Existence of positive solutions for a class of $p \& q$ elliptic problems with critical growth on \mathbb{R}^{N}

Giovany M. Figueiredo ${ }^{1}$

Universidade Federal do Pará, Faculdade de Matemática, CEP: 66075-110, Belém, PA, Brazil

ARTICLE INFO

Article history:

Received 29 May 2010
Available online 15 February 2011
Submitted by Goong Chen

A B S T R A C T

This paper is concerned with the existence of positive solutions to the class of $p \& q$ elliptic problems with critical growth type

$$
\begin{aligned}
& -\operatorname{div}\left(a\left(|\nabla u|^{p}\right)|\nabla u|^{p-2} \nabla u\right)+b\left(|u|^{p}\right)|u|^{p-2} u=\lambda f(u)+|u|^{\gamma^{*}-2} u, \\
& u(z)>0, \quad \forall x \in \mathbb{R}^{N},
\end{aligned}
$$

where λ is a positive parameter, $a: \mathbb{R} \rightarrow \mathbb{R}$ is a function of C^{1} class and $b, f: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this article is to investigate the existence of positive solutions for the following class of quasilinear problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a\left(|\nabla u|^{p}\right)|\nabla u|^{p-2} \nabla u\right)+b\left(|u|^{p}\right)|u|^{p-2} u=\lambda f(u)+|u|^{*}-2 u \quad \text { in } \mathbb{R}^{N}, \\
u \in X, \quad 1<p<N, \\
u(z)>0, \quad \forall z \in \mathbb{R}^{N},
\end{array}\right.
$$

where γ^{*} and X will be stated later.
Let us introduce the set \mathcal{W} as being the collection of all functions $k: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying the following properties:
There exist constants $a_{0}, b_{0}>0, a_{1}, b_{1} \geqslant 0, q>p$ such that

$$
\begin{equation*}
a_{0}+H\left(b_{1}\right) a_{1} t^{\frac{q-p}{p}} \leqslant k(t) \leqslant b_{0}+b_{1} t^{\frac{q-p}{p}} \quad \text { for all } t \geqslant 0, \tag{1}
\end{equation*}
$$

where $H(s)=1$ if $s>0$ and $H(s)=0$ if $s=0$.
There exist constants α and θ such that $\gamma<\theta<\gamma^{*}$ and

$$
\begin{equation*}
K(t) \geqslant \frac{1}{\alpha} k(t) t \quad \text { with } 1<\frac{q}{p} \leqslant \alpha<\frac{\theta}{p}, \tag{2}
\end{equation*}
$$

for all $t \geqslant 0$, where $K(t)=\int_{0}^{t} k(s) d s$ and where $\gamma=\left(1-H\left(b_{1}\right)\right) p+H\left(b_{1}\right) q$ and $\gamma^{*}=\left(1-H\left(b_{1}\right)\right) p^{*}+H\left(b_{1}\right) q^{*}$.
The function

$$
\begin{equation*}
t \rightarrow k\left(t^{p}\right) t^{p-2} \text { is increasing. } \tag{3}
\end{equation*}
$$

[^0]The hypotheses on functions a, b and f are the following: $a, b \in \mathcal{W}$ and the nonlinearity $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and since we are looking for positive solutions, we suppose that

$$
\begin{equation*}
f(t)=0 \quad \text { for all } t<0 \tag{1}
\end{equation*}
$$

Moreover, we assume the following growth conditions at the origin and at infinity:

$$
\begin{equation*}
\lim _{|t| \rightarrow 0} \frac{|f(t)|}{|t|^{p-1}}=0 \tag{2}
\end{equation*}
$$

and there exists $s \in\left(\gamma, \gamma^{*}\right)$ verifying

$$
\begin{equation*}
\lim _{|t| \rightarrow \infty} \frac{|f(t)|}{|t|^{s-1}}=0 \tag{3}
\end{equation*}
$$

In this article, we use the classical Palais-Smale condition. Related with this condition, we suppose that f verifies the well-known Ambrosetti-Rabinowitz superlinear condition,

$$
\begin{equation*}
0<\theta F(t)=\int_{0}^{t} f(\xi) d \xi \leqslant t f(t) \quad \text { for all } t>0 \tag{4}
\end{equation*}
$$

where θ appeared in $\left(a_{2}\right)$.
Our main result is
Theorem 1.1. Assume that $a \in C^{1}\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right) \cap \mathcal{W}, b \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right) \cap \mathcal{W}$ and that the conditions $\left(f_{1}\right)-\left(f_{4}\right)$ hold. Then, there exists $\lambda^{*}>0$, such that problem $\left(P_{\lambda}\right)$ has a ground-state positive solution in $C^{1, \alpha}\left(\mathbb{R}^{N}\right)$, with $0<\alpha<1$, for all $\lambda \geqslant \lambda^{*}$.

Now, we will give some examples of functions a and b in order to illustrate the degree of generality of the kind of operators studied here.

Example 1.1. Considering $a(t)=b(t)=1$, we have that $a, b \in \mathcal{W}$ with $a_{0}=b_{0}=1$ and $b_{1}=0$ and $a_{1}>0$. Hence, Theorem 1.1 is valid for the problem

$$
-\Delta_{p} u+|u|^{p-2} u=\lambda f(u)+|u|^{p^{*}-2} u \quad \text { in } \mathbb{R}^{N} .
$$

Note that, in this case, Theorem 1.1 is the main result in [1] with $\lambda=1$.

Example 1.2. Considering $a(t)=b(t)=1+t^{\frac{q-p}{p}}$, we have that $a, b \in \mathcal{W}$ with $a_{0}=b_{0}=a_{1}=b_{1}=1$. Hence, Theorem 1.1 is valid for the problem

$$
-\Delta_{p} u-\Delta_{q} u+|u|^{p-2} u+|u|^{q-2} u=\lambda f(u)+|u|^{q^{*}-2} u \quad \text { in } \mathbb{R}^{N} .
$$

Example 1.3. Considering $a(t)=1+\frac{1}{(1+t)^{\frac{p-2}{p}}}$ and $b(t)=1$, we have that $a \in \mathcal{W}$ with $a_{0}=1, b_{0}=2$ and $b_{1}=0, a_{1}>0$ and $b \in \mathcal{W}$ with $a_{0}=b_{0}=1$ and $b_{1}=0$ and $a_{1}>0$. Hence, Theorem 1.1 is valid for the problem

$$
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u+\frac{|\nabla u|^{p-2} \nabla u}{\left(1+|\nabla u|^{p}\right)^{\frac{p-2}{p}}}\right)+|u|^{p-2} u=\lambda f(u)+|u|^{p^{*}-2} u \quad \text { in } \mathbb{R}^{N}
$$

Example 1.4. Considering $a(t)=1+t^{\frac{q-p}{p}}+\frac{1}{(1+t)^{\frac{p-2}{p}}}$ and $b(t)=1+t^{\frac{q-p}{p}}$, we have that $a \in \mathcal{W}$ with $a_{0}=1, b_{0}=2$ and $b_{1}=a_{1}=1$ and $b \in \mathcal{W}$ with $a_{0}=a_{1}=b_{0}=b_{1}=1$. Hence, Theorem 1.1 is valid for the problem

$$
-\Delta_{p} u-\Delta_{q} u-\operatorname{div}\left(\frac{|\nabla u|^{p-2} \nabla u}{\left(1+|\nabla u|^{p}\right)^{\frac{p-2}{p}}}\right)+|u|^{p-2} u+|u|^{q-2} u=\lambda f(u)+|u|^{q^{*}-2} u \quad \text { in } \mathbb{R}^{N},
$$

or still more complex problems, for example:
Example 1.5. Considering $a(t)=b(t)=1+t^{\frac{q-p}{p}}+\frac{1}{(1+t)^{\frac{p-2}{p}}}$, we have that $a, b \in \mathcal{W}$ with $a_{0}=1, b_{0}=2$ and $b_{1}=a_{1}=1$

$$
-\Delta_{p} u-\Delta_{q} u-\operatorname{div}\left(\frac{|\nabla u|^{p-2} \nabla u}{\left(1+|\nabla u|^{p}\right)^{\frac{p-2}{p}}}\right)+\left(|u|^{p-2} u+|u|^{q-2} u+\frac{|u|^{p-2} u}{\left(1+|u|^{p}\right)^{\frac{p-2}{p}}}\right)=\lambda f(u)+|u|^{q^{*}-2} u \quad \text { in } \mathbb{R}^{N} .
$$

Other combinations can be made with the functions presented in the examples above, generating very interesting elliptic problems from the mathematical point of view.

The quasilinear equation of the type $p \& q$-Laplacian has received special attention in the last years, see for example the articles $[6-8,10,11,13,14,17,20]$ and the references therein.

The existence and multiplicity of solutions of quasilinear problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a\left(|\nabla u|^{p}\right)|\nabla u|^{p-2} \nabla u\right)=f(x, u) \quad \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is a bounded domain of \mathbb{R}^{N}, were studied by J.M. B do O (see [7,8]). In [7] the author showed a result of multiplicity using a \mathbb{Z}_{2} version of the Mountain Pass Theorem [18], f being a function with subcritical exponential growth. In [8] the author used an argument of minimization, f being a function with subcritical growth.

The subcritical problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u-\Delta_{q} u+v(x)|u|^{p-2} u+w(x)|u|^{q-2} u=\lambda f(x, u) \quad \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

was studied by L. Cherfils and V. Il'yasov in [6]. In this article, the authors showed a result of existence and nonexistence using a variational principle.

In [17], Medeiros and Perera showed the existence of two solutions for the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u-\Delta_{q} u=\lambda|u|^{p-2} u-\mu|u|^{q-2} u+f(x, u) \quad \text { in } \Omega, \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

The first solution was obtained via Mountain Pass Theorem and the second solution was obtained via cohomological linking theorem.

In [14], the problem with critical growth on bounded domain of \mathbb{R}^{N} was treated by Li and Guo. The authors showed a result of multiplicity of solutions for the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u-\Delta_{q} u=|u|^{p^{*}-2} u+\mu|u|^{r-2} u \quad \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

The case on \mathbb{R}^{N} was studied in [10] by He and Li. More precisely, the authors studied the subcritical problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u-\Delta_{q} u+m|u|^{p-2} u+n|u|^{q-2} u=f(x, u) \quad \text { in } \mathbb{R}^{N} \\
u \in W^{1, p}\left(\mathbb{R}^{N}\right) \cap W^{1, q}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

using the Mountain Pass Theorem and the concentration-compactness principle of Lions [15].
Other solutions' existence's results of $p \& q$-problems can be seen in [13,20]. For a result of regularity, see [11].
Moreover, that class of equations comes, for example, from a general reaction-diffusion system:

$$
\begin{equation*}
u_{t}=\operatorname{div}[D(u) \nabla u]+c(x, u) \tag{1.1}
\end{equation*}
$$

where $D(u)=\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right)$. This system has a wide range of applications in physics and related sciences, such as biophysics, plasma physics and chemical reaction design. In such applications, the function u describes a concentration, the first term on the right-hand side of (1.1) corresponds to the diffusion with a diffusion coefficient $D(u)$; whereas the second one is the reaction and relates to source and loss processes. Typically, in chemical and biological applications, the reaction term $c(x, u)$ is a polynomial of u with variable coefficients (see [11,13,20]).

Our theorem extends or complements the articles above, because we consider a more general class of operators, f has a critical growth and problem $\left(P_{\lambda}\right)$ is on \mathbb{R}^{N}.

2. Variational framework

We say that $u \in X$ with $u>0$ on \mathbb{R}^{N} is a weak solution of the problem $\left(P_{\lambda}\right)$ if it verifies

$$
\int_{\mathbb{R}^{N}} a\left(|\nabla u|^{p}\right)|\nabla u|^{p-2} \nabla u \nabla \phi d x+\int_{\mathbb{R}^{N}} b\left(|u|^{p}\right)|u|^{p-2} u \phi d x-\lambda \int_{\mathbb{R}^{N}} f(u) \phi d x-\int_{\mathbb{R}^{N}}|u|^{\gamma^{*}-2} u \phi d x=0
$$

for all $\phi \in X$, where X denotes the Sobolev space $W^{1, p}\left(\mathbb{R}^{N}\right) \cap W^{1, \gamma}\left(\mathbb{R}^{N}\right)$ endowed with the norm

$$
\|u\|=\|u\|_{1, p}+H\left(b_{1}\right)\|u\|_{1, q}
$$

where

$$
\|u\|_{1, m}^{m}=\int_{\mathbb{R}^{N}}|\nabla u|^{m} d x+\int_{\mathbb{R}^{N}}|u|^{m} d x
$$

We will look for solutions of $\left(P_{\lambda}\right)$ by finding critical points of the C^{1}-functional $I: X \rightarrow \mathbb{R}$ given by

$$
I(u)=\frac{1}{p} \int_{\mathbb{R}^{N}} A\left(|\nabla u|^{p}\right) d x+\frac{1}{p} \int_{\mathbb{R}^{N}} B\left(|u|^{p}\right) d x-\lambda \int_{\mathbb{R}^{N}} F(u) d x-\frac{1}{\gamma^{*}} \int_{\mathbb{R}^{N}} u_{+}^{\gamma^{*}} d x
$$

Note that

$$
I^{\prime}(u) \phi=\frac{1}{p} \int_{\mathbb{R}^{N}} a\left(|\nabla u|^{p}\right)|\nabla u|^{p-2} \nabla u \nabla \phi d x+\frac{1}{p} \int_{\mathbb{R}^{N}} b\left(|u|^{p}\right)|u|^{p-2} u \phi d x-\lambda \int_{\mathbb{R}^{N}} f(u) \phi d x-\int_{\mathbb{R}^{N}} u_{+}^{\gamma^{*}-1} \phi d x,
$$

for all $\phi \in X$.
In order to use critical point theory we firstly derive the results related to the Palais-Smale compactness condition.
We say that a sequence $\left(u_{n}\right)$ is a Palais-Smale sequence for the functional I if

$$
I\left(u_{n}\right) \rightarrow c_{*}
$$

and

$$
\left\|I^{\prime}\left(u_{n}\right)\right\| \rightarrow 0 \quad \text { in }(X)^{\prime}
$$

where $c_{*}=\inf _{\eta \in \Gamma} \max _{t \in[0,1]} I(\eta(t))>0$ and $\Gamma:=\{\eta \in C([0,1], X): \eta(0)=0, I(\eta(1))<0\}$.
If every Palais-Smale sequence of I has a strong convergent subsequence, then one says that I satisfies the Palais-Smale condition ((PS) for short).

Firstly one proves that functional I has the geometry of Mountain Pass Theorem.
Lemma 2.1. For each $\lambda>0$, the functional I satisfies the following conditions:
(i) There exist $r, \rho>0$ such that:

$$
I(u) \geqslant \rho \quad \text { with }\|u\|=r .
$$

(ii) There exists $e \in B_{r}^{c}(0)$ with $I(e)<0$.

Proof. (i) By (f_{2}) and (f_{3}), we get

$$
I(u) \geqslant \frac{1}{p} \int_{\mathbb{R}^{N}} A\left(|\nabla u|^{p}\right) d x+\frac{1}{p} \int_{\mathbb{R}^{N}} B\left(|u|^{p}\right) d x-\lambda \frac{\epsilon}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x-\lambda \frac{C_{\epsilon}}{s} \int_{\mathbb{R}^{N}}|u|^{s} d x-\frac{1}{\gamma^{*}} \int_{\mathbb{R}^{N}}|u|^{\gamma^{*}} d x .
$$

Now, by $\left(k_{1}\right)$ we derive

$$
\begin{aligned}
I(u) \geqslant & \frac{a_{0}}{p} \int_{\mathbb{R}^{N}}|\nabla u|^{p} d x+H\left(b_{1}\right) \frac{a_{1}}{q} \int_{\mathbb{R}^{N}}|\nabla u|^{q} d x+\frac{a_{0}}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x+H\left(b_{1}\right) \frac{a_{1}}{q} \int_{\mathbb{R}^{N}}|u|^{q} d x-\lambda \frac{\epsilon}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x \\
& -\lambda \frac{C_{\epsilon}}{s} \int_{\mathbb{R}^{N}}|u|^{s} d x-\frac{1}{\gamma^{*}} \int_{\mathbb{R}^{N}}|u|^{\gamma^{*}} d x .
\end{aligned}
$$

So

$$
I(u) \geqslant C_{1}\left(\|u\|_{1, p}^{p}+H\left(b_{1}\right)\|u\|_{1, q}^{q}\right)-\lambda \frac{C_{\epsilon}}{s} \int_{\mathbb{R}^{N}}|u|^{s} d x-\frac{1}{\gamma^{*}} \int_{\mathbb{R}^{N}}|u|^{\gamma^{*}} d x .
$$

Choosing $0<r=\|u\|<1$, we get $\|u\|_{1, p}^{(q-p)}<1$ and, hence,

$$
I(u) \geqslant C_{1}\left(\|u\|_{1, p}^{q}+H\left(b_{1}\right)\|u\|_{1, q}^{q}\right)-\lambda \frac{C_{\epsilon}}{s} \int_{\mathbb{R}^{N}}|u|^{s} d x-\frac{1}{\gamma^{*}} \int_{\mathbb{R}^{N}}|u|^{\gamma^{*}} d x .
$$

Hence,

$$
I(u) \geqslant C_{2}\|u\|^{q}-\lambda \frac{C_{\epsilon}}{s} \int_{\mathbb{R}^{N}}|u|^{s} d x-\frac{1}{\gamma^{*}} \int_{\mathbb{R}^{N}}|u|^{\gamma^{*}} d x
$$

By the Sobolev embedding we get

$$
I(u) \geqslant C_{2}\|u\|^{q}-\lambda C_{3}\|u\|^{s}-C_{4}\|u\|^{\gamma^{*}}
$$

and, since that $q<s<\gamma^{*}$, the lemma is proved.
(ii) From $\left(f_{4}\right)$, there exist $C_{4}, C_{5}>0$ such that

$$
F(t) \geqslant C_{4} t^{\theta}-C_{5}, \quad \forall t>1
$$

Thus, fixing $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with $\phi>0$ in \mathbb{R}^{N}, we get

$$
I(t \phi) \leqslant \frac{1}{p} \int_{\mathbb{R}^{N}} A\left(t^{p}|\nabla \phi|^{p}\right) d x+\frac{1}{p} \int_{\mathbb{R}^{N}} B\left(t^{p}|\phi|^{p}\right) d x-C_{4} t^{\theta} \int_{\mathbb{R}^{N}} \phi^{\theta} d x+C_{5}|\operatorname{supp} \phi|-\frac{t^{\gamma^{*}}}{\gamma^{*}} \int_{\mathbb{R}^{N}}|u|^{\gamma^{*}} d x
$$

From (k_{1}) we derive

$$
\begin{aligned}
I(t \phi) \leqslant & \frac{b_{0} t^{p}}{p} \int_{\mathbb{R}^{N}}|\nabla \phi|^{p} d x+\frac{b_{1} t^{q}}{q} \int_{\mathbb{R}^{N}}|\nabla \phi|^{q} d x+\frac{b_{0} t^{p}}{p} \int_{\mathbb{R}^{N}}|\phi|^{p} d x+\frac{b_{1} t^{q}}{q} H\left(b_{1}\right) \int_{\mathbb{R}^{N}}|\phi|^{q} d x \\
& -C_{4} t^{\theta} \int_{\mathbb{R}^{N}} \phi^{\theta} d x+C_{5}|\operatorname{supp} \phi|-\frac{t^{\gamma^{*}}}{\gamma^{*}} \int_{\mathbb{R}^{N}}|u|^{\gamma^{*}} d x .
\end{aligned}
$$

Since $\gamma^{*}>\theta>\gamma$, there exists $\bar{t}>1$ such that $e=\bar{t} \phi$ satisfies $I(e)<0$ and $\|e\|>\rho$.
We devote the rest of this section to show that c_{*} is attained by a positive function. We start by defining the best constant of the Sobolev embedding $W^{1, \gamma}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{\gamma^{*}}\left(\mathbb{R}^{N}\right)$ as

$$
S:=\inf \left\{\int_{\mathbb{R}^{N}}|\nabla u|^{\gamma} d x: u \in X, \int_{\mathbb{R}^{N}}|u|^{\gamma^{*}} d x=1\right\}
$$

As in [5] and arguing as in [2], we are able to compare the minimax level c_{*} with a suitable number which involves the constant S.

Lemma 2.2. If the conditions $\left(k_{1}\right)-\left(k_{3}\right)$ and $\left(f_{1}\right)-\left(f_{4}\right)$ hold, then there exists $\lambda_{*}>0$ such that $c_{*} \in\left(0,\left(\frac{1}{\theta}-\frac{1}{\gamma^{*}}\right)\left(a_{0} S\right)^{N / \gamma}\right)$ for all $\lambda \geqslant \lambda^{*}$.

Proof. Considering $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with $\phi>0$, there exists $t_{\lambda}>0$ verifying $I\left(t_{\lambda} \phi\right)=\max _{t \geqslant 0} I(t \phi)$ and $t_{\lambda} \phi \in \mathcal{N}$, that is,

$$
\int_{\mathbb{R}^{N}} a\left(\left|t_{\lambda} \nabla \phi\right|^{p}\right)\left|t_{\lambda} \nabla \phi\right|^{p} d x+\int_{\mathbb{R}^{N}} b\left(\left|t_{\lambda} \phi\right|^{p}\right)\left|t_{\lambda} \phi\right|^{p} d x=\lambda \int_{\mathbb{R}^{N}} f\left(t_{\lambda} \phi\right) t_{\lambda} \phi d x+t_{\lambda}^{\gamma^{*}} \int_{\mathbb{R}^{N}} \phi^{\gamma^{*}} d x
$$

Using (k_{1}), we have

$$
\begin{equation*}
b_{0} \int_{\mathbb{R}^{N}}\left|t_{\lambda} \nabla \phi\right|^{p} d x+b_{1} \int_{\mathbb{R}^{N}}\left|t_{\lambda} \nabla \phi\right|^{q} d x+b_{0} \int_{\mathbb{R}^{N}}\left|t_{\lambda} \phi\right|^{p} d x+b_{1} \int_{\mathbb{R}^{N}}\left|t_{\lambda} \phi\right|^{q} d x \geqslant \lambda \int_{\mathbb{R}^{N}} f\left(t_{\lambda} \phi\right) t_{\lambda} \phi d x+t_{\lambda}^{\gamma^{*}} \int_{\mathbb{R}^{N}} \phi^{\gamma^{*}} d x . \tag{2.1}
\end{equation*}
$$

Since $b_{1} \geqslant 0$, then using (2.1) we get

$$
t_{\lambda}^{p} b_{0} \int_{\mathbb{R}^{N}}|\nabla \phi|^{p} d x+b_{1} t_{\lambda}^{q} \int_{\mathbb{R}^{N}}|\nabla \phi|^{q} d x+b_{0} t_{\lambda}^{p} \int_{\mathbb{R}^{N}}|\phi|^{p} d x+b_{1} t_{\lambda}^{q} \int_{\mathbb{R}^{N}}|\phi|^{q} d x \geqslant t_{\lambda}^{\gamma^{*}} \int_{\mathbb{R}^{N}} \phi^{\gamma^{*}} d x
$$

which implies that $\left(t_{\lambda}\right)$ is bounded. Thus, there exists a sequence $\left(\lambda_{n}\right) \subset \mathbb{R}$ such that

$$
t_{\lambda_{n}} \rightarrow t_{0} \geqslant 0 \quad \text { when } \lambda_{n} \rightarrow+\infty
$$

Note that if $t_{0}>0$ then there exists $K>0$ such that

$$
K \geqslant b_{0} \int_{\mathbb{R}^{N}}\left|t_{\lambda_{n}} \nabla \phi\right|^{p} d x+b_{1} \int_{\mathbb{R}^{N}}\left|t_{\lambda_{n}} \nabla \phi\right|^{q} d x+b_{0} \int_{\mathbb{R}^{N}}\left|t_{\lambda_{n}} \phi\right|^{p} d x+b_{1} \int_{\mathbb{R}^{N}}\left|t_{\lambda_{n}} \phi\right|^{q} d x
$$

and

$$
\lambda_{n} \int_{\mathbb{R}^{N}} f\left(t_{\lambda_{n}} \phi\right) t_{\lambda_{n}} \phi d x+t_{\lambda_{n}}^{\gamma^{*}} \int_{\mathbb{R}^{N}} \phi^{\gamma^{*}} d x \rightarrow+\infty
$$

which is an absurd. Hence we conclude that $t_{0}=0$. Thus, if we define $\eta_{*}(t)=t e$ for $t \in[0,1]$, it follows that $\eta_{*} \in \Gamma$ and thus

$$
0<c_{*} \leqslant \max _{t \in[0,1]} I\left(\eta_{*}(t)\right)=I\left(t_{\lambda} \phi\right) \leqslant b_{0} t_{\lambda}^{p} \int_{\mathbb{R}^{N}}|\nabla \phi|^{p} d x+t_{\lambda}^{q} b_{1} \int_{\mathbb{R}^{N}}|\nabla \phi|^{q} d x+b_{0} t_{\lambda}^{p} \int_{\mathbb{R}^{N}}|\phi|^{p} d x+b_{1} t_{\lambda}^{q} \int_{\mathbb{R}^{N}}|\phi|^{q} d x
$$

This way, if λ is large enough we derive

$$
b_{0} t_{\lambda}^{p} \int_{\mathbb{R}^{N}}|\nabla \phi|^{p} d x+t_{\lambda}^{q} b_{1} \int_{\mathbb{R}^{N}}|\nabla \phi|^{q} d x+b_{0} t_{\lambda}^{p} \int_{\mathbb{R}^{N}}|\phi|^{p} d x+b_{1} t_{\lambda}^{q} \int_{\mathbb{R}^{N}}|\phi|^{q} d x<\left(\frac{1}{\theta}-\frac{1}{\gamma^{*}}\right)\left(a_{0} S\right)^{N / \gamma},
$$

which leads to

$$
0<c_{*}<\left(\frac{1}{\theta}-\frac{1}{\gamma^{*}}\right)\left(a_{0} S\right)^{N / \gamma}
$$

Remark 2.3. Note that, from the lemma above, if $\lambda \rightarrow \infty$, then $c_{*} \rightarrow 0$.
Lemma 2.4. Let $\left(u_{n}\right)$ be a sequence in X such that $I\left(u_{n}\right) \rightarrow c_{*}$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then
i) $u_{n} \rightharpoonup u$ in X.
ii) There exists $\lambda^{*}>0$ such that $I^{\prime}(u)=0$ for all $\lambda \geqslant \lambda^{*}$.
iii) $u_{n} \geqslant 0$ for $n \in \mathbb{N}$.

Proof. i) We shall prove that $\left(u_{n}\right)$ is bounded in X. Indeed, from $\left(f_{3}\right)$ we get

$$
C\left(1+\left\|u_{n}\right\|\right) \geqslant I\left(u_{n}\right)-\frac{1}{\theta} I^{\prime}\left(u_{n}\right) u_{n}
$$

So

$$
C\left(1+\left\|u_{n}\right\|\right) \geqslant \frac{1}{p} \int_{\mathbb{R}^{N}} A\left(\left|\nabla u_{n}\right|^{p}\right) d x-\frac{1}{\theta} \int_{\mathbb{R}^{N}} a\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p} d x+\frac{1}{p} \int_{\mathbb{R}^{N}} B\left(\left|u_{n}\right|^{p}\right) d x-\frac{1}{\theta} \int_{\mathbb{R}^{N}} b\left(\left|u_{n}\right|^{p}\right)\left|u_{n}\right|^{p} d x
$$

By (k_{2}) we derive

$$
C\left(1+\left\|u_{n}\right\|\right) \geqslant\left(\frac{1}{p \alpha}-\frac{1}{\theta}\right)\left[\int_{\mathbb{R}^{N}} a\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p} d x+\int_{\mathbb{R}^{N}} b\left(\left|u_{n}\right|^{p}\right)\left|u_{n}\right|^{p}\right] d x .
$$

From $\left(k_{1}\right)$ we have

$$
C\left(1+\left\|u_{n}\right\|\right) \geqslant\left(\frac{1}{p \alpha}-\frac{1}{\theta}\right) a_{0} \int_{\mathbb{R}^{N}}\left[\left|\nabla u_{n}\right|^{p}+\left|u_{n}\right|^{p}\right] d x+\left(\frac{1}{p \alpha}-\frac{1}{\theta}\right) H\left(b_{1}\right) a_{1} \int_{\mathbb{R}^{N}}\left[\left|\nabla u_{n}\right|^{q}+\left|u_{n}\right|^{q}\right] d x .
$$

Hence,

$$
\begin{equation*}
C\left(1+\left\|u_{n}\right\|\right) \geqslant C_{1}\left\|u_{n}\right\|_{1, p}^{p}+C_{2} H\left(b_{1}\right)\left\|u_{n}\right\|_{1, q}^{q} \tag{2.2}
\end{equation*}
$$

Thus, if $b_{1}=0$, then $\left(u_{n}\right)$ is bounded in X. If $b_{1}>0$, suppose, for contradiction, that, up to a subsequence, $\left\|u_{n}\right\| \rightarrow+\infty$. We consider several cases:
a) $\left\|u_{n}\right\|_{1, p} \rightarrow+\infty$ and $\left\|u_{n}\right\|_{1, q} \rightarrow+\infty$;
b) $\left\|u_{n}\right\|_{1, p} \rightarrow+\infty$ and $\left\|u_{n}\right\|_{1, q}$ is bounded;
c) $\left\|u_{n}\right\|_{1, p}$ is bounded and $\left\|u_{n}\right\|_{1, q} \rightarrow+\infty$.

In the first case, for n sufficiently large, $\left\|u_{n}\right\|_{1, q}^{q-p} \geqslant 1$ and $\left\|u_{n}\right\|_{1, q}^{q} \geqslant\left\|u_{n}\right\|_{1, q}^{p}$. Thus, recalling (2.2),

$$
C\left(1+\left\|u_{n}\right\|\right) \geqslant C_{1}\left\|u_{n}\right\|_{1, p}^{p}+C_{2}\left\|u_{n}\right\|_{1, q}^{p} \geqslant C_{3}\left(\left\|u_{n}\right\|_{1, p}+\left\|u_{n}\right\|_{1, q}\right)^{p}=C_{3}\left\|u_{n}\right\|^{p}
$$

which is an absurd.

In case b), by (f_{4}), we have

$$
C\left(1+\left\|u_{n}\right\|_{1, p}+\left\|u_{n}\right\|_{1, q}\right)=C\left(1+\left\|u_{n}\right\|\right) \geqslant\left(\frac{1}{p}-\frac{1}{\theta}\right)\left\|u_{n}\right\|_{1, p}^{p}
$$

Thus, we derive

$$
C\left(\frac{1}{\left\|u_{n}\right\|_{1, p}^{p}}+\frac{1}{\left\|u_{n}\right\|_{1, p}^{p-1}}+\frac{\left\|u_{n}\right\|_{1, q}}{\left\|u_{n}\right\|_{1, p}^{p}}\right) \geqslant\left(\frac{1}{p}-\frac{1}{\theta}\right)
$$

Since $p-1>0$, passing to the limit as $n \rightarrow \infty$, we obtain $0<\left(\frac{1}{p}-\frac{1}{\theta}\right) \leqslant 0$, which is an absurd.
The last case is similar to the case b).
Thus $u_{n} \rightharpoonup u$ in X.
ii) Since, up to a subsequence, $u_{n} \rightarrow u$ in $L_{l o c}^{m}\left(\mathbb{R}^{N}\right)$ for $1 \leqslant m<\gamma^{*}$,

$$
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{\gamma} \phi d x \rightarrow \int_{\mathbb{R}^{N}}|u|^{\gamma} \phi d x
$$

and

$$
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{s} \phi d x \rightarrow \int_{\mathbb{R}^{N}}|u|^{s} u \phi d x
$$

Hence, from generalized Lebesgue's Theorem

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} b\left(\left|u_{n}\right|^{p}\right)\left|u_{n}\right|^{p} \phi d x \rightarrow \int_{\mathbb{R}^{N}} b\left(|u|^{p}\right)|u|^{p} \phi d x \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} f\left(u_{n}\right) u_{n} \phi d x \rightarrow \int_{\mathbb{R}^{N}} f(u) u \phi d x \tag{2.4}
\end{equation*}
$$

for all $\phi \in X$. Moreover, $u_{n}(x) \rightarrow u(x)$ a.e. in \mathbb{R}^{N} and recalling a result due to Brezis and Lieb [4] (see also [9, Lemma 4.6])

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{\gamma-2} u \phi d x & \rightarrow \int_{\mathbb{R}^{N}}|u|^{\gamma-2} u \phi d x, \\
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{s-2} u \phi d x & \rightarrow \int_{\mathbb{R}^{N}}|u|^{s-2} u \phi d x
\end{aligned}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{\gamma^{*}-2} u \phi d x \rightarrow \int_{\mathbb{R}^{N}}|u|^{\gamma^{*}-2} u \phi d x \tag{2.5}
\end{equation*}
$$

Hence, from generalized Lebesgue's Theorem

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} b\left(\left|u_{n}\right|^{p}\right)\left|u_{n}\right|^{p-2} u \phi d x \rightarrow \int_{\mathbb{R}^{N}} b\left(|u|^{p}\right)|u|^{p-2} u \phi d x \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} f\left(u_{n}\right) u \phi d x \rightarrow \int_{\mathbb{R}^{N}} f(u) u \phi d x \tag{2.7}
\end{equation*}
$$

for all $\phi \in X$.
We claim that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{\gamma^{*}} \phi d x \rightarrow \int_{\mathbb{R}^{N}}|u|^{\gamma^{*}} \phi d x \tag{2.8}
\end{equation*}
$$

In order to prove the claim we note that, taking a subsequence, we may suppose that

$$
\left|\nabla u_{n}\right|^{\gamma}-|\nabla u|^{\gamma}+\mu \quad \text { and } \quad\left|u_{n}\right|^{\gamma^{*}} \rightharpoonup|u|^{\gamma^{*}}+\nu \quad \text { (weak*-sense of measures). }
$$

Using the concentration-compactness principle due to Lions (cf. [16, Lemma 1.2]), we obtain an at most countable index set Λ, sequences $\left(x_{i}\right) \subset \mathbb{R}^{N},\left(\mu_{i}\right),\left(\nu_{i}\right) \subset(0, \infty)$, such that

$$
\begin{equation*}
\nu=\sum_{i \in \Lambda} v_{i} \delta_{x_{i}}, \quad \mu \geqslant \sum_{i \in \Lambda} \mu_{i} \delta_{x_{i}} \quad \text { and } \quad S \nu_{i}^{\gamma / \gamma^{*}} \leqslant \mu_{i}, \tag{2.9}
\end{equation*}
$$

for all $i \in \Lambda$, where $\delta_{x_{i}}$ is the Dirac mass at $x_{i} \in \mathbb{R}^{N}$.
Now, for every $\varrho>0$, we set $\psi_{\varrho}(x):=\psi\left(\left(x-x_{i}\right) / \varrho\right)$ where $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ is such that $\psi \equiv 1$ on $B_{1}(0), \psi \equiv 0$ on $\mathbb{R}^{N} \backslash B_{2}(0)$ and $|\nabla \psi|_{\infty} \leqslant 2$. Since $\left(\psi_{\varrho} u_{n}\right)$ is bounded, $I^{\prime}\left(u_{n}\right)\left(\psi_{\ell} u_{n}\right) \rightarrow 0$, that is,

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} a\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla \psi_{\varrho} d x+\int_{\mathbb{R}^{N}} b\left(\left|u_{n}\right|^{p}\right)\left|u_{n}\right|^{p-2} u_{n} \psi_{\varrho} d x \\
& \quad=-\int_{\mathbb{R}^{N}} \psi_{\varrho} a\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p} d x-\int_{\mathbb{R}^{N}} \psi_{\varrho} b\left(\left|u_{n}\right|^{p}\right)\left|u_{n}\right|^{p} d x+\lambda \int_{\mathbb{R}^{N}} f\left(x, u_{n}\right) \psi_{\varrho} u_{n} d x+\int_{\mathbb{R}^{N}} \psi_{\varrho}\left|u_{n}\right|^{\gamma^{*}} d x+o_{n}(1) .
\end{aligned}
$$

Since by $\left(k_{1}\right) a(t), b(t) \geqslant a_{0}>$ and arguing as in [3], we can prove that

$$
\lim _{\varrho \rightarrow 0}\left[\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} a\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla \psi_{\varrho} d x\right]=0
$$

and

$$
\lim _{\varrho \rightarrow 0}\left[\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} b\left(\left|u_{n}\right|^{p}\right)\left|u_{n}\right|^{p-2} u_{n} \cdot \psi_{\varrho} d x\right]=0 .
$$

Moreover, since $u_{n} \rightarrow u$ in $L_{l o c}^{m}\left(\mathbb{R}^{N}\right)$ for all $1 \leqslant m<\gamma^{*}$ and ψ_{ϱ} has compact support, we can let $n \rightarrow \infty$ in the above expression to obtain

$$
\int_{\mathbb{R}^{N}} \psi_{\varrho} d \nu \geqslant \int_{\mathbb{R}^{N}} a_{0} \psi_{\varrho} d \mu .
$$

Letting $\varrho \rightarrow 0$ we conclude that $\nu_{i} \geqslant a_{0} \mu_{i}$. It follows from (2.9) that $\nu_{i} \geqslant\left(a_{0} S\right)^{N / \gamma}$. Thus, we derive

$$
\begin{equation*}
\nu_{i} \geqslant\left(\frac{1}{\theta}-\frac{1}{\gamma^{*}}\right)\left(a_{0} S\right)^{N / \gamma} . \tag{2.10}
\end{equation*}
$$

Now we shall prove that the above expression cannot occur, and therefore the set Λ is empty. Indeed, arguing by contradiction, let us suppose that $\nu_{i} \geqslant\left(\frac{1}{\theta}-\frac{1}{\gamma^{*}}\right)\left(a_{0} S\right)^{N / \gamma}$ for some $i \in \Lambda$. Thus,

$$
c_{*}=I\left(u_{n}\right)-\frac{1}{\theta} I^{\prime}\left(u_{n}\right) u_{n}+o_{n}(1) .
$$

From $\left(f_{4}\right),\left(k_{1}\right)$ and (k_{2}) we have

$$
c_{*} \geqslant\left(\frac{1}{\theta}-\frac{1}{\gamma^{*}}\right) \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{\gamma^{*}} d x+o_{n}(1) \geqslant\left.\left(\frac{1}{\theta}-\frac{1}{\gamma^{*}}\right) \int_{B_{\varrho}\left(x_{i}\right)} \psi_{\varrho}\left|u_{n}\right|\right|^{\gamma^{*}} d x+o_{n}(1) .
$$

Letting $n \rightarrow \infty$, we get

$$
c_{*} \geqslant\left(\frac{1}{\theta}-\frac{1}{\gamma^{*}}\right) \sum_{i \in \Lambda} \psi_{\varrho}\left(x_{i}\right) v_{i}=\left(\frac{1}{\theta}-\frac{1}{\gamma^{*}}\right) \sum_{i \in \Lambda} v_{i} \geqslant\left(\frac{1}{\theta}-\frac{1}{\gamma^{*}}\right)\left(a_{0} S\right)^{N / \gamma},
$$

which does not make sense for all $\lambda>\lambda^{*}$. Hence Λ is empty and it follows that

$$
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{\gamma^{*}} d x \rightarrow \int_{\mathbb{R}^{N}}|u|^{\gamma^{*}} d x .
$$

The next step is to prove that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} a\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \phi d x=\int_{\mathbb{R}^{N}} a\left(|\nabla u|^{p}\right)|\nabla u|^{p-2} \nabla u \nabla \phi d x+o_{n}(1) \tag{2.11}
\end{equation*}
$$

for all $\phi \in X$.
To this end, we will prove the inequality below:

$$
\left.C|x-y|^{p} \leqslant\left.\left\langle a\left(|x|^{p}\right)\right| x\right|^{p-2} x-a\left(|y|^{p}\right)|y|^{p-2} y, x-y\right\rangle,
$$

for all $x, y \in \mathbb{R}^{N}$. Indeed, firstly note that

$$
\left.\left.\left\langle a\left(|x|^{p}\right)\right| x\right|^{p-2} x-a\left(|y|^{p}\right)|y|^{p-2} y, x-y\right\rangle=\sum_{j=1}^{N}\left(a\left(|x|^{p}\right)|x|^{p-2} x_{j}-a\left(|y|^{p}\right)|y|^{p-2} y_{j}\right)\left(x_{j}-y_{j}\right)
$$

and for all $z, \xi \in \mathbb{R}^{N}$ we get

$$
\begin{aligned}
\sum_{i, j=1}^{N} \frac{\partial}{\partial z_{i}}\left(a\left(|z|^{p}\right)|z|^{p-2} z_{j}\right) \xi_{i} \xi_{j}= & (p-2)|z|^{p-4} \sum_{i, j=1}^{N} a\left(|z|^{p}\right) z_{i} z_{j} \xi_{i} \xi_{j} \\
& +\sum_{i, j=1}^{N} a\left(|z|^{p}\right)|z|^{p-2} \delta_{i, j} \xi_{i} \xi_{j}+p \sum_{i, j=1}^{N} a^{\prime}\left(|z|^{p}\right)|z|^{2 p-4} z_{i} z_{j} \xi_{i} \xi_{j}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{i, j=1}^{N} \frac{\partial}{\partial z_{i}}\left(a\left(|z|^{p}\right)|z|^{p-2} z_{j}\right) \xi_{i} \xi_{j}= & (p-2)|z|^{p-4} a\left(|z|^{p}\right) \sum_{i, j=1}^{N} z_{i} z_{j} \xi_{i} \xi_{j} \\
& +\sum_{i, j=1}^{N} a\left(|z|^{p}\right)|z|^{p-2}|\xi|^{2}+p a^{\prime}\left(|z|^{p}\right)|z|^{2 p-4} \sum_{i, j=1}^{N} z_{i} z_{j} \xi_{i} \xi_{j}
\end{aligned}
$$

Since

$$
\sum_{i, j=1}^{N} z_{i} z_{j} \xi_{i} \xi_{j}=\left(\sum_{j=1}^{N} z_{j} \xi_{j}\right)^{2}
$$

we have

$$
\sum_{i, j=1}^{N} \frac{\partial}{\partial z_{i}}\left(a\left(|z|^{p}\right)|z|^{p-2} z_{j}\right) \xi_{i} \xi_{j}=\left(\sum_{j=1}^{N} z_{j} \xi_{j}\right)^{2}|z|^{p-4}\left[(p-2) a\left(|z|^{p}\right)+p a^{\prime}\left(|z|^{p}\right)|z|^{p}\right]+a\left(|z|^{p}\right)|z|^{p-2}|\xi|^{2}
$$

By (k_{3}), we derive

$$
\begin{equation*}
\sum_{i, j=1}^{N} \frac{\partial}{\partial z_{i}}\left(a\left(|z|^{p}\right)|z|^{p-2} z_{j}\right) \xi_{i} \xi_{j} \geqslant a\left(|z|^{p}\right)|z|^{p-2}|\xi|^{2} \tag{2.12}
\end{equation*}
$$

Moreover, if $|y| \geqslant|x|$, we have $\frac{1}{2}|x-y| \leqslant|y|$ and for $t \in\left[0, \frac{1}{4}\right]$ we get

$$
|y+t(x-y)| \geqslant|y|-t|x-y| \geqslant \frac{1}{4}|x-y|
$$

Making $z=x-y$ and $\xi=x-y$, from direct calculations we get

$$
\sum_{j=1}^{N}\left(a\left(|x|^{p}\right)|x|^{p-2} x_{j}-a\left(|y|^{p}\right)|y|^{p-2} y_{j}\right)\left(x_{j}-y_{j}\right)=\int_{0}^{1} \sum_{i, j=1}^{N} \frac{\partial}{\partial z_{i}}\left(a\left(|z|^{p}\right)|z|^{p-2} z_{j}\right) \xi_{i} \xi_{j}
$$

Using (2.12) we derive

$$
\left.\left\langle a\left(|x|^{p}\right)\right| x\right|^{p-2} x-a\left(|y|^{p}\right)|y|^{p-2} y, x-y\left|\geqslant a\left(|y+t(x-y)|^{p}\right)\right| y+\left.t(x-y)\right|^{p-2}|x-y|^{2}
$$

By (k_{1}) we conclude

$$
\left.\left.\left\langle a\left(|x|^{p}\right)\right| x\right|^{p-2} x-a\left(|y|^{p}\right)|y|^{p-2} y, x-y\right\rangle \geqslant \frac{a_{0}}{4}|x-y|^{p-2}|x-y|^{2}=\frac{a_{0}}{4}|x-y|^{p} .
$$

Now, considering

$$
\left.P_{N}=\left.\left\langle a\left(\left|\nabla u_{n}\right|^{p}\right)\right| \nabla u_{n}\right|^{p-2} \nabla u_{n}-a\left(|\nabla u|^{p}\right)|\nabla u|^{p-2} \nabla u, \nabla u_{n}-\nabla u\right\rangle
$$

and $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that $\psi \equiv 1$ in $B_{1}(0)$ and $\psi \equiv 0$ in $\mathbb{R}^{N} \backslash B_{2}(0)$, we have

$$
0 \leqslant \frac{a_{0}}{4} \int_{B_{1}(0)}\left|\nabla u_{n}-\nabla u\right|^{p} d x \leqslant \int_{B_{1}(0)} P_{N} d x \leqslant \int_{\mathbb{R}^{N}} P_{N} \psi d x
$$

Hence

$$
0 \leqslant \frac{a_{0}}{4} \int_{B_{1}(0)}\left|\nabla u_{n}-\nabla u\right|^{p} d x \leqslant \int_{\mathbb{R}^{N}} a\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p} \psi d x-\int_{\mathbb{R}^{N}} a\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla u \psi d x+o_{n}(1) .
$$

Using (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8) we get

$$
0 \leqslant \frac{a_{0}}{4} \int_{B_{1}(0)}\left|\nabla u_{n}-\nabla u\right|^{p} d x \leqslant I^{\prime}\left(u_{n}\right)\left(u_{n} \psi\right)-I^{\prime}\left(u_{n}\right)(u \psi)=o_{n}(1) .
$$

Thus

$$
\frac{\partial u_{n}}{\partial x_{i}} \rightarrow \frac{\partial u}{\partial x_{i}} \quad \text { in } L^{p}\left(B_{1}(0)\right)
$$

and, up to a subsequence,

$$
\frac{\partial u_{n}}{\partial x_{i}}(x) \rightarrow \frac{\partial u}{\partial x_{i}}(x) \quad \text { a.e. in } \mathbb{R}^{N} .
$$

Using also a result due to Brezis and Lieb [4] (see also [9, Lemma 4.6]), we conclude that (2.11) holds. Hence, $I^{\prime}(u) \psi=0$ for all $\psi \in X$ and for $\lambda \geqslant \lambda^{*}$.
iii) In view of $\left(f_{1}\right)$ and $\left(a_{1}\right)$, we have

$$
\begin{aligned}
o_{n}(1) & =I^{\prime}\left(u_{n}\right) u_{n}^{-}=-\int_{\mathbb{R}^{N}} a\left(\left|\nabla u_{n}^{-}\right|^{p}\right)\left|\nabla u_{n}^{-}\right|^{p} d x-\int_{\mathbb{R}^{N}} b\left(\left|u_{n}^{-}\right|^{p}\right)\left|u_{n}^{-}\right|^{p} d x \\
& \leqslant-a_{0} \int_{\mathbb{R}^{N}}\left|\nabla u_{n}^{-}\right|^{p} d x-b_{1} \int_{\mathbb{R}^{N}}\left|\nabla u_{n}^{-}\right|^{q} d x-a_{0} \int_{\mathbb{R}^{N}}\left|u_{n}^{-}\right|^{p} d x-H\left(b_{1}\right) \int_{\mathbb{R}^{N}}\left|u_{n}^{-}\right|^{q} d x=-\left\|u_{n}^{-}\right\|_{1, p}^{p}-H\left(b_{1}\right)\left\|u_{n}^{-}\right\|_{1, q}^{q}
\end{aligned}
$$

Hence, $\left\|u_{n}^{-}\right\|_{1, p}=\left\|u_{n}^{-}\right\|_{1, q}=o_{n}(1)$ which implies $\left\|u_{n}^{-}\right\|=o_{n}(1)$. Thus, we can easily compute

$$
I\left(u_{n}\right)=I\left(u_{n}^{+}\right)+o_{n}(1)
$$

and

$$
I^{\prime}\left(u_{n}\right)=I^{\prime}\left(u_{n}^{+}\right)+o_{n}(1) .
$$

Thus, we will assume hereafter that $\left(u_{n}\right)$ is nonnegative.
The next proposition is a version of Lions' results [15] to problem with $p \& q$-Laplacian.

Proposition 2.5. Let $\left(u_{n}\right) \subset X$ be a $(P S)_{c_{*}}$ sequence for I with $u_{n} \rightharpoonup 0$ in X. Then we have either:
a) $u_{n} \rightarrow 0$ in X or
b) there exist a sequence $\left(y_{n}\right) \in \mathbb{R}^{N}$ and constants $R, \beta>0$ such that

$$
\liminf _{n \rightarrow+\infty} \int_{B_{R}\left(y_{n}\right)}\left|u_{n}\right|^{\gamma} d x \geqslant \beta>0
$$

Proof. Suppose that b) does not occur. Thus, $\liminf _{n \rightarrow+\infty} \sup _{y \in \mathbb{R}^{N}} \int_{B_{R}(y)}\left|u_{n}\right|^{\gamma} d x=0$. Using Lemma 8.4 in [15], we get $u_{n} \rightarrow 0$ in $L^{m}\left(\mathbb{R}^{N}\right)$, for all $m \in\left(\gamma, \gamma^{*}\right)$. This fact implies that

$$
\int_{\mathbb{R}^{N}} f\left(u_{n}\right) u_{n} d x \rightarrow 0
$$

It follows that

$$
\int_{\mathbb{R}^{N}} a\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p} d x+\int_{\mathbb{R}^{N}} b\left(\left|u_{n}\right|^{p}\right)\left|u_{n}\right|^{p} d x=\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{\gamma^{*}} d x+o_{n}(1)
$$

Since, up to a subsequence,

$$
\int_{\mathbb{R}^{N}} a\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p} d x+\int_{\mathbb{R}^{N}} b\left(\left|u_{n}\right|^{p}\right)\left|u_{n}\right|^{p} d x \rightarrow L_{\lambda}
$$

and

$$
\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{\gamma^{*}} d x \rightarrow L_{\lambda}
$$

If $L_{\lambda} \rightarrow 0$ as $\lambda \rightarrow \infty$, then

$$
C\left(\left\|u_{n}\right\|_{1, p}^{p}+H\left(b_{1}\right)\left\|u_{n}\right\|_{1, q}^{q}\right) \leqslant\left.\int_{\mathbb{R}^{N}} a\left(\left|\nabla u_{n}\right|^{p}\right) \nabla u_{n}\right|^{p} d x+\int_{\mathbb{R}^{N}} b\left(\left|u_{n}\right|^{p}\right)\left|u_{n}\right|^{p} d x=o_{n}(1)
$$

and therefore

$$
\left\|u_{n}\right\| \rightarrow 0
$$

If there exists $M>0$, independent of λ, such that $L_{\lambda} \geqslant M$, then

$$
o_{n}(1)+c_{*}=\frac{1}{p} \int_{\mathbb{R}^{N}} A\left(\left|\nabla u_{n}\right|^{p}\right) d x+\frac{1}{p} \int_{\mathbb{R}^{N}} B\left(\left|u_{n}\right|^{p}\right) d x-\frac{1}{\gamma^{*}} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{\gamma^{*}} d x
$$

By (k_{2}) we get

$$
o_{n}(1)+c_{*} \geqslant\left(\frac{1}{p \alpha}-\frac{1}{\gamma^{*}}\right) L_{\lambda} \geqslant\left(\frac{1}{p \alpha}-\frac{1}{\gamma^{*}}\right) M>0
$$

which is an absurd from Remark 2.3. Hence

$$
\left\|u_{n}\right\| \rightarrow 0
$$

2.1. Proof of Theorem 1.1

By Lemma 2.4, there exists $u \in X$ such that $I^{\prime}(u)=0$ and $u \geqslant 0$. Suppose that $u \not \equiv 0$. Adapting arguments from [12], we conclude that $u \in L^{\infty}\left(\mathbb{R}^{N}\right) \cap C^{1, \alpha}\left(\mathbb{R}^{N}\right)$ for some $0<\alpha<1$, and therefore it follows from Harnack's inequality [19] that $u(x)>0$ for all $x \in \mathbb{R}^{N}$. If $u \equiv 0$, then u_{n} no converges strongly to zero, because for the contrary case, we get $c_{*}=0$. Thus, from Proposition 2.5, there is a sequence $\left(y_{n}\right) \in \mathbb{R}^{N}$ and $R, \alpha>0$ such that

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} \int_{B_{R}\left(y_{n}\right)}\left|u_{n}\right|^{\gamma} d x>\beta \tag{2.13}
\end{equation*}
$$

Now, letting $\widetilde{u}_{n}(x)=u_{n}\left(x+y_{n}\right)$, using the invariance of \mathbb{R}^{N} for translation, by a routine calculus we obtain $\left\|\widetilde{u}_{n}\right\|=\left\|u_{n}\right\|$, $I\left(\widetilde{u}_{n}\right)=I\left(u_{n}\right)$ and $I^{\prime}\left(\widetilde{u}_{n}\right)=o_{n}(1)$. Then, there exists \tilde{u} such that $\widetilde{u}_{n} \rightharpoonup \widetilde{u}$ weakly in X and as before it follows that $I^{\prime}(\widetilde{u})=0$. Now, by (2.13), taking a subsequence and R bigger we conclude that \tilde{u} is nontrivial and the proposition is proved.

Acknowledgments

The author would like to thank UAME/UFCG - Campina Grande, and especially Professor Claudianor Oliveira Alves for his attention and friendship. This article was done while he was visiting that institution.

References

[1] C.O. Alves, J.M. B do O, O.H. Miyagaki, On perturbations of a class of a periodic m-Laplacian equation with critical growth, Nonlinear Anal. 45 (2001) 849-863.
[2] C.O. Alves, Existence of radial solutions for a class of $p(x)$-Laplacian equations with critical growth, Differential Integral Equations 23 (1-2) (2010) 113-123.
[3] J.G. Azorero, I.P. Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc. 323 (2) (1991) 877-895.
[4] H. Brezis, E.H. Lieb, A relation between pointwise convergence of functions and convergence functionals, Proc. Amer. Math. Soc. 8 (1983) 486-490.
[5] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983) 437-477.
[6] L. Cherfils, V. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with $p \& q$-Laplacian, Commun. Pure Appl. Anal. 1 (4) (2004) 1-14.
[7] J.M. B do O, Quasilinear elliptic equations with exponential nonlinearities, Comm. Appl. Nonlinear Anal. 2 (3) (1995) 63-72.
[8] J.M. B do O, Existence of solutions for quasilinear elliptic equations, J. Math. Anal. Appl. 207 (1997) 104-126.
[9] O. Kavian, Introduction à la théorie des points critiques et applicatons aux problemes elliptiques, Springer, Heidelberg, 1983.
[10] C. He, G. Li, The existence of a nontrivial solution to the $p \& q$-Laplacian problem with nonlinearity asymptotic to u^{p-1} at infinity in \mathbb{R}^{N}, Nonlinear Anal. 5 (2008) 1100-1119.
[11] C. He, G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing $p \& q$-Laplacians, Ann. Acad. Sci. Fenn. 33 (2008) 337-371.
[12] G. Li, Some properties of weak solutions of nonlinear scalar field equations, Ann. Acad. Sci. Fenn. Ser. A 14 (1989) 27-36.
[13] G. Li, X. Liang, The existence of nontrivial solutions to nonlinear elliptic equation of $p-q$-Laplacian type on \mathbb{R}^{N}, Nonlinear Anal. 71 (2009) 2316 - 2334 .
[14] G. Li, Z. Guo, Multiple solutions for the $p \& q$-Laplacian problem with critical exponent, Acta Math. Sci. 29B (2009) 903-918.
[15] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223-283.
[16] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoam. 1 (1985) 145-201.
[17] E.S. Medeiros, K. Perera, Multiplicity of solutions for a quasilinear elliptic problem via the cohomological index, Nonlinear Anal. 71 (2009) $3654-3660$.
[18] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.
[19] N.S. Trudinger, On Harnack type inequalities and their applications to quasilinear elliptic equations, Comm. Pure Appl. Math. XX (1967) 721-747.
[20] M. Wu, Z. Yang, A class of $p-q$-Laplacian type equation with potentials eigenvalue problem in \mathbb{R}^{N}, Bound. Value Probl. 2009 (2009), ID 185319.

[^0]: E-mail address: giovany@ufpa.br.
 1 Supported by CNPq/PQ 300705/2008-5.

