥ ≤ W (∥x∥) for all t ∈ R and x ∈ X.

The following existence result is based upon the nonlinear Leray–Schauder alternative theorem. It corresponds to an
extension of [22, Theorem 3.3].

Theorem 3.3. Let ρ ∈ U∞. Assume that A is sectorial of type ω < 0. Let f : R × X → X be a function that satisfies
assumptions (H5)– (H7), and the following additional conditions:

(i) For each z ≥ 0,

lim
|t|→∞

1
h(t)

 t

−∞

W (zh(s))
1 + |ω|(t − s)α

ds = 0,

where h is the function given in Lemma 2.7.
We set

β(z) = CM
 t

−∞

W (zh(s))
1 + |ω|(t − s)α

ds

h
,

where C and M are the constants given in (2.1).
(ii) For each ϵ > 0 there is δ > 0 such that for every u, v ∈ Ch(X), ∥u − v∥h ≤ δ implies that t

−∞

∥f (s, u(s)) − f (s, v(s))∥
1 + |ω|(t − s)α

ds ≤ ϵ,

for all t ∈ R.
(iii) lim infξ→∞

ξ

β(ξ)
> 1.

(iv) For all a, b ∈ R, a < b, and z > 0, the set {f (s, h(s)x) : a ≤ s ≤ b, x ∈ Ch(X), ∥x∥h ≤ z} is relatively compact in X.

then Eq. (1.2) has a weighted pseudo almost automorphic mild solution.
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Proof. We define the nonlinear operator Q : Ch(X) → Ch(X) by

(Qu)(t) :=

 t

−∞

Eα(t − s)f (s, u(s))ds, t ∈ R.

We will show that Q has a fixed point inWPAA(X, ρ). For the sake of convenience, we divide the proof into several steps.

(I) For u ∈ Ch(X), we have that

∥(Qu)(t)∥
h(t)

≤
CM
h(t)

 t

−∞

W (∥u∥hh(s))
1 + |ω|(t − s)α

ds.

It follows from condition (i) that Q is well defined.
(II) The operator Q is continuous. In fact, for any ϵ > 0, we take δ > 0 involved in condition (ii). If u, v ∈ Ch(X) and

∥u − v∥h ≤ δ, then

∥(Qu)(t) − (Qv)(t)∥ ≤ CM
 t

−∞

∥f (s, u(s)) − f (s, v(s))∥
1 + |ω|(t − s)α

ds ≤ ϵ,

which shows the assertion.
(III) Wewill show thatQ is completely continuous.We set Bz(X) for the closed ball with center at 0 and radius z in the space

X. Let V = Q (Bz(Ch(X))) and v = Q (u) for u ∈ Bz(Ch(X)). First, we will prove that V (t) is a relatively compact subset
of X for each t ∈ R. It follows from condition (i) that for ϵ > 0, we can choose a ≥ 0 such that CM


∞

a
W (zh(t−s))
1+|ω|sα ds ≤ ϵ.

Since

v(t) =

 a

0
Eα(s)f (t − s, u(t − s))ds +


∞

a
Eα(s)f (t − s, u(t − s))ds

and  ∞

a
Eα(s)f (t − s, u(t − s))ds

 ≤ CM


∞

a

W (zh(t − s))
1 + |ω|sα

ds ≤ ϵ,

we get v(t) ∈ ac0(N)+Bε(X), where c0(N) denotes the convex hull ofN andN = {Eα(s)f (ξ , h(ξ)x) : 0 ≤ s ≤ a, t−a ≤

ξ ≤ t, ∥x∥h ≤ z}. Using the strong continuity of Eα(·) and property (iv) of f , we infer that N is a relatively compact set,
and V (t) ⊆ ac0(N) + Bε(X), which establishes our assertion.

Second, we show that the set V is equicontinuous. In fact, we can decompose

v(t + s) − v(t) =

 s

0
Eα(σ )f (t + s − σ , u(t + s − σ))dσ

+

 a

0
[Eα(σ + s) − Eα(σ )]f (t − σ , u(t − σ))dσ

+


∞

a
[Eα(σ + s) − Eα(σ )]f (t − σ , u(t − σ))dσ .

For each ϵ > 0, we can choose a > 0 and δ1 > 0 such that s

0
Eα(σ )f (t + s − σ , u(t + s − σ))dσ +


∞

a
[Eα(σ + s) − Eα(σ )]f (t − σ , u(t − σ))dσ


≤ CM

 s

0

W (zh(t + s − σ))

1 + |ω|σ α
dσ + 2


∞

a

W (zh(t − σ))

1 + |ω|σ α
dσ


≤
ϵ

2
,

for s ≤ δ1. Moreover, since {f (t − σ , u(t − σ)) : 0 ≤ σ ≤ a, u ∈ Bz(Ch(X))} is a relatively compact set and Eα(·)
is strongly continuous, we can choose δ2 > 0 such that ∥[Eα(σ + s) − Eα(σ )]f (t − σ , u(t − σ))∥ ≤

ϵ
2a for s ≤ δ2.

Combining these estimates, we get ∥v(t + s) − v(t)∥ ≤ ϵ for s small enough and independent of u ∈ Bz(Ch(X)).

Finally, applying condition (i), we can see that

∥v(t)∥
h(t)

≤
CM
h(t)

 t

−∞

W (∥u∥hh(s))
1 + |ω|(t − s)α

ds → 0, |t| → ∞,

and this convergence is independent of u ∈ Bz(Ch(X)). Hence, by Lemma 2.7, V is a relatively compact set in (Ch(X)).
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(IV) Let us show assume that uλ(·) is a solution of equation uλ
= λQ (uλ) for some 0 < λ < 1. We can estimate

∥uλ(t)∥ = λ

 t

−∞

Eα(t − s)f (s, uλ(s))ds


≤ CM
 t

−∞

W (∥uλ
∥hh(s))

1 + |ω|(t − s)α
ds

≤ β(∥uλ
∥h)h(t).

Hence, we get

∥uλ
∥h

β(∥uλ∥h)
≤ 1

and combining with condition (iii), we conclude that the set {uλ
: uλ

= λQ (uλ), λ ∈ (0, 1)} is bounded.
(V) It follows from Lemma 2.5, (H5)–(H6) and Theorem 2.3 that the function t → f (t, x(t)) belongs to WPAASp(R, X),

whenever x ∈ WPAA(X, ρ). Moreover, from Lemma 3.2 we infer that Q (WPAA(X, ρ)) ⊂ WPAA(X, ρ) and noting that
WPAA(X, ρ) is a closed subspace of Ch(X), consequently, we can consider Q : WPAA(X, ρ) → WPAA(X, ρ). Using
proposition (I)–(III), we deduce that this map is completely continuous. Applying Lemma 2.8, we infer that Q has a
fixed point x ∈ WPAA(X, ρ), which completes the proof. �

4. Application

To illustrate Theorem 3.1 we consider the following fractional differential equation given by:

∂α
t u(t, x) = ∂2

x u(t, x) − µu(t, x) + ∂α−1
t


βu(t, x)


sin

1
2 + cos t + cosπ t


+ βe−|t| sin(u(t, x))


, (4.1)

t ∈ R, x ∈ [0, π],
with boundary conditions

u(t, 0) = (t, π) = 0, t ∈ R.

Let (X, ∥ · ∥X) = (L2([0, π]), ∥ · ∥2) and the operator A defined on X by Au = u′
− µu, (µ > 0) with domain

D(A) = {u ∈ X : u′
∈ X, u(0) = u(π) = 0}.

It is well known that△u = u′ is the infinitesimal generator of an analytic semigroup on L2[0, π]. Hence, A is sectorial of type
ω = −µ < 0. Eq. (4.1) can be formulated by the inhomogeneous problem (1.2), where u(t) = u(t, ·). Let us consider the
nonlinearity f (t, φ)(s) = βφ(s) sin 1

2+cos t+cosπ t + βe−|t| sin(φ(s)) = g(t, φ)(s) + h(t, φ)(s), for all φ ∈ X, t ∈ R, s ∈ [0, π]

and β ∈ R. By [34, Example 2.3], sin 1
2+cos t+cosπ t ∈ AS2(R). Then g ∈ AS2(R × X, X). Let h1(t) = e−|t|, one can easily

check that hb
1(t) belongs to PAA0(X, Lp(0, 1; X), ρ). Consequently, f is Sp-weighted pseudo almost automorphic function

with weight ρ(t) = 1 + t2 for t ∈ R. Assume that |β| <
α sin( π

α )

3CM|µ|
−

1
α π

, then, by Theorem 3.1, Eq. (4.1) has a unique weighted

pseudo almost automorphic solution.
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