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Abstract

We construct a class of analytic solutions with two free parameters to the five-dimensional Einstein field equations, which represents the
collision of two timelike 3-branes. We study the local and global properties of the spacetime, and find that spacelike singularities generically
develop after the collision, due to the mutual focus of the two branes. Non-singular spacetime can be constructed only in the case where both of
the two branes violate the energy conditions.
© 2008 Published by Elsevier B.V.
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1. Introduction

Branes in string/M-Theory are fundamental constituents [1],
and of particular relevance to cosmology [2,3]. These sub-
stances can move freely in bulk, collide, recoil, reconnect, and
whereby form a brane gas in the early universe [4], or create an
ekpyrotic/cyclic universe [5]. Understanding these processes is
fundamental to both string/M-Theory and their applications to
cosmology.

Recently, Maeda and his collaborators numerically studied
the collision of two branes in a five-dimensional bulk, and found
that the formation of a spacelike singularity after the collision
is generic [6] (see also [7]). This is a very important result,
as it implies that a low-energy description of colliding branes
breaks down at some point, and a complete predictability is
lost, without the complete theory of quantum gravity. Similar
conclusions were obtained from the studies of two colliding
orbifold branes [8]. However, lately it was argued that, from
the point of view of the higher dimensional spacetime where
the low effective action was derived, these singularities are very
mild and can be easily regularised [9].
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In this Letter, we present a class of analytic solutions to the
five-dimensional Einstein field equations, which represents the
collision of two timelike 3-branes in a five-dimensional vacuum
bulk, and show explicitly that a spacelike singularity always de-
velops after the collision due to the mutual focus of the two
branes, when both of them satisfy the energy conditions. If only
one of them satisfies the energy conditions, spacetime singular-
ities always exist too, but these singularities may appear either
before or after the collision. Non-singular spacetimes can be
constructed only in the case where both of the two branes vio-
late the energy conditions. Specifically, the Letter is organized
as follows: in Section 2 we first present such solutions, and then
study their local and global properties, while in Section 3 we
present our main conclusions and remarks.

2. Colliding timelike 3-branes

Let us consider the solutions,

(2.1)ds2
5 = A−2/3(t, y)

(
dt2 − dy2) − A2/3(t, y) dΣ2

0 ,

where dΣ2
0 ≡ (dx2)2 + (dx3)2 + (dx4)2, xA = {t, y, xi} (i =

2,3,4), and

A(t, y) = a(t + by)H(t + by)

(2.2)+ b(t − ay)H(t − ay) + A0,
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with a, b and A0 being arbitrary constants, and H(x) the Heav-
side function, defined as

(2.3)H(x) =
{

1, x > 0,

0, x < 0.

Without loss of generality, we assume a �= −b and A0 > 0.
Then, it can be shown that the corresponding spacetime is vac-
uum, except on the hypersurfaces t = ay and t = −by, where
the non-vanishing components of the Einstein tensor are given
by

G00 = −ab

(
aδ(t − ay)

A
+ bδ(t + by)

A

)
,

G01 = ab

(
δ(t − ay)

A
− δ(t + by)

A

)
,

G11 = −
(

bδ(t − ay)

A
+ aδ(t + by)

A

)
,

Gij = 1

3
A1/3δij

(
b
(
a2 − 1

)
δ(t − ay)

(2.4)+ a
(
b2 − 1

)
δ(t + by)

)
,

where δ(x) denotes the Dirac delta function. As we will see in
the following, with the proper choice of the free parameters a

and b, on each of these two hypersurfaces the spacetime repre-
sents a 3-brane filled with a perfect fluid.

The normal vector to the surfaces t − ay = 0 and t + by = 0
are given, respectively, by

nA ≡ ∂(t − ay)

∂xA
= δt

A − aδ
y
A,

(2.5)lA ≡ ∂(t + by)

∂xA
= δt

A + bδ
y
A,

for which we find

nAnA = −A2/3(a2 − 1
)
,

(2.6)lAlA = −A2/3(b2 − 1
)
.

Thus, in order to have these surfaces be timelike, we must
choose a and b such that

(2.7)a2 > 1, b2 > 1.

Introducing the timelike vectors uA and vA along each of the
two 3-branes by

uA = 1

A
1/3
u (t)(a2 − 1)1/2

(
aδt

A − δ
y
A

)
,

(2.8)vA = 1

A
1/3
v (t)(b2 − 1)1/2

(
bδt

A + δ
y
A

)
,

where

Au(t) ≡ A(t, y)|y=t/a = (a + b)tH

(
t + b

a
t

)
+ A0,

(2.9)Av(t) ≡ A(t, y)|y=−t/b = (a + b)tH

(
t + a

b
t

)
+ A0,

we find uAnA = 0 = vAlA. From the five-dimensional Einstein
field equations, GAB = κTAB , we obtain

(2.10)TAB = A
1/3
u T

(u)
δ(t − ay) + A1/3T

(v)
δ(t + by),
AB v AB
where

T
(u)
AB = ρuuAuB + pu

4∑
i=2

X
(i,u)
A X

(i,u)
B ,

(2.11)T
(v)
AB = ρvvAvB + pv

4∑
i=2

X
(i,v)
A X

(i,v)
B ,

X
(i,a)
A are unit vectors, defined as X

(i,a)
A ≡ A

1/3
a δi

A (i = 2,3,4;
a = u,v), and

ρu = −3pu = −b(a2 − 1)

κA
2/3
u (t)

,

(2.12)ρv = −3pv = −a(b2 − 1)

κA
2/3
v (t)

.

Therefore, the solutions in the present case represent the col-
lision of two timelike 3-branes, moving along, respectively, the
line t − ay = 0 and the one t + by = 0. Each of the two 3-
branes supports a perfect fluid. They approach each other as t

increases, and collide at point (t, y) = (0,0), and then move
apart. Depending on the specific values of the free parameters
a and b, we have three distinguishable cases: (a) a, b < −1;
(b) a > 1, b < −1; and (c) a, b > 1. The case a < −1, b > 1
can be obtained from case (b) by exchanging the two free para-
meters. In the following let us consider them separately.

2.1. a < −1, b < −1

In this subcase, from Eq. (2.12) we can see that the per-
fect fluids on both of the two branes satisfy all three energy
conditions, weak, strong, and dominant [10]. To study the
solutions further, we divide the spacetime into four regions,
region I: t < 0, t/|b| < y < t/|a|, region II: y > 0,−|a|y <

t < |a|y, region III: y < 0, |b|y < t < −|a|y, and region IV: t >

0,−t/|a| < y < t/|b|, as shown in Fig. 1, with the two 3-branes
as their boundaries, where we denote them, respectively, as,
Σu ≡ {xA: t − ay = 0} and Σv ≡ {xA: t + by = 0}.

Along the hypersurface Σv , we find

ds2|t=|b|y = b2 − 1

b2A
2/3
v (t)

dt2 − A2/3
v (t) dΣ2

0

(2.13)= dτ 2 − a2
v(τ ) dΣ2

0 ,

where

Av(t) =
{

A0 − (|a| + |b|)t, t � 0,

A0, t < 0,

dτ =
√

b2 − 1

|b|A1/3
v (t)

dt,

(2.14)av(τ ) =
{

a0
v(τ0 − τ)1/2, t � 0,

A
1/3
0 , t < 0,

with τ0 = τ0(a, b,A0), and a0
v ≡ A

1/3
0 τ

−1/2
0 . Exchanging the

free parameters a and b we can get the corresponding expres-
sions for the brane located on the hypersurface t − ay = 0.
From these expressions and Eq. (2.12) we can see that the two
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Fig. 1. The five-dimensional spacetime in the (t, y)-plane for a < −1, b < −1.
The two 3-branes approach each other from t = −∞ and collide at
(t, y) = (0,0). Due to their gravitational mutual focus, the spacetime ends up
at a spacelike singularity on the hypersurface A0 + (a + b)t = 0 in region IV,
denoted by the horizontal dashed line. The spacetime is also singular along the
line A0 − |a|(t − |b|y) = 0 (A0 − |b|(t + |a|y) = 0) in region III (II), which is
parallel to the 3-brane located on the hypersurface t + by = 0 (t − ay = 0).

3-branes come from t = −∞ with constant energy densities
and pressures, for which the spacetime on each of the branes is
Minkowski. After they collide at the point (t, y) = (0,0), they
focus each other, where ȧv,u(τ ) < 0, and finally end up at a sin-
gularity where av,u(τ ) = 0, denoted, respectively, by the point
A and B in Fig. 1.

The spacetime outside the two 3-branes are vacuum, and the
function A(t, y) is given by

(2.15)A(t, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0 − (|a| + |b|)t, IV,

A0 − |a|(t − |b|y), III,

A0 − |b|(t + |a|y), II,

A0, I.

From this expression we can see that the spacetime is Minkow-
ski in region I and the function A(t, y) vanishes on the hy-
persurfaces A0 − (|a| + |b|)t = 0 in region IV, A0 − |a|(t −
|b|y) = 0 in region III, and A0 − |b|(t + |a|y) = 0 in region II,
denoted by the dashed lines in Fig. 1. These hypersurfaces ac-
tually represent the spacetime singularities. This can be seen
clearly from the Kretschmann scalar,

I ≡ RABCDRABCD

(2.16)= 8

9A8/3
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a + b)4, IV,

a4(b2 − 1)2, III,

b4(a2 − 1)2, II,

0, I.

The above analysis shows clearly that, when the matter fields
on the two branes satisfy the energy conditions, due to their
mutual gravitational focus, a spacelike singularity is always
formed after the collision. This is similar to the conclusions ob-
tained numerically in [6,7].

2.2. a > 1, b < −1

In this case, Eq. (2.12) shows that the perfect fluid on the
brane t = ay satisfies all the three energy conditions, while the
Fig. 2. The spacetime in the (t, y)-plane for a > |b| > 1, b < −1. It is singular
along the two half dashed lines, t = −A0/(a − |b|), y < −A0/[|b|(a − |b|)],
and A0 −|b|(t −ay) = 0, t < −A0/(a−|b|). The 3-brane located on the hyper-
surface t +by = 0 starts to expand from the singular point B, t = −A0/(a−|b|)
and y = −A0/[|b|(a − |b|)], until the point (t, y) = (0,0), where it collides
with the other brane moving in along the hypersurface t − ay = 0. After the
collision, it continuously moves forward but with constant energy density and
pressure, and the spacetime on the brane becomes flat. The spacetime on the
3-brane located on the hypersurface t − ay = 0 is flat before the collision, but
starts to expand as au(η) ∝ (η + η0)1/2 after the collision. This 3-brane is free
of any kind of spacetime singularities.

one on the brane t = −by does not. To study these solutions
further, it is found convenient to consider the two cases a >

|b| > 1 and |b| > a > 1 separately.
Case 2.1. a > |b| > 1: In this case, the two colliding branes

divide the whole spacetime into the following four regions,

I: t =
{

< ay, y < 0,

< |b|y, y > 0,

II: y < 0, ay < t < |b|y,

III: y > 0, |b|y < t < ay,

(2.17)IV: t =
{

> ay, y > 0,

> |b|y, y < 0,

as shown in Fig. 2. Then, we find that

(2.18)A(t, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0 + (a − |b|)t, IV,

A0 + a(t − |b|y), III,

A0 − |b|(t − ay), II,

A0, I.

Clearly, the spacetime is again Minkowski in region I, but
the function A(t, y) now vanishes only on the hypersurfaces
A0 + (a − |b|)t = 0 in region IV, and A0 − |b|(t − ay) = 0 in
region II, denoted by the dashed lines in Fig. 2. Similar to the
last case, the Kretschmann scalar blows up on these surfaces, so
they actually represent the spacetime singularities. As a result,
the region A0/|b| + ay < t < −A0/(a − |b|), y < 0, denoted
by D in Fig. 2, is not part of the whole spacetime. In region III
we have A(t, y) > 0, and no any kind of spacetime singularities
appears in this region.
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Along the hypersurface t +by = 0, the metric takes the same
form as that given by Eq. (2.13) but now with

Av(t) =
{

A0, t � 0,

A0 + (a − |b|)t, t < 0,

(2.19)av(τ ) =
{

A
1/3
0 , t � 0,

a0
v(τ + τs)

1/2, t < 0,

where t = ts ≡ −A0/(a − |b|) corresponds to τ = τs and t = 0
to τ = τ0, with τ0 ≡ (b2 − 1)1/2A

2/3
0 /[2|b|(a − |b|)], and a0

v =
A

1/3
0 (τ0 + τs)

−1/2. Thus, in this case the 3-brane located on the
hypersurface t +by = 0 starts to expand from the singular point
τ = τs and collides with the other incoming 3-brane at the point
(t, y) = (0,0). After the collision, the 3-brane transfers part of
its energy to the one moving along the hypersurface t − ay = 0,
so that its energy density and pressure remain constant, and
whereby the spacetime on this 3-brane becomes Minkowski.

Along the hypersurface t −ay = 0, the metric takes the form

ds2|t=ay = a2 − 1

a2A
2/3
u (t)

dt2 − A
2/3
u (t) dΣ2

0

(2.20)= dη2 − a2
u(η) dΣ2

0 ,

where

Au(t) =
{

A0 + (a − |b|)t, t � 0,

A0, t < 0,

dη =
√

a2 − 1

a2A
2/3
u (t)

dt,

(2.21)au(η) =
{

a0
u(η + η0)

1/2, t � 0,

A
1/3
0 , t < 0,

where t = 0 corresponds to η = 0 and η0 ≡ 3(a2 − 1)1/2A
2/3
0 /

[2a(a − |b|)] > 0. Thus, in the present case the brane located
on the hypersurface t − ay = 0 comes from t = −∞ with
constant energy density and pressure ρu = −3pu = |b|(a2 −
1)/(κA

2/3
0 ) > 0, which satisfies all the three energy conditions.

The spacetime on this brane is flat before the collision. Af-
ter the collision, the spacetime of the brane starts to expand
as (η + η0)

1/2 without the big-bang type of singularities. The
expansion rate is the same as that of a radiation-dominated uni-
verse in Einstein’s theory of 4D gravity, where a(η) ∝ η1/2. But
its energy density and pressure now decreases as ρu = −3pu ∝
(η + η0)

−1, in contrast to ρ = 3p ∝ η−2 in Einstein’s 4D grav-
ity [10].

Case 2.2. |b| > a > 1: In this case, the two colliding branes
divide the whole spacetime into the four regions,

I: t =
{

< |b|y, y < 0,

< ay, y > 0,

II: y < 0, |b|y < t < ay,

III: y > 0, ay < t < |b|y,

(2.22)IV: t =
{

> |b|y, y > 0,

> ay, y < 0,

as shown in Fig. 3.
Fig. 3. The spacetime in the (t, y)-plane for |b| > a > 1, b < −1. It is singu-
lar along the two half dashed lines where A = 0. The spacetime of the 3-brane
along t + by = 0 is flat before the collision, but collapses to form a spacetime
singularity at the point B. The spacetime of the 3-brane along t − ay = 0 is
contracting from t = −∞ before the collision, but becomes flat after the colli-
sion. At the colliding point (t, y) = (0,0) no any kind of spacetime singularities
exists.

Following a similar analysis as we did in the last subcase
one can show that the spacetime now is singular on the half
lines t = A0/(|b| − a), y < A0/[|b|(|b| − a)] in region IV, and
t = A0/|b| + ay > A0/(|b| − a) in region III, denoted by the
dashed lines in Fig. 3.

Along the hypersurface t −ay = 0, the metric takes the form
of Eq. (2.20) but now with

Au(t) =
{

A0, t � 0,

A0 − (|b| − a)t, t < 0,

(2.23)au(η) =
{

A
1/3
0 , t � 0,

a0
u(η0 − η)1/2, t < 0,

where t � 0 corresponds to η � 0 with η0 ≡ 3(a2 − 1)1/2A
2/3
0 /

[2a(|b|−a)] > 0. Thus, in the present case the brane located on
the hypersurface t − ay = 0 comes from t = −∞ with energy
density and pressure ρu = −3pu ∝ (η0 − η)−1, which satisfies
all the three energy conditions. The spacetime on this brane is
non-flat before the collision and becomes flat after the collision.

Along the line t + by = 0, the metric takes the same form as
that given by Eq. (2.13) but now with

Av(t) =
{

A0 − (|b| − a)t, t � 0,

A0, t < 0,

(2.24)av(τ ) =
{

a0
v(τs − τ)1/2, t � 0,

A
1/3
0 , t < 0,

where t = ts ≡ A0/(|b| − a) corresponds to τ = τs and t = 0
to τ = τ0, with τ0 ≡ (b2 − 1)1/2A

2/3
0 /[2|b|(|b| − a)]. Thus, in

this case the 3-brane located on the hypersurface t + by = 0
moves in from t = −∞ and has constant energy density and
pressure before the collision. After the collision, it collapses to
a singularity at τ = τs .
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Fig. 4. The spacetime in the (t, y)-plane for a > 1, b > 1. It is free of any kind
of spacetime singularities in the whole spacetime, including the two hypersur-
faces of the 3-branes. The two 3-branes all come from t = −∞ with constant
energy density and pressure. They remain so until the moment right before
collision. After the collision, the spacetime on each of the 3-branes is expand-
ing like a(τ) ∝ τ1/2, while their energy densities and pressures decrease like
ρ = −3p ∝ τ−1.

2.3. a > 1, b > 1

In this subcase, from Eq. (2.12) we can see that both of the
two branes violate all the three energy conditions [10]. Dividing
the spacetime into the following four regions,

I: t < 0,
t

a
< y < − t

b
,

II: y > 0, −by < t < ay,

III: y < 0, ay < t < −by,

(2.25)IV: t > 0, − t

b
< y <

t

a
,

as shown in Fig. 4, we find that

A(t, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0 + (a + b)t, IV,

A0 + b(t − ay), III,

A0 + a(t + by), II,

A0, I,

Au(t) =
{

A0 + (a + b)t, t � 0,

A0, t < 0,

(2.26)Av(t) =
{

A0 + (a + b)t, t � 0,

A0, t < 0,

which are non-zero in the whole spacetime. Thus, in the present
case the spacetime is free of any kind of spacetime singularities,
and flat in region I. Before the collision the two branes move
in from t = −∞ all with constant energy density and pres-
sure. After the collision, their energy densities and pressures
all decrease like τ−1, while the spacetime on these two branes
is expanding like a(τ) ∝ τ 1/2, where τ is the proper time on
each of the two branes, and a(τ) their expansion factor.
3. Conclusions

In this Letter, we have studied the collision of branes and
the formation of spacetime singularities. We have constructed a
class of analytic solutions to the five-dimensional Einstein field
equations, which represents such a collision, and found that
when both of the two 3-branes satisfy the energy conditions,
a spacelike singularity is always developed after the collision,
due to their mutual gravitational focus. This is consistent with
the results obtained numerically in [6,7]. When only one of
the two branes satisfies the energy conditions, the other brane
either starts to expands from a singular point [cf. Fig. 2], or
comes from t = −∞ and then focuses to a singular point af-
ter the collision [cf. Fig. 3]. It is interesting to note that in all
these three cases the spacetime in region IV is locally Kasner.
As a result, the power-law singularity developed after the brane
collision is that of Kasner type. However, if both of the two col-
liding 3-branes violate the weak energy condition, no spacetime
singularities exist at all in the whole spacetime. Before the col-
lision, the two branes approach each other in a flat background
with constant energy densities and pressures. After they collide
at (t, y) = (0,0), they start to expand as a(τ) ∝ τ 1/2, where
a(τ) denotes their expansion factor, and τ their proper time. As
the branes are expanding, their energy densities and pressures
decrease as ρ,p ∝ τ−1, in contrast to that of ρ,p ∝ τ−2 in the
four-dimensional FRW model. Region IV in this case is also lo-
cally Kasner, but the Kasner spacetime singularity is not part of
this region.

As argued in [9], these singularities may become very mild
when the five-dimensional spacetime is left to higher dimen-
sional spacetimes, ten dimensions in string theory and eleven in
M-Theory, a question that is under our current investigation.

Finally, we would like to notice that the solution presented
here is purely gravitational, and hence there is no charge asso-
ciated with the colliding 3-branes. If charges are included, one
may wonder whether these 3-branes are stable and spacetime
singularities are still formed after the collision. We would like
to address all these issues in other occasions.
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