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For an operator F: R” + IR, analytic in the origin, the notion of (abstract 
multivariate Pade-approximant (APA) is introduced, by making use of abstract 
polynomials. The classical Pad&approximant (n = 1) is a special case of the 
multivariate theory and many interesting properties of classical Pad&approximants 
remain valid such as covariance properties and the block-structure [Annie A. M. 
Cuyt, J. Oper. Theory 6 (2) (1981), 207-2091 of the Pad&table. Also a projection- 
property for multivariate Padeapproximants is proved. 

1. DEFINITION OF MULTIVARIATE PADS-APPROXIMANT 

Many attempts have been made to generalize the concept of Padt- 
approximant for multivariate functions. We refer to [I, 4-81. 

Another generalisation is the following one. The Banach-space R” is 
normed by one of the Minkowski-norms; we write 0 = (o,..., 0)” and 
x = (x, ,..., xJT. Let F : R” + R be analytic in the origin: 

3r > o : F(x) = kzo ; F@‘(O) xk for Il(x, ,..., xJll -c r, 

where (l/o!) F(0’(O) x0 = F(0) and Fck’(0) d enotes the kth Fritchet-derivative 
of F in 0; (l/k!) Fck’(0) is a symmetric k-linear bounded operator: 
(Rn)k + R 19, pp. 109-l 121 and is equal to 

\’ 1 akF(x) 

k,+..-y-+k,=k k,! ... k,! 8:; .+. 82 x=,, x” “’ 
X;n. 

DEFINITION 1.1. (a) P:IR”~IR:x~P(x)=A,xm+...+Ao is an 
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abstract polynomial if for j = O,..., m the Aj are symmetric j-linear bounded 
operators: (lR”y’+ IR, in other words, if 

Ajxj= 1 aj,...j,xil...xi, with ail.. .j in iR. II 
j,+. . . +j,=j 

(b) a,P=m, is the order of the abstract polynomial P if for 
0 < k <.m, : A,xk = 0 and A,,x”‘l& 0. 

(c) aP= m2 is the exact degree of the abstract polynomial P if for 
m,(k<m:Akxk=OandA,,,ZxmZ&O. 

We say that J(x) = 0(x’) if 

SlJ,rEIR,+,o<r< 1 :]F(x)l<J.i]x]]’ for /Ix/] < r. 

DEFINITION 1.2. The couple of abstract polynomials 

(P(x), Q(x)) = (Alm+,~‘m+’ + .e. + A,,,,x’~,B,~+~~~~+~ + ... +&x’“‘) 

such that the power series (F e Q - P)(x) = O(X’“‘~‘~“‘~ ‘) (1) 

is called a solution of the Pad&approximation problem of order (1, m), 

The choice of order and degree of P and Q is justified in 121. 
For every non-negative integers f and m a solution of the problem 

described in Definition 1.2 exists [2]. We call the quotient of two abstract 
polynomials P/Q : I?” + IR : x + P(x)/Q(x) reducible if there exist abstract 
polynomials T, R, S such that P = T. R and Q = T. S and 3T > 1. If (P, Q) 
and (R, S) are solutions of (1) (for I and m fixed), then P(x) + S(x) = 
Q(x) . R(x) for every x in iR”. This “equivalence-property” of solutions of 
(1) justifies the following definitions. 

DEFINITION 1.3. Let (P, Q) be a couple of abstract polynomials 
satisfying (l), with Q(x) $0. Let P*/Q* be the irreducible form of p/Q such 
that Q,(O) = 1. If this form exists, we call it the normalized (abstract) 
multivariate Pad&approximant (APA) of order (I, m) for F (normalized 
(1, m)-APA). 

Remark that for the polynomial T such that (P, Q) = (P* . T, Q, . T): 

&T=a,Q-a,Q*. 

For the normalized (I, m)-APA we have 

I’ := ap, < 1, 

m’ := aQ* < m, 

a,T> Im. 



MULTIVARIATE PADi-APPROXIMANTS 285 

DEFINITION 1.4. Let (P, Q) be a couple of abstract polynomials 
satisfying (l), with Q(x) f 0. If the irreducible form P*/Q* is such that 
a,Q, > 1, then we call PJQ, the (abstract) multivariate Padk-approximant 
of order (1, m) for F ((1, mtAPA). 

The (I, m)-APA is unique up to a multiplicative constant in numerator 
and denominator. 

For the (1, mkAPA 

1’ := 3P, - &,Q, < 1, 

m’ :=aQ,-a,Q*<m, 

a,T>lm-a,Q,. 

From now on we shall often consider the normalized (I, m)-APA to be a 
special case of the (1, m)-APA and not mention the specification normalized. 

2. EXISTENCE OF A NONTRIVIAL SOLUTION OF (1) 

(a) When n = 1, the definition of the abstract Pad&approximant is 
precisely the classical definition [ 3 1. 

(b) The problem (1) is equivalent with the solution of two linear systems 
of equations: 

c, . Blmx’m = A,,,x’y 

vx E Ri”. 

C,X’.B,mX’m+.- +CO.B,,+,x’m+‘=A,,t,x’m”, 

c,+,x’+’ . BlmXIm + *.. + Cl+,mmX’+‘-m~ B,,+n,x’m+m=O, 

(la) 

C;+mXltm . BIm.P + ‘.+ + C,x’ . B,,+,x”“+~ = 0, 

with B,,+/x”“+~ = 0 for j > m. 

vx E R”. 

(lb) 

Ckxk = (l/k!) Ftk’(0) xk for k > 0, 

Ckxk = 0 for k < 0. 

The homogeneous system contains N, = (“:~~::~“‘) - ( ‘:dy:‘) equations in 

N, = ( “p’,“) - (“;;“y) unknown coefficients of the B,,+j. For 
n = 2 : N, - N, = 1 and so one unknown can be chosen and a nontrivial 
solution always exists. For n > 2: the nontriviality of the solution is proved 
as follows. Suppose that the matrix 
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of the homogeneous system (lb) has rank k. in other words, that a vector x 
in 1:” exists such that the determinant of a k x k submatrix is nonzero. In 
any case 0 ,< k < m. The homogeneous system (1 b) can now be reduced to a 
homogeneous system of k equations in k A 1 of the unknown B,,, . ,x”“. i 
(j = O,.... m): 

with 1 < hi ,< m for i = I..... k. 

and 0 <ji < m for i = O..... k. 

j,, <j, < ... Cj,. 

In fact we have removed (m - k) rows and (m - /i) columns of the coef- 
ficient matrix of system (1 b) to obtain the coefficient matrix of system (1~). 
We will number the rows that we have removed h, ?.... h, k and the columns 
that we have removed J, + l....,J,,, k t I (notice that the rows that we have 
retained are numbered h, . . . . . h, and the columns j,, + l,..., j, + 1). 

If k = m then a solution of (lb) can be calculated by means of the 
following determinants. 

B In1 , i-y 
Im-i = 

C,X’ 

C,X’ 

I . 

:-.~,-J=? . . . c, , ,),. Y’ * ’ “’ 

c I.,,, ,x’-‘” ’ /C,.,.r’*./ C,X’ 

jth column in Bln,.~“” replaced by 
this column (j = l..... m) 

Let us introduce the following notations: 
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c,+h,-j,X'+w' . . . c,+E,-j,~,x'+bjm-k 

D(x)= : 

c,+F,~,~j,x~+Lk-j~ . . . C,+~,~H-jm~kX1+%m~k-jm~k 

C Ifh,-j, 
Xl+hlrjl . . . c 

I+h,-jk 
Xl+hl-jk 

Djo(X) = i 3 

C I+ hkpj,x 
l+h,-j, 

. c Ithk-j, 
Xl+hk-jk 

281 

C Xl+hl-jl 
l+h,-J, 

C /thk-j,x 
It hk-il 

ith column in DjO(x) replaced by 
this column (i = l,..., k) 

Then clearly, because of the Laplacian expansion of the determinant 
B lm+jx lmti, for j=jO,j ,,..., jk, 

B In? tJix ‘m+.jf = D(x) . Dl,(x) + . . 

where D(x) is a p-linear bounded operator with 0 <p < lm + j,. 
For k < m a nontrivial solution of system (lb) is now given by 

B ,Xlm+j = 0 
iii7tJ 

for j =ji (i = l,..., m - k), 

B ,,,,+ j~‘m +j = E,xP . D,ii(x) for j = jj (i = O,..., k), 

with EpxP a nontrivial symmetric p-linear bounded operator: (Rfl)p + R, 
because one of the Dj,(x) is nontrivial. We also prove the following 
important theorem. 

THEOREM 2.1. Let P*/Q* be the (I, mtAPA for F. Then there exists 
s,lm-a,Q*~sslm-a,Q,+min(f-l’,m-m’), and a nontrivial 
symmetric s-linear bounded operator D, : (R”)” + R, such that (P*(x) . DSx*, 
Q,(x) . DsxS) satisfies (1). 

Proof: Because (1) is solvable for every I, m E N we may consider 
abstract polynomials P and Q that satisfy (1) and supply P, and Q, with 
Q(x) f 0. Because of Definition 1.4 or 1.3, there exists an abstract 
polynomial T such that P = P, . T and Q = Q, . T. Now a,T = 
a,,Q-a,,Q*>Im-a,Q,. We write 



288 ANNIE A. M. CUYT 

8P-dP, ,<lm+l-l’-a,Q, 

/ 
s=a,T=Im-8a,Q, i-r<aT 

\ 
aQ-dQ,<Im-tm-ml-a,Q, 

with r > 0. So lm-a,Q*<s<lm--a,Q, +min(l-l’,m-m’). For 
T(x) = D,x* + DS+] xS+’ + ... : [(F . Q* -P*) e D,](x) = O(X’~+‘+“‘+‘) 
because of the equivalence of (1) with (la) and (lb). 

We illustrate this theorem with an example. Let 
F:iR+R :(;;) + 1 + sin(x, +x1x2). The (1,2)-APA is 

x1 -x2 + 2x; - 2x,x, 

x,-x,-x,x,-~x;+x,x;+~x;’ 

Theorem 2.1 holds with s = 1, a,, Q, = 1 and DI($) = x, . 
When we compare this theorem with the similar one for the classical 

Padbapproximant we remark that the term lm in s is due to the choice of the 
order of the couple of polynomials (P, Q) in Definition 1.2 and that the term 
(-a,Q*) in s is due to the fact that sometimes the abstract Pade- 
approximant cannot be normalized as in Definition 1.3. 

3. COVARIANCE PROPERTIES 

Several covariance properties can already be found in [3, pp. 204-2061, 
where they are formulated for operator Pad&approximants (the multivariate 
Pad&approximants are a special case); normalized (1, m)--APA are 
transformed into normalized (1, m)-APA and (1, mFAPA are transformed 
into (1, m)-APA. 

Another property, especially for multivariate Pad&approximants, is added 
and proved here. 

THEOREM 3.1. Let yi = a,x,/(l + b,x, + ... + b,x,) for i = l,..., n and 
Y = (Y, ,-*., Y,)‘. Let the (1,ltAPA for F(x) be P,(x)/Q,(x) and let 

G(x) := F(Y), 

R,(x) := P*(y). (1 + b,x, + ... + b,x,Jk 

and 

S,(x) := Q*(Y). (1 + b,x, + ... + b,x,Jk 

with k = max(aP,, aQ*). Then the (1, l)-APA for G(x) is R,(x)/S,(x). 



MULTIVARIATE PADI?-APPROXIMANTS 289 

Proof. Because of Theorem 2.1 there exists a positive integer s, 
12-~,Q,~s~12-~,Q,+min(l-~P,+~,Q,,I-~Q,+~,Q,), and a 
nontrivial symmetric s-linear bounded operator D, : (R”)’ + R such that 
[(F . Q* - P*) . D,](x) = 0(x’*+ *‘+I). We write 

D&,x, ,..., a,~,,) m4 
Ds(y)= (1 +b,x, + ... +bnx,)S = (1 f&x, + ... +bnxJ’ 

For k = max(aP, , aQ*): 

&(R, * fi,) > W’, . 0,) > I*, 

40, . fi.J > 4,(Q* . 0,) > I*, 

max[Wh - D,), d(S, ~~,)~<k+s<l*+1. 

so 

[(G . S* -R,) . fisl(x> 
= [(F. Q, -P*) . D,](y). (1 + b,x, + ... + bnx,Jk+’ 

= o(y”+*‘+‘). (1 + b,x, + ... + b”X,)k+’ 

= 0(x /2t2/+ I 
1. 

And thus [(G . S, - R,) . OS](x) = O(X’*~*‘~ ‘). 
We will now show that the irreducible form of [R, . D,](x)/[ S* . Es](x) 

is R * (x)/S, (x). Suppose 

R*(x) = u(x) . v(x) 

S*(x) = U(x) . W(x) 
with au> 1. 

Since 

we know that 

Consequently 

alxl a2 x2 as, -= -= . . . =-= 
Y I Y2 Y” 

1 + 2 b,x; 
i- I 

a, Yi x.=-x 1 
aiYn ” 

for i = l,..., n. 
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or 

So we can write 

Thus 

implies that 

and thus 

with 

k 

P*(y) = U(x) * F(x) 1 - f- 5 yi 

( i 

k 

iT* ai 

) 

Q.+(y) = i?(x) . w(x) 

P*(Y) = VY>. qy>, 

Q*(Y) = U(Y) . WY), 

V(y)= qx I,..., XJ . 

W(y)= W(x ,‘..‘, xn). 
c 

1 - T1 Iy. 
1 

k-k’ 

,T,ai’ ’ 

k’=ao(au+av<kandaU+aW<k). 

This contradicts the fact that P*/Q* is irreducible. 



MULTIVARIATE PADk-APPROXIMANTS 291 

Since a,s, = a,Q, and S,(O) = Q,(O), the normalized (1, l)-APA for F 
is transformed into the normalized (1, I)-APA for G and the (1, I)-APA for F 
is transformed into the (1,ltAPA for G. 

4. PROJECTION-PROPERTY 

We introduce the following notations: 

jx’ = (x, )...) xjp 1) 0, xj+ 1)...) X”)’ 

Xfj’ = (x, )...) xj-, ) xj+ , ,...) xn). 

THEOREM 5.1. If the (1, mkAPA for F : iR” + IR is P,/Q, and 

j E { l,..., n 1, 

S(xrjJ :=Q&) $0, 

R(XSj,) := P*(‘x”,, 

Gj(xcj,) := F(‘f), 

then the (1, m)-APA for Gj : R n ’ + IR is the irreducible form R,IS* of 
R/S. 

Proof: Since the (I, mEAPA is P*/Q* : ao(F. Q, - P*) = i3,Q* + I’ + 
m’ + t + 1 with t > 0 [3, p. 2081. Using a Minkowski-norm in R” : (] ‘xl] in 
R” equals ]]x,~,]] in R”-‘. Thus (F . Q, - P*)(j;) = (Gj . S - R)(x,~,) = 
~(X$Lb+~‘+m’+~+ 1). Now ~P,=a,Q*+l’~aP~lm+l and aQ*= 
a,,Q*+m’<aQ<lm+m imply lm - a, Q, + min(l - I’, m - m’) > 0. 
Take s = lm - a, Q, + min(l - l’, m - m’) and a symmetric s-linear bounded 
operator D, : (Rnpr)s --) R with Dsxfj, f 0. The couple of polynomials 
(R . D,, S . 0,) satisfies (1) for Gj since 

a,(R . D,) = a,R + s > aOP, + s > lm, 

a,(s.D,)=a,s+s~a,Q,+s~lm, 

a(R . 0,) = aR + s < aP, + s = lm + min(l, m - m’ + 1’) 

< lm + 1, 

a(s.o,)=as+s<aQ,+s=Zm+min(f-/‘+m’,m) 

< lm -I- m, 
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a,[(Gj.S-R)‘D,]=a,Q*+l’+m’+t+ 1 +S 

= lm + min(Z + m’ + t, m + I’ + t) + 1 

>lm+l+m+l since 

m,<m’$t, I< I’ + t. 

Also (S . D,)(x,~,) & 0 and if Q*(O) = 1 then S,(O) = 1. 
We give some examples and illustrate that it is very well possible that if 

PcdQ* is the (1, mtAPA for F(x), then R,/S, is the normalized 
(I, m)-APA for Gj(xtj,). Take F: W* + iR : (.zz) + +(I + e-‘l+-‘~). The 
normalized (1, 1tAPA for F is l/(1 - f(x, +x2)). Forj = 1: 

x, =o, 

G, : IH + R : x2 + $(l + $z), 

normalized (1, l)-APA for G, is l/(1 - 4x,). 

For j= 2: 

x* = 0, 

Take 

G, : If? + R : x, --$ f(1 + e”‘), 

normalized (1, 1 tAPA for G, isl/( 1 - 4x,). 

F:R2+IH: 
x,eXl -x2e”? 

x,-x* 

The (1, 1 tAPA for F is 

x, + x* + 0.5(x: + 3x,x2 +x:> 
x1 +x2 -0.5(x: +x,x* +x:> . 

For j= 2: 

x2 = 0, 

G, : R + R : x, + exl, 

normalized (1, 1 )--APA for G, is (1 + 0.5x,)/( 1 - 0.5x,). 

We also searched for a product property of the following kind. Let 
(P,lQ&, >---, x,J be the (I, mtAPA for F, : Rk + R and let (P2/Q2) 
6 k+ ,,..., x,) be the (I, mtAPA for F, : IRnek + R. Then is 
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the (I,mkAPA for F: IR'+ IF? :x+ F(x)= F,(x,,...,x~) . FZ(xk+,,...,x,)? In 
fact it is not obvious that the multivariate approximants should have this 
property. The following counterexample proves it. 

Let F, : R --t IF? : x, + e”’ and F, : R --f R : x, + e”‘. Then F : R2 + R : 
(c;) --t ex' . e “2=ex1t12.TakeI=1 andm=2. 

The (1, 2)-APA for F, is 

$qx,,= 1 + ix, 
I l-$x, + ix; 

and for F, is 

+ (x*) = 1 + ix* 
2 1 - $x2 + ix;. 

The (1,2)-APA for F is 

1 + 4(x, + x*) P,(x,) . P*(x*) 
1 - 5(x, + ~2) + b(x, + ~2)’ # Q,(x,> . Q,(x,) ’ 

Another kind of product-property, however, has been proved in 13 1. 
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