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1. Introduction

Magnetic moment of baryons is one of the most important
quantities in investigation of baryons’ electromagnetic structure,
and can provide essential information about the dynamics of the
strong interaction at low energies. The magnetic moments of the
octet baryons have already been calculated in various theoretical
approaches. These calculations have the privilege that they can be
checked against available precise experimental data. Additionally,
the study of the A — =9 transition magnetic moment can play a
critical role in investigation of the properties of the octet baryons.

In recent years the study of the negative parity baryons has
become one of the most promising direction taken in connection
with experiments conducted and planned at Jefferson Lab [1], and
Mainz Microtron facility (MAMI) [2,3]. The magnetic moments of
N* are planned to be measured at MAMI [3,4]. In the present work
we calculate the transition magnetic moment between the nega-
tive parity A* and £% baryons within the QCD sum rules method
(LCSR) (here and in further discussions, we denote the negative
parity baryons as B*). This method is based on operator prod-
uct expansion (OPE) near light cone. The OPE is performed over
the twist of operators rather than dimension, which is the case
in the traditional QCD sum rules method. In this version all non-
perturbative dynamics is encoded in light cone distribution ampli-
tudes. These amplitudes appear when the matrix elements of the
nonlocal operators are sandwiched between the vacuum and one-
particle states (for the details of the LCSR, see [5]). The magnetic
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moment of the A — =0 transition for the positive parity baryons
has already been calculated in framework of the traditional QCD
sum rules [6], the external field method in the traditional QCD
sum rules [7], and in the light cone version of the QCD sum rules
method [8]. Note that the magnetic moments of the negative par-
ity octet baryons, J© = 3% heavy baryons, as well as diagonal and
transition magnetic moments of negative party heavy baryons are
calculated within the same framework in [9,10] and [11], respec-
tively.

The work is arranged as follows. In section 2 the LCSR for the
magnetic moment of the A* — £0* transition is derived. In sec-
tion 3 we numerically analyze these LCSR obtained for the tran-
sition magnetic moment. This section also contains concluding re-
marks.

2. Light cone QCD sum rules for the magnetic moment of the
A* — X% transition

The A* — =% transition magnetic moment can be calculated
by considering the following correlation function,

I, (p,q) =—/d4x/d4yei(PX+qy)
< (o[t {nee @i iaw}|o) . 0

where 150 and 1, are the interpolating currents of the %° and A
baryons,. respectively, jﬁ =eqqyuq is Fhe electromagnetic currgnt,
and eq is the electric charge of the light quarks. The correlation
function can be written in a more convenient form by introducing
the plane wave electromagnetic background field,
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which allows us to put the correlation function in the following
form,

I, e" :i/d4xeip"(0‘T{r)zo(O)T_]A(X)H0>F ) (2)

where subscript F means that the vacuum expectation value is
evaluated in presence of the background field F,,. The correla-
tion function (1) can be obtained from Eq. (2) by expanding it in
powers of the background field and keeping only those terms that
are linear in Fj,, corresponding to the photon radiation. The de-
tails of this procedure can be found in [12] (for a review about
the background field method we refer the interested reader to an
excellent work [13]).

According to the QCD sum rules strategy, the correlation func-
tion (1) is calculated in two different kinematical region. Firstly, on
the phenomenological side, the calculation is carried out by satu-
rating a tower of hadronic intermediate states carrying the same

quantum numbers as the interpolating current, where p? ~ m%o,

and (p + q)> ~m3. Secondly, on the QCD side, the same corre-
lation function is expanded in terms of the photon distribution
amplitudes (DAs) with increasing twist. The QCD sum rules are
constructed by matching these two representations. It follows from
Egs. (1) and (2) that the interpolating currents are needed in cal-
culation of the correlation function which are constructed from the
quark fields with the same quantum numbers of the correspond-
ing baryon. The general forms of the interpolating currents of A
and =0 baryons are given as [14]:

A = 2\/2 “”C{z(u“TCd”)yss + @ Cs?)ysde — (@7 Csbyysuc
+ 2B T Cysd)st + BT Cyss)d — BT Cyssiuc
Nyo = ﬁsabc{(uaTCsb)ysdc + (dTCsPyysuf
+ BT CyssPyde + ﬁ(d“TCJ/ss”)uC] , (3)

where a, b, ¢ are the color indices, C is the charge conjugation op-
erator, superscript T denotes the transpose operator, and B is an
arbitrary parameter with 8 = —1 corresponding to the so-called
loffe current.

Firstly we shall calculate the phenomenological part of the cor-
relation function given in Eq. (1). Saturating the interpolating cur-
rent with the intermediate hadronic states having the same quan-
tum number as the interpolating currents, and isolating the ground
state contributions we get,

0 0
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where superscript * represents it is a negative parity baryon, and
dots describe the contributions of higher states which carry the
same quantum numbers as the ground state. The matrix elements
in Eq. (4) are determined in the following way:

(0Inl B(p)) = Apu(p) ,
(ol B*(P)) = Ap+ysu(p) ,
_ i . oq”
=eu(p2) _fqu—IMfz}u(Pl),
(B3 || B3 (A0))
N oy
=eu(p2)| f; Vu—lmfz}u(m)
(B3 (2 || B1p1)
_ i . oq”
= eii(p2) _flTVu — lmf{}ysu(m) : (5)

Substituting these matrix elements into Eq. (4), and performing
summation over the spins of the baryons we get,

Myet = A (P2 +myxo) ¢ (B1 +my)
+ B’ (P2 — myo.) ¢ (p1 — M)
+C' (P2 —myo:) ¢ (B1 +myp)
+ D' (P2 +mxo) ¢ (B1 — mpr)

+ other structures , (6)
where
/ AzO(ﬂ)/\A(ﬂ)
A= +
(mz sy (f f2),
B KzO*(ﬂ)kA*(ﬂ) G

(m%o, — p3)(m%. — p?)
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+ mzo* — MmMa fT
mEO* +mA 2 ’

Axo(B)An(B) Mpx — Mo
Di=-—s = 22 2 fl+ = f) (7)

(mzo - pz)(mA* - Pl) Mpx +Mgo
Among the terms in Eq. (5) fi+ fa, fi + f5, f] + 2:2 22 IER

T mA*fm):o
and f; + TyeE=es

describe the magnetic moments of the positive-to-positive and
negative-to-negative parity baryon transitions, while the third and
last ones correspond to the transition magnetic moments between
positive and negative parity baryons. In the present work our goal
is to calculate the magnetic moment between the negative par-
ity A* and £* baryons, and therefore the contributions of other
three terms should be removed. In order to determine the afore-
mentioned magnetic moment four equations are needed, since we
have four unknown magnetic moments.

In constructing these four equations we need four Lorentz
structures. In the present work we choose the following structures
bEd, bE, £, £, and denote the corresponding invariant functions

sz that are proportional to y,, the first two
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as Iy, Iy, M3 and Il4, respectively, on the QCD side of the cor-
relation function. The result for the correlation function from the
QCD side is obtained from Eq. (2) by using the general form of the
interpolating currents given in Eq. (3). It should be noted here that
taking into account contributions of all four matrix elements to
the magnetic moment of A*-X% transition may give considerable
uncertainty in the final result.

The sum rules for the A* — £ transition is derived by equat-
ing the coefficients of the structures p¢f, bg, £4, £ of the correla-
tion from the phenomenological and QCD side, and perform double
Borel transformation over the variables p% =(p+¢q)? and p% =p?,
and then solve the system of algebraic equations. After carrying
out these steps of calculations we get the following expression for
the magnetic moment of the A* — £ transition,

2
ey 0x /M2

)\.A*)\,Zo* (m):o + sz*)(méo + 3m220*)

Hops s 505 =

X [I:mgo(m):o - m):o*) - 2m§:0*:|1—113

— 2myo (Mo + Myo) 15 — (Mgo — 3mso) 15

_mEO(mEO +m20*)ng} 5 (8)

where we have used M? — M% =2M? and mx ~myo, M = Myo..
The residues A+ and Ayo- are calculated in [9].

The expressions of the invariant functions Hf appearing in
Eq. (8) are presented in the Appendix.

Here, few remarks about the calculation of the correlation func-
tion from the QCD side are in order. This correlation function
contains three different contributions. a) Perturbative part, which
corresponds to the case when photon interacts with quarks per-
turbatively, and all propagators of the free quarks are considered.
b) Mixed part which corresponds to the case when photon inter-
acts with quarks perturbatively, and at least one quark propagator
is replaced by the corresponding condensates. c) Nonperturbative
part. In this case photon interacts with the quarks at long distance.
The expansion of the quark operators up to twist four is calcu-
lated in [15], which receives contributions from the two-particle
qq, three-particle qGq, and four-particle gGGq, gqqq nonlocal op-
erators, where G is the gluon field strength tensor. In the present
work we consider contribution coming from the two-particle qgq,
three-particle gGq operators. The contributions coming from the
four-particle nonlocal operators are negligible, which is justified on
the basis of an expansion in conformal spin (for the details about
this issue, see [15]). Therefore, the long distance contributions are
described by the matrix elements of the two or three-particle non-
local operators between the vacuum and one-photon states, i.e.,

(V(Q) |C_1Fi (leri) Q| 0) )

where TI'; are the relevant Dirac matrices. These matrix elements
are parametrized in terms of the photon DAs. The definition of the
above-mentioned matrix elements in terms of the photon DAs, as
well as the explicit expressions of the photon DAs can be found in
[12].

3. Numerical results

This section is devoted to the numerical analysis of the sum
rules obtained for the A-X° transition magnetic moment of
the negative parity baryons. The values of the input parame-
ters entering to the sum rules are: (uu)(1 GeV) = (dd)(1 GeV) =
—(0.243)3 GeV3, (5s)(1 GeV) = 0.8(uu)(1 GeV), m3 = (0.8 £
0.2) GeV? [16], A = (0.5+0.1) GeV [17], f3y =—0.039 [12]. The
value of the magnetic susceptibility is determined from the QCD

sum rules analysis as x (1 GeV) = —(2.85+0.5) GeV~2 [18], and
ms(2 GeV) = (111 £ 6) MeV [19]. Also, the expressions of the pho-
ton DAs, which are the main ingredients of the LCSR, are presented
in [12].

As has already been noted, the sum rules for the magnetic mo-
ment of the A*-X% transition contain three auxiliary parameters,
namely, the Borel mass parameter M2, the parameter S that en-
ters to the expression of the interpolating current, and the contin-
uum threshold sq. It is clear that the transition magnetic moment
should be independent of them. For this reason we must find such
regions of these parameters where this condition is satisfied. This
can be achieved with the help of the following three-step analysis.
At the first stage, we try to find the “working region” of the Borel
mass parameter M2 at the fixed values of sg and g, where the
magnetic moment exhibits good stability under its variation. The
upper bound of M? is determined by requiring that, the higher
states and continuum contributions are less than 40-50% of the
contributions coming from the perturbative part. The lower bound
of M? is obtained from the condition that, higher twist contribu-
tions should be less than that of the leading twist contributions.
Our numerical analysis shows that, if M2 varies in the domain
1.6 GeV? < M? < 3.0 GeV? both aforementioned conditions are
satisfied. This region is also obtained in [9], in analysis of the di-
agonal transition magnetic moments of the A* and £% baryons.
In Fig. 1 dependence of the transition magnetic moment /L px_, 5.0«
on the Borel mass parameter M? is presented at four different val-
ues of the auxiliary parameter 8 = —5; —3; —1; 1, and at two fixed
values of the continuum threshold so = 4.4; 4.8 GeVZ. It follows
from this analysis that the transition magnetic moment i p_, yo-
exhibits good stability to the variation of M?2.

The second arbitrary parameter of the sum rules is the contin-
uum threshold sg. This parameter is related to the energy of the
first state. Analysis of the various sum rules shows that the en-
ergy difference between the first and ground states ranges from
0.3 GeV to 0.8 GeV. In our calculations we use the average value
/50 = [Mground +0.4(0.5)] GeV, where mgroung is the mass of the
ground state baryon.

In Fig. 2 we present the dependence of the transition magnetic
moment [ «_, w0« on the continuum threshold s, at four different
values of the auxiliary parameter 8 = —5; —3; —1; 1, and at two
fixed values of the Borel parameter M2 = 2.4;3.0 GeV2. We ob-
serve that the transition magnetic moment ft y«_, yo- demonstrates
rather good stability to the variations in sg.

The final step in our analysis is to find the working region of 3,
which varies in the domain —co < 8 < oco. It is more convenient
and practical to map this infinitely large region into a more re-
stricted domain by introducing tané = 8, where 6 runs in the
domain —mr /2 <6 < 7 /2. Using this relation one can show that,

1

Neeyzh

and it is much more convenient drawing the transition magnetic
moment as a function of cos®, instead of on the auxiliary param-
eter B; and still carries the same information. In Fig. 3 we present
the dependence of the transition magnetic moment [t «_, o« ON
cos#, at the fixed value of the continuum threshold sg = 4.4 GeV?,
at three fixed values of the Borel mass, namely, M2 = 1.8 GeV?,
M? =2.4 GeV?, and M? = 3.0 GeV? which lie in the “working re-
gion” of M2. We observe that the aforementioned transition mag-
netic moment is insensitive to variation in cos® in the domain
—0.40 < cos6 < —0.25. We also have performed similar analysis at
two other fixed values of the continuum threshold, so = 4.0 GeV?
and sop = 4.8 GeV2. From this analysis we obtain that the results
for the transition magnetic moment change at most about 4-5%.

cosf ==+
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Fig. 1. Dependence of the transition magnetic moment t «_, s0« on the Borel mass parameter M?2, at four different values of the auxiliary parameter 8 = —5; —3; —1; 1, and
at two fixed values of the continuum threshold so = 4.4; 4.8 GeV? in units of nuclear magneton /iy.
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Fig. 2. Dependence of the transition magnetic moment ji . _, o« On the continuum threshold so, at four different values of the auxiliary parameter g8 = —5; —3; —1; 1, and

at two fixed values of the Borel parameter M2 = 2.4; 3.0 GeV? in units of nuclear magneton /ty.

As a result of our detailed numerical analysis, where we take When we compare the results given in Table 1, the magnetic
into account the uncertainties in the input parameters, uncertain- moment for the negative parity A-X? transition is observed to be
ties enterlpg. into the thoton DAs, as wgl{ as uncerte.untles due approximately my/m* (where m* is the averaged mass of the ©*
to the variations of M= and sp, the transition magnetic moment d A b i 1 d to th It ted
[ pe 30+ is finally found to have the value, an aryons) times smaller compared to the results presente
for the positive parity baryons predicted by the same approach
cited in Table 1.

In conclusion, the magnetic moment of the A-X0 transition

for the negative parity baryons is estimated in framework of the

g 506 = (1.05 £ 0.25) s .

Finally, we present our result on the transition magnetic mo-
ment [y, 5.0+, and compare it with the predictions of the various LCSR. A comparison of our results with the predictions of the other
approaches for the positive parity baryons, in Table 1. approaches for the positive parity baryons is presented.
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Fig. 3. Dependence of the transition magnetic moment [t «_, yo« 0N cos6, at three fixed values of M2 =1.8;2.4;3.0 GeV?, and at the fixed value of the continuum threshold
so = 4.4 GeVZ; in units of nuclear magneton jiy.

Table 1
A — %0 transition magnetic moments of the negative parity (present work) and positive parity
baryons (in units of nuclear magneton).

present work [6] [7] [8] [20,21] [22] [23] [24]
MA_s50 1.05+0.25 1.61 1.6 1.6 1.57 1.04 136 —1.48 £0.04
Appendix A +4i3(T3, v) — 4ix(Ta, V))] }
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