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For an operator F:R”"— R, analytic in the origin, the notion of (abstract
multivariate Padé-approximant (APA) is introduced, by making use of abstract
polynomials. The classical Padé-approximant (n=1) is a special case of the
multivariate theory and many interesting properties of classical Padé-approximants
remain valid such as covariance properties and the block-structure {Annie A. M.
Cuyt, J. Oper. Theory 6 (2) (1981), 207-209] of the Padé-table. Also a projection-
property for multivariate Padé-approximants is proved.

1. DEFINITION OF MULTIVARIATE PADE-APPROXIMANT

Many attempts have been made to generalize the concept of Padé-
approximant for multivariate functions. We refer to [1, 4-8].

Another generalisation is the following one. The Banach-space R" is
normed by one of the Minkowski-norms; we write 0= (0,...,0)" and
X=(x,snXx,)7. Let F:R" > R be analytic in the origin:

o0
1

Ir>0:Fx)= N —FR0)x* for  [|(x s X, < 7y
pa— k! n

k=0

where (1/0!) F*”(0) x° = F(0) and F'¥)(0) denotes the kth Fréchet-derivative
of F in 0; (1/k!)F®(0) is a symmetric k-linear bounded operator:
(RM¥— R [9, pp. 109-112] and is equal to

< 1 9*F(x)
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Kt Thrg—k kil kb og 0% |«
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DerFNITION 1.1, (a) P:R"->R:x->Px)=4,x"+---+4, is an
m 0
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abstract polynomial if for j=0,...,m the A; are symmetric j-linear bounded
operators: (R"Y - R, in other words, if

J_ \a vy ; :
A;x! = ha a;,...;, X1 xon with a...; in R.

ISy

(b) 8, P=m, is the order of the abstract polynomial P if for
0<k<m, :4,x*=0and 4, x™#0.

(c) 6P =m, is the exact degree of the abstract polynomial P if for
my, <k<m:A4,x*=0and 4, x"#0.

We say that F(x) = O(x’) if
W, reERF, o< r < |Fx)|<J-||x| for x| <r.

DeFINITION 1.2. The couple of abstract polynomials

(P(x)’ Q(x))= (Alm+lx1m+l +oee +Almx1m’B1m+mxlm+m + - +Blm'xlm)
such that the power series (F - Q — P)(x) = O(x/m*!*m+1) (1)

is called a solution of the Padé-approximation problem of order (I, m).

The choice of order and degree of P and Q is justified in [2].

For every non-negative integers / and m a solution of the problem
described in Definition 1.2 exists [2]. We call the quotient of two abstract
polynomials P/Q :[R" —» R : x - P(x)/Q(x) reducible if there exist abstract
polynomials 7, R, S suchthat P=T-Rand Q=7 S and T > L. If (P, Q)
and (R, S) are solutions of (1) (for / and m fixed), then P(x)-S(x)=
Q(x) - R(x) for every x in R". This “equivalence-property” of solutions of
(1) justifies the following definitions.

DeFinITION 1.3, Let (P, Q) be a couple of abstract polynomials
satisfying (1), with Q(x)# 0. Let P,/Q, be the irreducible form of £/Q such
that Q,(0)= 1. If this form exists, we call it the normalized (abstract)
multivariate Padé-approximant (APA) of order (I,m) for F (normalized
(I, m}-APA).

Remark that for the polynomial T such that (P, Q)= (Py - T, Q4 - T):
9T =0y0 — 9y Q.

For the normalized (/, m)-APA we have

00T = Im.
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DEfFINITION 1.4, Let (P,Q) be a couple of abstract polynomials
satisfying (1), with Q(x)# 0. If the irreducible form P,/Q, is such that
0,0 > 1, then we call P, /Q, the (abstract) multivariate Padé-approximant
of order (I, m) for F ((I, m-APA).

The (I, m)}~APA is unique up to a multiplicative constant in numerator
and denominator.
For the (/, m}-APA

I' =8P, — 8,0x <,
<

m’ =00y — 0y Qx
3,T > Im—8,0x.

m,

From now on we shall often consider the normalized (/, m)-APA to be a
special case of the (/, m}-APA and not mention the specification normalized.

2. EXISTENCE OF A NONTRIVIAL SOLUTION OF (1)

(a) When n=1, the definition of the abstract Padé-approximant is
precisely the classical definition |3].

(b) The problem (1) is equivalent with the solution of two linear systems
of equations:

Im __ tm
C0 : Blmx - Almx ’

) Vx € R",
C,xl . Blmxlm 4ot CO . Blm+[x]m+[:A/m+1xlm”s (la)
C1+lxl+l . B,mxlm 4o+ CH]imlefm . Blm+mx1m+m —0.

YVx € R,
Cl+mxl+m ) Blmx,m + Tt + C]x[ . B1m+mxlm+m :O’ (lb)

with B, ;x"*/=0 for j>m,
Cx* = (1/k!) F®(0) x* for k>0,
C,x¥=0 for k<O.

The homogeneous system contains N, = ("]/m !+ my— (1M1} equations in
N, ="}y —("iam1")  unknown coefficients of the B,,,;. For
n=2:N,—N,=1 and so one unknown can be chosen and a nontrivial
solution always exists. For n > 2: the nontriviality of the solution is proved

as follows. Suppose that the matrix
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141 IR
Croix o Gy X e
Cl—mme C,X/

of the homogeneous system (1b) has rank &, in other words, that a vector x
in F<" exists such that the determinant of a k X k submatrix is nonzero. In
any case 0 < k& < m. The homogeneous system (1b) can now be reduced to a
homogeneous system of k equations in & + 1 of the unknown B, . x"""/
(j=0.,..m):

K
}_‘ C/+.h,—j,x“h' jiBlm—j,x[m‘j,:()*
iTo
1
; (Ic)
- [t~ j Im i _
- Cl+hk—-j,x ' lelm*j,x =0,
io
with 1 <h <m for i= ..k,
and 0<j,<m for i=0..k

jo <j| <o <jk'

In fact we have removed (m — k) rows and (m — k) columns of the coef-
ficient matrix of system (1b) to obtain the coefficient matrix of system (lc).
We will number the rows that we have removed A, ,.... #,, , and the columns
that we have removed j, + l.....J,, . + | (notice that the rows that we have
retained are numbered A,..... A, and the columns j, + 1.....j, + I).

If k=m then a solution of (1b) can be calculated by means of the
following determinants.

: |
: Clxl C/ . mx/ b
Blmxlm = ’
demo !
C/' m 1Y CIX
! T /—-—; Ayl om
C,x --C,.x 7{ e Gy omX
Blm t ‘Im-/ - l :
i

t-m 1 Aem !
C/.. m 1% l —C/ PP ¢ CI.\’

+

|
Jjth column in B, x'" replaced by
this column (j = 1...., m)

Let us introduce the following notations:
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, -] _ [ TR
Cl+h|—j1x C1+h,—j,,,,kx e
D(x) = :
_ R e _ . 14 Ry k= Tm—s
Cl+hm—k7/1x Cl+hm—k‘./m—kx
I+hy =iy . I+h—Jk
Crinj,X Crin X
Djo(x)z . . *
[+ he—J, . [+ hy =iy
CroniX Crone—iX
+h—iy | I+h,—ig N I+h =,
C1+h,—j,x Cl+h1-j0x o C1+hl—jkx
Dj,(x):
I+he—i1 | I+ h— g I+ ey
Cl+hk~j1x Cl+hk—j0x C1+h,\~j,‘.x

!

ith column in D; (x) replaced by
this column (i = 1...., k)

Then clearly, because of the Laplacian expansion of the determinant
Blm+jxlm+j’ forj:jO’jl 9""jk’

B,m+jix’"'+-fi =D(x) - D;(x)+ -

where D(x) is a p-linear bounded operator with 0 < p < Im + j,.
For k < m a nontrivial solution of system (1b) is now given by

Blm+jx1m+j20 for j=j,(i=1,.,m—k),
By X" =E,x" - Di(x)  for j=j;(i=0...k)

with E,x? a nontrivial symmetric p-linear bounded operator: (R"Y - R,
because one of the D;(x) is nontrivial. We also prove the following
important theorem.

THEOREM 2.1. Let P,/Q, be the (I, m}-APA for F. Then there exists
5, 0m—0,0, <s<Im—0,Qy +min(l—!',m—m’), and a nontrivial
symmetric s-linear bounded operator D, : (R") - R, such that (Py(x) - Dx°,
Q. (x) - D, x%) satisfies (1).

Proof. Because (1) is solvable for every /, m& N we may consider
abstract polynomials P and Q that satisfy (1) and supply P, and Q, with
Q(x)#0. Because of Definition 1.4 or 1.3, there exists an abstract
polynomial T such that P=P,-T and Q=0Q, -T. Now ¢,T=
00 Q — 0y Qy > Im— 3y Q4. We write
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OP — 0Py <Im+1—-1' — 0,04
/
§=0,T=Im—0,Q4 +r<oT
N\
9Q —0Qy <Im+m—m'—0,Qy

with r>0. So Im—0,Qs<s<ImM—0,0s +min(/—0',m—m'). For

T(x) =D, x> + Dy, x* "'+ oot [(F - Qx — Py) - DyJ(x) = O(x'™H+m+ 1y
because of the equivalence of (1) with (1a) and (1b).
We illustrate this theorem with an example. Let

F:R?*>R:(3)- 1+sin(x, + x,x,). The (1,2)-APA is

5.2
X, — Xy §X71— 2%, X,

1.2 7 1.3
X=Xy =X Xy — Xy + X X5+ gX)

Theorem 2.1 holds with s = 1, 9,04 = 1 and D,(3!) = x,.

When we compare this theorem with the similar one for the classical
Padé-approximant we remark that the term Im in s is due to the choice of the
order of the couple of polynomials (P, Q) in Definition 1.2 and that the term
(—0,Q«) in s is due to the fact that sometimes the abstract Padé-
approximant cannot be normalized as in Definition 1.3.

3. COVARIANCE PROPERTIES

Several covariance properties can already be found in |3, pp. 204-206],
where they are formulated for operator Padé-approximants (the multivariate
Padé-approximants are a special case); normalized ([, m)-APA are
transformed into normalized (/, m)}-APA and (/, m}-APA are transformed
into (I, m)}-APA.

Another property, especially for multivariate Padé-approximants, is added
and proved here.

THEOREM 3.1. Let y,=a,x,/(1 +b,x, +--- +b,x,) for i=l,..,n and
y=(¥1s,)". Let the (I, )-APA for F(x) be P,(x)/Qx(x) and let

G(x) = F(y),
R*(x) = P*(y) ) (l + blxl + 4+ bnxn)k
and
Se(x) =Qu(»)- A +byx, + -+ + bnxn)k

with k = max(oPy., 8Qy). Then the (I, [)-APA for G(x) is Ry (x)/S 4 (x).
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Proof. Because of Theorem 2.1 there exists a positive integer s,
1P~ 8,04 <SP —08,Q4 +min(l — 0Py + 3,04, — Q4 +3,04), and a
nontrivial symmetric s-linear bounded operator D, :(R")’—> R such that
[(F- Q4 —Py) - DJ(x)=o0(x"""*"). We write

Ds(al'xl Ehid anxn) . D_s(x)
(I +bx, +-+b,x,) (+bx, +-+b,x,)"

Ds(y) =

For k& = max(0Py, 0Q4):
aO(Iz* ' D_s) >
aO(S>|< : 5;) > a0(Q>I< : Ds)
max|d(Ry + D), 8(Sy - D) | <k +s< PP+ 1.

8o(Ps - D) 2 I,
> P,

So

[(G - S« — Ry) - D](x)
=[(F-Qu«—Py)-DJ(y)- I +bx,+ - +b"xn)k+s
= 0(y12+2[+1) . (1 + b]xl + o 4 bnxn)k+s
:0(x12+21+1)-
And thus [(G - Sy —Ry) - D_s](x) - O(x““’“),

We will now show that the irreducible form of [R, - D,|(x)/[Sx - D,|(x)
is R.(x)/S«(x). Suppose

Ry(x)=U(x) - V(x)

_ _ with oU > 1.
Sy(x) = Ulx) - W(x)
Since
ax, a,x a,x -
R L S R Y r 7
Vi Y Y i=1
we know that
a .
X;= nYi x, for i=1,.,n.
a;y,

Consequently

’?1 a
i i=1 aiyn yn



290 ANNIE A. M. CUYT

or

So we can write

Thus

Rul)=Puly) (14 ¥ b,-xi)k,

5:09=0:) 1+ ¥ b,-x,-)k,

implies that

P =) Pes) (1 X 22y

. _ — b K
0.(») = U(x) - W(x) (1 -V 2,
and thus
Pr(y)=U(y)- V()
Q«(»)=U(y)- W(yp),
with

Uy)=U (yl/<al <1 —;2—:;»,-)),...,))"/(% (l — ([1)

" b,‘ k'
’ (1 - ‘,V,) L]

—
i-1 a;

_ nob. k -k
M) = Pl z) - (1= X )
i-1 4

1

_ 2 p, k—k’
W)= ey« (1= X 20}

i=1 4

k'=0U (80U + oV < k and U + oW < k).

This contradicts the fact that P,/Q, is irreducible.
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Since 9, Sy =090 and S4(0) = Q4(0), the normalized (I, /)}-APA for F
is transformed into the normalized (I, /}-APA for G and the (/, /)}-APA for F
is transformed into the (/, /)-APA for G.

4. PROJECTION-PROPERTY

We introduce the following notations:
TR = (X s Xj 15 03 Xj{ 150ees X )y

X = (X s X5 Xy 5000 Xp)-

THEOREM 5.1. If the (I, m)-APA for F:R"> R is P,/Qy and

j€ {1, nl,
S(x.;) =04 ('X) £0,
R(x,;) i= P (’X),
Gyx ;) = F(’%),

then the (I, m}-APA for G;: R" 'S R is the irreducible form R,/Sy. of
R/S.

Proof. Since the ([, m}-APA is P,/Qy :0y(F - Qux —Py)=0,Q4 +1' +
m’ +t+ 1 with 1> 0 [3, p. 208]. Using a Minkowski-norm in R” :||‘x]| in
R" equals ||x,| in R"™'. Thus (F-Qx—Py)(’x)= (G, S —R)(x,)=
O(xfp@etl!tm+ 41y Now 0Py =0,Qx+1' <OPIm+1 and 0Qy =
8,Qx +m' L0 LIm+m imply Im—0,Qy +min(l—10'm—m')>0.
Take s =im — 0,Q, + min(/ — !, m — m’) and a symmetric s-linear bounded
operator D :(R""')*—»R with Dx%, #0. The couple of polynomials
(R- D, S-D,) satisfies (1) for G; since

R -D)=0,R+528,Pyx+s
O(S - D)=0,S+520,04+5
OHR-D)=0R+s<Pyx+s=Im+min(l,lm—m' +1")

2 Im,
2 Im,

<Im+ 1,
oS -D,)=08S+s<KQx +s=Im+min(l —1' + m', m)
<im 4 m,
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0[(G;-S—R) D |=08,0x+1' +m +t+1+s
=m+min(l+m' +t,m+10'+1)+ 1
>m+1l4+m+ 1 since

m<m' +t, ISV +¢
Also (S - D;)(x.,;)# 0 and if Q,(0)=1 then S,(0)= 1.

We give some examples and illustrate that it is very well possible that if
P./Qs« is the (I, m}-APA for F(x), then R,/S, is the normalized
(I, my-APA  for Gyx,). Take F:R’->R:(")-3(1+e"""?). The
normalized (1, 1}-APA for F is 1/(1 — 3(x, + x,)). For j= I:

x,=o0,
G :R-oR:x,—>5(1 +e%),
normalized (1, 1}-APA for G, is 1/(1 — ix,).

For j=2:

X, =0,

G,:R>R:x,—5(1+e),

normalized (1, 1}-APA for G, is1/(1 — ix,).
Take

F:RLR - (XI)M,M
X X =X,
The (1, 1)-APA for F is

Xy +x, +0.5(x7 + 3x,x, + x3)
X, +x,— 0507 +x,x, +x})°

For j=2:
X, =0,
G, R-o>R:x,—e",
normalized (1, 1}~APA for G, is (1 + 0.5x,)/(1 — 0.5x,).
We also searched for a product property of the following kind. Let

(P/Q)(X 5 X)) be the (I, m)-APA for F,:R¥> R and let (P,/Q,)
(X4 155 X,,) be the ([, m)~APA for F,: R""* 5 R. Then is

P (x5 Xi) - Po(Xpy 10 X,)

P o=
Q " Qi x) - QalXuy s X,)
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the (I, m}-APA for F: R" > R :x— F(x) = F (x| ..., x;) - Fy(x4 41000 x,)? In
fact it is not obvious that the multivariate approximants should have this
property. The following counterexample proves it.

Let F,:R>R:x,—»e" and F,:R->R:x,—»e*% Then F:R?-R:
(5 e -er=¢"**2, Take /=1 and m=2.

The (1, 2)-APA for F, is

P, I +3x,
)=
p 1—3x, +§x7
and for F, is
P, I+14x,
— (X)) =———"—.
0, : — 3%, +¢x3
The (1, 2)-APA for F is
1+ 300, +x3) Pi(x)) - Py(x,)

1— 300, + x,) + ¢(x, + x,) Q.(x) - OQy(xy) "

Another kind of product-property, however, has been proved in |3].
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