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This paper is concerned with the existence of positive solutions to the class of p&q elliptic
problems with critical growth type

−div
(
a
(|∇u|p)|∇u|p−2∇u

) + b
(|u|p)|u|p−2u = λ f (u) + |u|γ ∗−2u,

u(z) > 0, ∀x ∈ R
N ,

where λ is a positive parameter, a : R → R is a function of C1 class and b, f : R → R are
continuous functions.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this article is to investigate the existence of positive solutions for the following class of quasilinear
problem⎧⎨⎩−div

(
a
(|∇u|p

)|∇u|p−2∇u
) + b

(|u|p
)|u|p−2u = λ f (u) + |u|γ ∗−2u in R

N ,

u ∈ X, 1 < p < N,

u(z) > 0, ∀z ∈ R
N ,

(Pλ)

where γ ∗ and X will be stated later.
Let us introduce the set W as being the collection of all functions k : R

+ → R
+ satisfying the following properties:

There exist constants a0,b0 > 0, a1,b1 � 0, q > p such that

a0 + H(b1)a1t
q−p

p � k(t) � b0 + b1t
q−p

p for all t � 0, (k1)

where H(s) = 1 if s > 0 and H(s) = 0 if s = 0.
There exist constants α and θ such that γ < θ < γ ∗ and

K (t) � 1

α
k(t)t with 1 <

q

p
� α <

θ

p
, (k2)

for all t � 0, where K (t) = ∫ t
0 k(s)ds and where γ = (1 − H(b1))p + H(b1)q and γ ∗ = (1 − H(b1))p∗ + H(b1)q∗ .

The function

t → k
(
t p)

t p−2 is increasing. (k3)
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The hypotheses on functions a, b and f are the following: a,b ∈ W and the nonlinearity f : R → R is a continuous
function and since we are looking for positive solutions, we suppose that

f (t) = 0 for all t < 0. ( f1)

Moreover, we assume the following growth conditions at the origin and at infinity:

lim|t|→0

| f (t)|
|t|p−1

= 0 ( f2)

and there exists s ∈ (γ ,γ ∗) verifying

lim|t|→∞
| f (t)|
|t|s−1

= 0. ( f3)

In this article, we use the classical Palais–Smale condition. Related with this condition, we suppose that f verifies the
well-known Ambrosetti–Rabinowitz superlinear condition,

0 < θ F (t) =
t∫

0

f (ξ)dξ � t f (t) for all t > 0, ( f4)

where θ appeared in (a2).
Our main result is

Theorem 1.1. Assume that a ∈ C1(R+,R
+) ∩ W , b ∈ C(R+,R

+) ∩ W and that the conditions ( f1)–( f4) hold. Then, there exists
λ∗ > 0, such that problem (Pλ) has a ground-state positive solution in C1,α(RN ), with 0 < α < 1, for all λ � λ∗ .

Now, we will give some examples of functions a and b in order to illustrate the degree of generality of the kind of
operators studied here.

Example 1.1. Considering a(t) = b(t) = 1, we have that a,b ∈ W with a0 = b0 = 1 and b1 = 0 and a1 > 0. Hence, Theorem 1.1
is valid for the problem

−�pu + |u|p−2u = λ f (u) + |u|p∗−2u in R
N .

Note that, in this case, Theorem 1.1 is the main result in [1] with λ = 1.

Example 1.2. Considering a(t) = b(t) = 1 + t
q−p

p , we have that a,b ∈ W with a0 = b0 = a1 = b1 = 1. Hence, Theorem 1.1 is
valid for the problem

−�pu − �qu + |u|p−2u + |u|q−2u = λ f (u) + |u|q∗−2u in R
N .

Example 1.3. Considering a(t) = 1 + 1

(1+t)
p−2

p
and b(t) = 1, we have that a ∈ W with a0 = 1, b0 = 2 and b1 = 0, a1 > 0 and

b ∈ W with a0 = b0 = 1 and b1 = 0 and a1 > 0. Hence, Theorem 1.1 is valid for the problem

−div

(
|∇u|p−2∇u + |∇u|p−2∇u

(1 + |∇u|p)
p−2

p

)
+ |u|p−2u = λ f (u) + |u|p∗−2u in R

N .

Example 1.4. Considering a(t) = 1 + t
q−p

p + 1

(1+t)
p−2

p
and b(t) = 1 + t

q−p
p , we have that a ∈ W with a0 = 1, b0 = 2 and

b1 = a1 = 1 and b ∈ W with a0 = a1 = b0 = b1 = 1. Hence, Theorem 1.1 is valid for the problem

−�pu − �qu − div

( |∇u|p−2∇u

(1 + |∇u|p)
p−2

p

)
+ |u|p−2u + |u|q−2u = λ f (u) + |u|q∗−2u in R

N ,

or still more complex problems, for example:

Example 1.5. Considering a(t) = b(t) = 1 + t
q−p

p + 1

(1+t)
p−2

p
, we have that a,b ∈ W with a0 = 1, b0 = 2 and b1 = a1 = 1

−�pu − �qu − div

( |∇u|p−2∇u

(1 + |∇u|p)
p−2

p

)
+

(
|u|p−2u + |u|q−2u + |u|p−2u

(1 + |u|p)
p−2

p

)
= λ f (u) + |u|q∗−2u in R

N .
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Other combinations can be made with the functions presented in the examples above, generating very interesting elliptic
problems from the mathematical point of view.

The quasilinear equation of the type p&q-Laplacian has received special attention in the last years, see for example the
articles [6–8,10,11,13,14,17,20] and the references therein.

The existence and multiplicity of solutions of quasilinear problem{−div
(
a
(|∇u|p

)|∇u|p−2∇u
) = f (x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain of R
N , were studied by J.M. B do O (see [7,8]). In [7] the author showed a result of

multiplicity using a Z2 version of the Mountain Pass Theorem [18], f being a function with subcritical exponential growth.
In [8] the author used an argument of minimization, f being a function with subcritical growth.

The subcritical problem{−�pu − �qu + v(x)|u|p−2u + w(x)|u|q−2u = λ f (x, u) in Ω,

u = 0 on ∂Ω,

was studied by L. Cherfils and V. Il’yasov in [6]. In this article, the authors showed a result of existence and nonexistence
using a variational principle.

In [17], Medeiros and Perera showed the existence of two solutions for the problem{−�pu − �qu = λ|u|p−2u − μ|u|q−2u + f (x, u) in Ω,

u = 0 on ∂Ω.

The first solution was obtained via Mountain Pass Theorem and the second solution was obtained via cohomological linking
theorem.

In [14], the problem with critical growth on bounded domain of R
N was treated by Li and Guo. The authors showed a

result of multiplicity of solutions for the problem{−�pu − �qu = |u|p∗−2u + μ|u|r−2u in Ω,

u = 0 on ∂Ω.

The case on R
N was studied in [10] by He and Li. More precisely, the authors studied the subcritical problem{−�pu − �qu + m|u|p−2u + n|u|q−2u = f (x, u) in R

N ,

u ∈ W 1,p
(
R

N
) ∩ W 1,q

(
R

N
)
,

using the Mountain Pass Theorem and the concentration–compactness principle of Lions [15].
Other solutions’ existence’s results of p&q-problems can be seen in [13,20]. For a result of regularity, see [11].
Moreover, that class of equations comes, for example, from a general reaction–diffusion system:

ut = div
[

D(u)∇u
] + c(x, u), (1.1)

where D(u) = (|∇u|p−2 + |∇u|q−2). This system has a wide range of applications in physics and related sciences, such as
biophysics, plasma physics and chemical reaction design. In such applications, the function u describes a concentration, the
first term on the right-hand side of (1.1) corresponds to the diffusion with a diffusion coefficient D(u); whereas the second
one is the reaction and relates to source and loss processes. Typically, in chemical and biological applications, the reaction
term c(x, u) is a polynomial of u with variable coefficients (see [11,13,20]).

Our theorem extends or complements the articles above, because we consider a more general class of operators, f has a
critical growth and problem (Pλ) is on R

N .

2. Variational framework

We say that u ∈ X with u > 0 on R
N is a weak solution of the problem (Pλ) if it verifies∫

RN

a
(|∇u|p)|∇u|p−2∇u∇φ dx +

∫
RN

b
(|u|p)|u|p−2uφ dx − λ

∫
RN

f (u)φ dx −
∫

RN

|u|γ ∗−2uφ dx = 0

for all φ ∈ X , where X denotes the Sobolev space W 1,p(RN ) ∩ W 1,γ (RN ) endowed with the norm

‖u‖ = ‖u‖1,p + H(b1)‖u‖1,q,

where

‖u‖m
1,m =

∫
RN

|∇u|m dx +
∫

RN

|u|m dx.
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We will look for solutions of (Pλ) by finding critical points of the C1-functional I : X → R given by

I(u) = 1

p

∫
RN

A
(|∇u|p)

dx + 1

p

∫
RN

B
(|u|p)

dx − λ

∫
RN

F (u)dx − 1

γ ∗

∫
RN

uγ ∗
+ dx.

Note that

I ′(u)φ = 1

p

∫
RN

a
(|∇u|p)|∇u|p−2∇u∇φ dx + 1

p

∫
RN

b
(|u|p)|u|p−2uφ dx − λ

∫
RN

f (u)φ dx −
∫

RN

uγ ∗−1
+ φ dx,

for all φ ∈ X .
In order to use critical point theory we firstly derive the results related to the Palais–Smale compactness condition.
We say that a sequence (un) is a Palais–Smale sequence for the functional I if

I(un) → c∗
and ∥∥I ′(un)

∥∥ → 0 in (X)′,
where c∗ = infη∈Γ maxt∈[0,1] I(η(t)) > 0 and Γ := {η ∈ C([0,1], X): η(0) = 0, I(η(1)) < 0}.

If every Palais–Smale sequence of I has a strong convergent subsequence, then one says that I satisfies the Palais–Smale
condition ((PS) for short).

Firstly one proves that functional I has the geometry of Mountain Pass Theorem.

Lemma 2.1. For each λ > 0, the functional I satisfies the following conditions:

(i) There exist r, ρ > 0 such that:

I(u) � ρ with ‖u‖ = r.

(ii) There exists e ∈ Bc
r (0) with I(e) < 0.

Proof. (i) By ( f2) and ( f3), we get

I(u) � 1

p

∫
RN

A
(|∇u|p)

dx + 1

p

∫
RN

B
(|u|p)

dx − λ
ε

p

∫
RN

|u|p dx − λ
Cε

s

∫
RN

|u|s dx − 1

γ ∗

∫
RN

|u|γ ∗
dx.

Now, by (k1) we derive

I(u) � a0

p

∫
RN

|∇u|p dx + H(b1)
a1

q

∫
RN

|∇u|q dx + a0

p

∫
RN

|u|p dx + H(b1)
a1

q

∫
RN

|u|q dx − λ
ε

p

∫
RN

|u|p dx

− λ
Cε

s

∫
RN

|u|s dx − 1

γ ∗

∫
RN

|u|γ ∗
dx.

So

I(u) � C1
(‖u‖p

1,p + H(b1)‖u‖q
1,q

) − λ
Cε

s

∫
RN

|u|s dx − 1

γ ∗

∫
RN

|u|γ ∗
dx.

Choosing 0 < r = ‖u‖ < 1, we get ‖u‖(q−p)
1,p < 1 and, hence,

I(u) � C1
(‖u‖q

1,p + H(b1)‖u‖q
1,q

) − λ
Cε

s

∫
RN

|u|s dx − 1

γ ∗

∫
RN

|u|γ ∗
dx.

Hence,

I(u) � C2‖u‖q − λ
Cε

s

∫
RN

|u|s dx − 1

γ ∗

∫
RN

|u|γ ∗
dx.

By the Sobolev embedding we get
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I(u) � C2‖u‖q − λC3‖u‖s − C4‖u‖γ ∗

and, since that q < s < γ ∗ , the lemma is proved.
(ii) From ( f4), there exist C4, C5 > 0 such that

F (t) � C4tθ − C5, ∀t > 1.

Thus, fixing φ ∈ C∞
0 (RN ) with φ > 0 in R

N , we get

I(tφ) � 1

p

∫
RN

A
(
t p|∇φ|p)

dx + 1

p

∫
RN

B
(
t p|φ|p)

dx − C4tθ

∫
RN

φθ dx + C5| suppφ| − tγ
∗

γ ∗

∫
RN

|u|γ ∗
dx.

From (k1) we derive

I(tφ) � b0t p

p

∫
RN

|∇φ|p dx + b1tq

q

∫
RN

|∇φ|q dx + b0t p

p

∫
RN

|φ|p dx + b1tq

q
H(b1)

∫
RN

|φ|q dx

− C4tθ

∫
RN

φθ dx + C5| suppφ| − tγ
∗

γ ∗

∫
RN

|u|γ ∗
dx.

Since γ ∗ > θ > γ , there exists t̄ > 1 such that e = t̄φ satisfies I(e) < 0 and ‖e‖ > ρ . �
We devote the rest of this section to show that c∗ is attained by a positive function. We start by defining the best

constant of the Sobolev embedding W 1,γ (RN ) ↪→ Lγ ∗
(RN ) as

S := inf

{ ∫
RN

|∇u|γ dx: u ∈ X,

∫
RN

|u|γ ∗
dx = 1

}
.

As in [5] and arguing as in [2], we are able to compare the minimax level c∗ with a suitable number which involves the
constant S .

Lemma 2.2. If the conditions (k1)–(k3) and ( f1)–( f4) hold, then there exists λ∗ > 0 such that c∗ ∈ (0, ( 1
θ

− 1
γ ∗ )(a0 S)N/γ ) for all

λ � λ∗ .

Proof. Considering φ ∈ C∞
0 (RN ) with φ > 0, there exists tλ > 0 verifying I(tλφ) = maxt�0 I(tφ) and tλφ ∈ N , that is,∫

RN

a
(|tλ∇φ|p)|tλ∇φ|p dx +

∫
RN

b
(|tλφ|p)|tλφ|p dx = λ

∫
RN

f (tλφ)tλφ dx + tγ
∗

λ

∫
RN

φγ ∗
dx.

Using (k1), we have

b0

∫
RN

|tλ∇φ|p dx + b1

∫
RN

|tλ∇φ|q dx + b0

∫
RN

|tλφ|p dx + b1

∫
RN

|tλφ|q dx � λ

∫
RN

f (tλφ)tλφ dx + tγ
∗

λ

∫
RN

φγ ∗
dx. (2.1)

Since b1 � 0, then using (2.1) we get

t p
λb0

∫
RN

|∇φ|p dx + b1tq
λ

∫
RN

|∇φ|q dx + b0t p
λ

∫
RN

|φ|p dx + b1tq
λ

∫
RN

|φ|q dx � tγ
∗

λ

∫
RN

φγ ∗
dx

which implies that (tλ) is bounded. Thus, there exists a sequence (λn) ⊂ R such that

tλn → t0 � 0 when λn → +∞.

Note that if t0 > 0 then there exists K > 0 such that

K � b0

∫
RN

|tλn∇φ|p dx + b1

∫
RN

|tλn∇φ|q dx + b0

∫
RN

|tλnφ|p dx + b1

∫
RN

|tλnφ|q dx

and

λn

∫
N

f (tλnφ)tλnφ dx + tγ
∗

λn

∫
N

φγ ∗
dx → +∞
R R
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which is an absurd. Hence we conclude that t0 = 0. Thus, if we define η∗(t) = te for t ∈ [0,1], it follows that η∗ ∈ Γ and
thus

0 < c∗ � max
t∈[0,1] I

(
η∗(t)

) = I(tλφ) � b0t p
λ

∫
RN

|∇φ|p dx + tq
λb1

∫
RN

|∇φ|q dx + b0t p
λ

∫
RN

|φ|p dx + b1tq
λ

∫
RN

|φ|q dx.

This way, if λ is large enough we derive

b0t p
λ

∫
RN

|∇φ|p dx + tq
λb1

∫
RN

|∇φ|q dx + b0t p
λ

∫
RN

|φ|p dx + b1tq
λ

∫
RN

|φ|q dx <

(
1

θ
− 1

γ ∗

)
(a0 S)N/γ ,

which leads to

0 < c∗ <

(
1

θ
− 1

γ ∗

)
(a0 S)N/γ . �

Remark 2.3. Note that, from the lemma above, if λ → ∞, then c∗ → 0.

Lemma 2.4. Let (un) be a sequence in X such that I(un) → c∗ and I ′(un) → 0 as n → ∞. Then

i) un ⇀ u in X.
ii) There exists λ∗ > 0 such that I ′(u) = 0 for all λ � λ∗ .

iii) un � 0 for n ∈ N.

Proof. i) We shall prove that (un) is bounded in X . Indeed, from ( f3) we get

C
(
1 + ‖un‖

)
� I(un) − 1

θ
I ′(un)un.

So

C
(
1 + ‖un‖

)
� 1

p

∫
RN

A
(|∇un|p)

dx − 1

θ

∫
RN

a
(|∇un|p)|∇un|p dx + 1

p

∫
RN

B
(|un|p)

dx − 1

θ

∫
RN

b
(|un|p)|un|p dx.

By (k2) we derive

C
(
1 + ‖un‖

)
�

(
1

pα
− 1

θ

)[ ∫
RN

a
(|∇un|p)|∇un|p dx +

∫
RN

b
(|un|p)|un|p

]
dx.

From (k1) we have

C
(
1 + ‖un‖

)
�

(
1

pα
− 1

θ

)
a0

∫
RN

[|∇un|p + |un|p]
dx +

(
1

pα
− 1

θ

)
H(b1)a1

∫
RN

[|∇un|q + |un|q
]

dx.

Hence,

C
(
1 + ‖un‖

)
� C1‖un‖p

1,p + C2 H(b1)‖un‖q
1,q. (2.2)

Thus, if b1 = 0, then (un) is bounded in X . If b1 > 0, suppose, for contradiction, that, up to a subsequence, ‖un‖ → +∞. We
consider several cases:

a) ‖un‖1,p → +∞ and ‖un‖1,q → +∞;
b) ‖un‖1,p → +∞ and ‖un‖1,q is bounded;
c) ‖un‖1,p is bounded and ‖un‖1,q → +∞.

In the first case, for n sufficiently large, ‖un‖q−p
1,q � 1 and ‖un‖q

1,q � ‖un‖p
1,q . Thus, recalling (2.2),

C
(
1 + ‖un‖

)
� C1‖un‖p

1,p + C2‖un‖p
1,q � C3

(‖un‖1,p + ‖un‖1,q
)p = C3‖un‖p,

which is an absurd.
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In case b), by ( f4), we have

C
(
1 + ‖un‖1,p + ‖un‖1,q

) = C
(
1 + ‖un‖

)
�

(
1

p
− 1

θ

)
‖un‖p

1,p .

Thus, we derive

C

(
1

‖un‖p
1,p

+ 1

‖un‖p−1
1,p

+ ‖un‖1,q

‖un‖p
1,p

)
�

(
1

p
− 1

θ

)
.

Since p − 1 > 0, passing to the limit as n → ∞, we obtain 0 < ( 1
p − 1

θ
) � 0, which is an absurd.

The last case is similar to the case b).
Thus un ⇀ u in X .
ii) Since, up to a subsequence, un → u in Lm

loc(R
N ) for 1 � m < γ ∗ ,∫

RN

|un|γ φ dx →
∫

RN

|u|γ φ dx

and ∫
RN

|un|sφ dx →
∫

RN

|u|suφ dx.

Hence, from generalized Lebesgue’s Theorem∫
RN

b
(|un|p)|un|pφ dx →

∫
RN

b
(|u|p)|u|pφ dx (2.3)

and ∫
RN

f (un)unφ dx →
∫

RN

f (u)uφ dx, (2.4)

for all φ ∈ X . Moreover, un(x) → u(x) a.e. in R
N and recalling a result due to Brezis and Lieb [4] (see also [9, Lemma 4.6])∫

RN

|un|γ −2uφ dx →
∫

RN

|u|γ −2uφ dx,

∫
RN

|un|s−2uφ dx →
∫

RN

|u|s−2uφ dx

and ∫
RN

|un|γ ∗−2uφ dx →
∫

RN

|u|γ ∗−2uφ dx. (2.5)

Hence, from generalized Lebesgue’s Theorem∫
RN

b
(|un|p)|un|p−2uφ dx →

∫
RN

b
(|u|p)|u|p−2uφ dx (2.6)

and ∫
RN

f (un)uφ dx →
∫

RN

f (u)uφ dx, (2.7)

for all φ ∈ X .
We claim that∫

N

|un|γ ∗
φ dx →

∫
N

|u|γ ∗
φ dx. (2.8)
R R
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In order to prove the claim we note that, taking a subsequence, we may suppose that

|∇un|γ ⇀ |∇u|γ + μ and |un|γ ∗
⇀ |u|γ ∗ + ν

(
weak∗-sense of measures

)
.

Using the concentration–compactness principle due to Lions (cf. [16, Lemma 1.2]), we obtain an at most countable index
set Λ, sequences (xi) ⊂ R

N , (μi), (νi) ⊂ (0,∞), such that

ν =
∑
i∈Λ

νiδxi , μ �
∑
i∈Λ

μiδxi and Sν
γ /γ ∗
i � μi, (2.9)

for all i ∈ Λ, where δxi is the Dirac mass at xi ∈ R
N .

Now, for every � > 0, we set ψ�(x) := ψ((x − xi)/�) where ψ ∈ C∞
0 (RN , [0,1]) is such that ψ ≡ 1 on B1(0), ψ ≡ 0 on

R
N \ B2(0) and |∇ψ |∞ � 2. Since (ψ�un) is bounded, I ′(un)(ψ�un) → 0, that is,∫

RN

a
(|∇un|p)|∇un|p−2∇un · ∇ψ� dx +

∫
RN

b
(|un|p)|un|p−2unψ� dx

= −
∫

RN

ψ�a
(|∇un|p)|∇un|p dx −

∫
RN

ψ�b
(|un|p)|un|p dx + λ

∫
RN

f (x, un)ψ�un dx +
∫

RN

ψ�|un|γ ∗
dx + on(1).

Since by (k1) a(t),b(t) � a0 > and arguing as in [3], we can prove that

lim
�→0

[
lim

n→∞

∫
RN

a
(|∇un|p)|∇un|p−2∇un · ∇ψ� dx

]
= 0

and

lim
�→0

[
lim

n→∞

∫
RN

b
(|un|p)|un|p−2un · ψ� dx

]
= 0.

Moreover, since un → u in Lm
loc(R

N ) for all 1 � m < γ ∗ and ψ� has compact support, we can let n → ∞ in the above
expression to obtain∫

RN

ψ� dν �
∫

RN

a0ψ� dμ.

Letting � → 0 we conclude that νi � a0μi . It follows from (2.9) that νi � (a0 S)N/γ . Thus, we derive

νi �
(

1

θ
− 1

γ ∗

)
(a0 S)N/γ . (2.10)

Now we shall prove that the above expression cannot occur, and therefore the set Λ is empty. Indeed, arguing by
contradiction, let us suppose that νi � ( 1

θ
− 1

γ ∗ )(a0 S)N/γ for some i ∈ Λ. Thus,

c∗ = I(un) − 1

θ
I ′(un)un + on(1).

From ( f4), (k1) and (k2) we have

c∗ �
(

1

θ
− 1

γ ∗

) ∫
RN

|un|γ ∗
dx + on(1) �

(
1

θ
− 1

γ ∗

) ∫
B�(xi)

ψ�|un|γ ∗
dx + on(1).

Letting n → ∞, we get

c∗ �
(

1

θ
− 1

γ ∗

)∑
i∈Λ

ψ�(xi)νi =
(

1

θ
− 1

γ ∗

)∑
i∈Λ

νi �
(

1

θ
− 1

γ ∗

)
(a0 S)N/γ ,

which does not make sense for all λ > λ∗ . Hence Λ is empty and it follows that∫
RN

|un|γ ∗
dx →

∫
RN

|u|γ ∗
dx.
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The next step is to prove that∫
RN

a
(|∇un|p)|∇un|p−2∇un∇φ dx =

∫
RN

a
(|∇u|p)|∇u|p−2∇u∇φ dx + on(1), (2.11)

for all φ ∈ X .
To this end, we will prove the inequality below:

C |x − y|p �
〈
a
(|x|p)|x|p−2x − a

(|y|p)|y|p−2 y, x − y
〉
,

for all x, y ∈ R
N . Indeed, firstly note that

〈
a
(|x|p)|x|p−2x − a

(|y|p)|y|p−2 y, x − y
〉 = N∑

j=1

(
a
(|x|p)|x|p−2x j − a

(|y|p)|y|p−2 y j
)
(x j − y j)

and for all z, ξ ∈ R
N we get

N∑
i, j=1

∂

∂zi

(
a
(|z|p)|z|p−2z j

)
ξiξ j = (p − 2)|z|p−4

N∑
i, j=1

a
(|z|p)

zi z jξiξ j

+
N∑

i, j=1

a
(|z|p)|z|p−2δi, jξiξ j + p

N∑
i, j=1

a′(|z|p)|z|2p−4zi z jξiξ j .

Hence

N∑
i, j=1

∂

∂zi

(
a
(|z|p)|z|p−2z j

)
ξiξ j = (p − 2)|z|p−4a

(|z|p) N∑
i, j=1

zi z jξiξ j

+
N∑

i, j=1

a
(|z|p)|z|p−2|ξ |2 + pa′(|z|p)|z|2p−4

N∑
i, j=1

zi z jξiξ j .

Since

N∑
i, j=1

zi z jξiξ j =
(

N∑
j=1

z jξ j

)2

,

we have

N∑
i, j=1

∂

∂zi

(
a
(|z|p)|z|p−2z j

)
ξiξ j =

(
N∑

j=1

z jξ j

)2

|z|p−4[(p − 2)a
(|z|p) + pa′(|z|p)|z|p] + a

(|z|p)|z|p−2|ξ |2.

By (k3), we derive

N∑
i, j=1

∂

∂zi

(
a
(|z|p)|z|p−2z j

)
ξiξ j � a

(|z|p)|z|p−2|ξ |2. (2.12)

Moreover, if |y| � |x|, we have 1
2 |x − y| � |y| and for t ∈ [0, 1

4 ] we get∣∣y + t(x − y)
∣∣ � |y| − t|x − y| � 1

4
|x − y|.

Making z = x − y and ξ = x − y, from direct calculations we get

N∑
j=1

(
a
(|x|p)|x|p−2x j − a

(|y|p)|y|p−2 y j
)
(x j − y j) =

1∫
0

N∑
i, j=1

∂

∂zi

(
a
(|z|p)|z|p−2z j

)
ξiξ j .

Using (2.12) we derive〈
a
(|x|p)|x|p−2x − a

(|y|p)|y|p−2 y, x − y
〉
� a

(∣∣y + t(x − y)
∣∣p)∣∣y + t(x − y)

∣∣p−2|x − y|2.
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By (k1) we conclude〈
a
(|x|p)|x|p−2x − a

(|y|p)|y|p−2 y, x − y
〉
� a0

4
|x − y|p−2|x − y|2 = a0

4
|x − y|p .

Now, considering

P N = 〈
a
(|∇un|p)|∇un|p−2∇un − a

(|∇u|p)|∇u|p−2∇u,∇un − ∇u
〉

and ψ ∈ C∞
0 (RN ) such that ψ ≡ 1 in B1(0) and ψ ≡ 0 in R

N \ B2(0), we have

0 � a0

4

∫
B1(0)

|∇un − ∇u|p dx �
∫

B1(0)

P N dx �
∫

RN

P Nψ dx.

Hence

0 � a0

4

∫
B1(0)

|∇un − ∇u|p dx �
∫

RN

a
(|∇un|p)|∇un|pψ dx −

∫
RN

a
(|∇un|p)|∇un|p−2∇un∇uψ dx + on(1).

Using (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8) we get

0 � a0

4

∫
B1(0)

|∇un − ∇u|p dx � I ′(un)(unψ) − I ′(un)(uψ) = on(1).

Thus

∂un

∂xi
→ ∂u

∂xi
in Lp(

B1(0)
)

and, up to a subsequence,

∂un

∂xi
(x) → ∂u

∂xi
(x) a.e. in R

N .

Using also a result due to Brezis and Lieb [4] (see also [9, Lemma 4.6]), we conclude that (2.11) holds. Hence, I ′(u)ψ = 0
for all ψ ∈ X and for λ � λ∗ .

iii) In view of ( f1) and (a1), we have

on(1) = I ′(un)u−
n = −

∫
RN

a
(∣∣∇u−

n

∣∣p)∣∣∇u−
n

∣∣p
dx −

∫
RN

b
(∣∣u−

n

∣∣p)∣∣u−
n

∣∣p
dx

� −a0

∫
RN

∣∣∇u−
n

∣∣p
dx − b1

∫
RN

∣∣∇u−
n

∣∣q
dx − a0

∫
RN

∣∣u−
n

∣∣p
dx − H(b1)

∫
RN

∣∣u−
n

∣∣q
dx = −∥∥u−

n

∥∥p
1,p − H(b1)

∥∥u−
n

∥∥q
1,q.

Hence, ‖u−
n ‖1,p = ‖u−

n ‖1,q = on(1) which implies ‖u−
n ‖ = on(1). Thus, we can easily compute

I(un) = I
(
u+

n

) + on(1)

and

I ′(un) = I ′
(
u+

n

) + on(1).

Thus, we will assume hereafter that (un) is nonnegative. �
The next proposition is a version of Lions’ results [15] to problem with p&q-Laplacian.

Proposition 2.5. Let (un) ⊂ X be a (PS)c∗ sequence for I with un ⇀ 0 in X. Then we have either:

a) un → 0 in X or
b) there exist a sequence (yn) ∈ R

N and constants R, β > 0 such that

lim inf
n→+∞

∫
B R (yn)

|un|γ dx � β > 0.
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Proof. Suppose that b) does not occur. Thus, lim infn→+∞ supy∈RN

∫
B R (y)

|un|γ dx = 0. Using Lemma 8.4 in [15], we get

un → 0 in Lm(RN ), for all m ∈ (γ ,γ ∗). This fact implies that∫
RN

f (un)un dx → 0.

It follows that∫
RN

a
(|∇un|p)|∇un|p dx +

∫
RN

b
(|un|p)|un|p dx =

∫
RN

|un|γ ∗
dx + on(1).

Since, up to a subsequence,∫
RN

a
(|∇un|p)|∇un|p dx +

∫
RN

b
(|un|p)|un|p dx → Lλ

and ∫
RN

|un|γ ∗
dx → Lλ.

If Lλ → 0 as λ → ∞, then

C
(‖un‖p

1,p + H(b1)‖un‖q
1,q

)
�

∫
RN

a
(|∇un|p)∇un|p dx +

∫
RN

b
(|un|p)|un|p dx = on(1)

and therefore

‖un‖ → 0.

If there exists M > 0, independent of λ, such that Lλ � M , then

on(1) + c∗ = 1

p

∫
RN

A
(|∇un|p)

dx + 1

p

∫
RN

B
(|un|p)

dx − 1

γ ∗

∫
RN

|un|γ ∗
dx.

By (k2) we get

on(1) + c∗ �
(

1

pα
− 1

γ ∗

)
Lλ �

(
1

pα
− 1

γ ∗

)
M > 0,

which is an absurd from Remark 2.3. Hence

‖un‖ → 0. �
2.1. Proof of Theorem 1.1

By Lemma 2.4, there exists u ∈ X such that I ′(u) = 0 and u � 0. Suppose that u 
≡ 0. Adapting arguments from [12],
we conclude that u ∈ L∞(RN ) ∩ C1,α(RN ) for some 0 < α < 1, and therefore it follows from Harnack’s inequality [19] that
u(x) > 0 for all x ∈ R

N . If u ≡ 0, then un no converges strongly to zero, because for the contrary case, we get c∗ = 0. Thus,
from Proposition 2.5, there is a sequence (yn) ∈ R

N and R,α > 0 such that

lim inf
n→+∞

∫
B R (yn)

|un|γ dx > β. (2.13)

Now, letting ũn(x) = un(x + yn), using the invariance of R
N for translation, by a routine calculus we obtain ‖̃un‖ = ‖un‖,

I (̃un) = I(un) and I ′ (̃un) = on(1). Then, there exists ũ such that ũn ⇀ ũ weakly in X and as before it follows that I ′ (̃u) = 0.
Now, by (2.13), taking a subsequence and R bigger we conclude that ũ is nontrivial and the proposition is proved.
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