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The subdominant eigenvalue of the transition probability matrix of

a Markov chain is a determining factor in the speed of transition

of the chain to a stationary state. However, these eigenvalues can

be difficult to estimate in a theoretical sense. In this paper we re-

visit the problem of dynamically organizing a linear list. Items in

the list are selected with certain unknown probabilities and then

returned to the list according to one of two schemes: the move-

to-front scheme or the transposition scheme. The eigenvalues of

the transition probability matrix Q of the former scheme are well

known but those of the latter T are not. Nevertheless the transpo-

sition scheme gives rise to a reversible Markov chain. This enables

us to employ a generalized Rayleigh–Ritz theorem to show that the

subdominant eigenvalue of T is at least as large as the subdominant

eigenvalue of Q .

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Suppose we have a collection of n items B1, B2, . . ., Bn, such as files in a computer, ordered linearly

from “left” to “right”. These items are accessed, independently in a statistical sense, with probabilities

w1,w2, . . .,wn. When an item is accessed the list is searched from left to right until the desired item

is reached and then returned to the list according to various schemes. This problem of dynamically

organizing a linear list has been studied by probability theorists and computer scientists for many

years; see Hester and Hirschberg [1] for an early survey. Two schemes that are frequently mentioned

in the literature are the move-to-front and the transposition schemes. In the move-to-front scheme

the accessed item is returned to the front (left) of the list and all other items retain their relative
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positions. In the transposition scheme, if the accessed item came from the front of the list then it is

returned to the same position. Otherwise it is interchanged with the nearest item closer to the front

of the list. The move-to-front scheme has been studied extensively. See for example [2–6] and other

referencesmentioned therein. As recently as 2008 Jelenković and Radovanović [7] used the search cost

distribution for a move-to-front scheme to compute the fault probabilities for a cache replacement

heuristic. In contrast, the transposition scheme is more intractable and much less has been written

on it. However, performance measures such as search costs and rate of convergence to stationarity

have significance when algorithms are selected for real world systems. Hendricks [8] derived the

stationary distribution of the transposition chain and Rivest [6] showed that it has a smaller expected

stationary search cost than the move-to-front scheme. More recently Gamarnik and Momčilović [9]

established asymptotic optimality for the transposition schemewhen thewj are distributed according

toapower laworgeometrically. Forother references, see [9]. In thispaperwecompare thesubdominant

eigenvalues of the move-to-front and transposition schemes.

For each of these two schemes the successive configurations of the list of items forms a Markov

chainwhose state space is the symmetric group Sn of permutations of the numbers 1, 2, . . ., n.Wewrite

these permutations in the form σ = (σ (1), σ(2), . . ., σ(n)) or σ = (σ1, σ2, . . ., σn). The transition

probability matrices for the move-to-front and transposition schemes, denoted Q and T respectively,

are matrices indexed by the elements of Sn. Hence, for σ , τ ∈ Sn we have

Q(σ , τ) =
⎧⎨
⎩
wσ(1) if σ = τ ,
wσ(k) if τ = (σk , σ1, . . ., σk−1, σk+1, . . ., σn) for some k > 1,

0 otherwise

and

T(σ , τ) =
⎧⎨
⎩
wσ(1) if σ = τ ,
wσ(k) if τ = (σ1, . . ., σk−2, σk , σk−1, σk+1, . . ., σn) for some k > 1,

0 otherwise.

Using probabilistic arguments, Phatarfod [4] calculated the eigenvalues ofQ . They are the numbers

of the formwi1 + wi2 + · · · + wik where 1� i1 < i2 < · · · < ik � n, 1� k � n and k /= n − 1 together

with 0. The latter is repeated with multiplicity D(n), the number of derangements of n objects; the

former have multiplicity D(n − k). It was shown in [5] that these results remain valid for arbitrary

complex weights w1,w2, . . .,wn rather than probabilities.

In thispaper it is convenient to treat thenumbersw1,w2, . . .,wn as arbitrarynon-negativenumbers.

It follows that Q and T are non-negative matrices with all row sums equal to the Perron eigenvalue

w1 + w2 + · · · + wn which we denote by μ1(Q) or μ1(T). Note also that each row of both Q and

T contains the weights w1,w2, . . .,wn exactly once each, whereas the diagonals contain the weights

exactly (n − 1)! times each.

It iswell known that theMarkov chain for the transposition scheme is reversible. Indeed, forσ ∈ Sn
define π(σ) = w

n−1
σ(1)w

n−2
σ(2). . .w

1
σ(n−1). Then for all σ , τ ∈ Sn we have π(σ)T(σ , τ) = π(τ)T(τ , σ)

which is the defining condition for reversibility. In particular, summing over σ , we obtain πT =
μ1(T)π and so π is a stationary distribution for T in the case of probabilitiesw1,w2, . . .,wn summing

to 1.

Let R denote the square matrix whose diagonal entries are the numbers
√

π(σ) for σ ∈ Sn and

whose off-diagonal entries are zero. If allweights are positive,wemay setU = RTR−1. The reversibility
condition becomes T∗ = R2TR−2 and so U∗ = U.Moreover, T and U are similar so they have the same

characteristic polynomial. A simple calculation shows

U(σ , τ) =
⎧⎪⎪⎨
⎪⎪⎩
wσ(1) if σ = τ ,√

wσ(k−1)wσ(k) if τ = (σ1, . . ., σk−2, σk , σk−1, σk+1, . . ., σn)
for some k > 1,

0 otherwise.

For the general case of non-negative weights R−1 may not exist so we define U by this last identity.

By a simple continuity argument, T and U again have the same characteristic polynomial. In particular

T has real eigenvalues. We will refer to U as the symmetrized form of T and sometimes write U =
U(w1,w2, . . .,wn) to denote its dependence on the weights.
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For any matrix Awith real eigenvalues, of sizem bym say, we denote its eigenvalues by μ1(A), . . .,
μm(A) when arranged in decreasing order and by λ1(A), . . ., λm(A) when the order is increasing.

2. The results

Theorem 2.1. Let Q and T be move-to-front and transposition matrices corresponding to non-negative

weights w1,w2, . . .,wn. Then μ2(T) � μ2(Q).

Proof. LetU be the symmetrized formof T with row indices ordered so that for thefirst (n − 1)! indices
σ(n) = n, for thenext (n − 1)! indicesσ(n) = n − 1andsoon. ThenU hasablockdecompositionU =
[Uij] for 1� i, j � n whose diagonal blocks are of the form Uii = U(w1,w2, . . ., ŵn+1−i, . . .,wn). The
symbol ŵj is used to denote that wj is omitted. So μ1(Uii) = w1 + w2 + · · · + ŵn+1−i + · · · + wn.
To simplify notationwewill assume thatw1 �w2 � · · · �wn.As eachUii is Hermitian, there are unitary

matrices Vi such that each V∗
i UiiVi is a diagonal matrix. For n − 1� i � n we remove the column of Vi

corresponding to the Perron eigenvalueμ1(Uii) and denote the resultingmatrix byWi. For other values

of i set Wi = Vi and let W denote the matrix with diagonal blocks W1,W2, . . .,Wn and off-diagonal

blocks zero. ThenW∗W = Ik , the identitymatrix of order k = n! − 2 andW∗UW = [W∗
i UijWj]where

1� i, j � n. So

trace(W∗UW) =
n∑

i=1

trace(W∗
i UiiWi)

=
n∑

i=1

trace(Uii) − μ1(Un−1,n−1) − μ1(Unn)

= trace(U) − (w1 + ŵ2 + w3 + · · · + wn) − (ŵ1 + w2 + · · · + wn)

= trace(U) − (w3 + · · · + wn) − (w1 + w2 + · · · + wn)

= trace(Q) − μ2(Q) − μ1(Q)

=
n!−2∑
i=1

λi(Q).

By the generalized Rayleigh–Ritz theorem (see [10]) we have

n!−2∑
i=1

λi(U) = min{trace(X∗UX) : X∗X = In!−2}

and therefore

n!−2∑
i=1

λi(T) =
n!−2∑
i=1

λi(U) �
n!−2∑
i=1

λi(Q).

SinceT andQ have thesametraceandthesamePerroneigenvalue,weconclude thatμ2(T) � μ2(Q). �

Using similar techniques, further information can be readily gained about the eigenvalues of T . For

example:

Theorem 2.2. Let T be a transpositionmatrix corresponding to non-negativeweightsw1,w2, . . .,wn. Then∑k
i=1 λi(T) � 0 for 1� k � n!/2.

Proof. Since the result is trivially truewhenn = 2,wemayproceedby inductiononn. Assume it is valid

for lists of lengthn − 1 for somen > 2.TakematricesUii as in theproofof Theorem2.1. By the induction

hypothesis and the generalized Rayleigh–Ritz theorem, for 1� i � n and 1� h�(n − 1)!/2 there are

matrices Wih of size (n − 1)! × h with orthonormal columns such that trace(W∗
ihUiiWih) � 0. Given
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1� k � n!/2 choose integers h1, h2, . . ., hm where 1�m� n, 1� hi �(n − 1)!/2 and h1 + h2 + · · · +
hm = k. LetW be the n! × k blockmatrixwhose diagonal blocks areWi = Wihi for 1� i �mwith zeros

elsewhere. ThenW∗W = Ik and trace(W∗UW) = ∑m
i=1 trace(W

∗
i UiiWi) � 0 so

∑k
i=1 λi(T) � 0. �

Example 2.3. The situation is different if negative weights are permitted. For example, consider the

case n = 3 and weights −1, 2, 4. The eigenvalues of Q are 5, 4, 2,−1, 0, 0 and those of T are approxi-

mately 5.0,−3.429, 3.128 ± 1.283i, 1.086 ± 1.643i. So the eigenvalue with second largest modulus

for Q is 4 and for T is −3.429.
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[7] P.R. Jelenković, A. Radovanović, The persistent-access-caching algorithm, Random Struct. Algor. 33 (2008) 219–251.
[8] W.J. Hendricks, An account of self-organising systems, SIAM J. Comput. 5 (1973) 715–723.
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