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1. Introduction

Denote by Mn(K) the space of n × n matrices over an infinite field K . The direct product of two copies of the general
linear group Gn := GLn(K) × GLn(K) acts linearly on Mn(K): the group element (g, h) maps A ∈ Mn(K) to gAh−1. Take the
direct sum Mn(K)m := Mn(K) ⊕ · · · ⊕ Mn(K)  

m

of m copies of this representation of Gn. The action of Gn induces an action

on the algebra of polynomial functions K [Mn(K)m] in the usual way. Let Rn,m(K) be the subalgebra of the invariants of the
subgroup SLn(K) × SLn(K) of Gn. It is called also the algebra of semi-invariants of Gn onMn(K)m. The structure and minimal
systems of generators of Rn,m(K) are known in a few cases only. Over a field of characteristic 0 or p > 2 the algebra R2,m(K)
is minimally generated by the determinants det(Ar), r = 1, . . . ,m, the mixed discriminants M(Ar1 , Ar2), 1 ≤ r1 < r2 ≤ m,
and the discriminants D(Ar1 , Ar2 , Ar3 , Ar4), 1 ≤ r1 < r2 < r3 < r4 ≤ m (see [11] and the last paragraph of Section 3 in [13],
or [20, Theorem 11.47]). HereM(A1, A2) is defined as the coefficient of t1t2 in

det(t1A1 + t2A2) = t21 det(A1) + t1t2M(A1, A2) + t22 det(A2),

D(A1, A2, A3, A4) =



a(1)
11 a(2)

11 a(3)
11 a(4)

11

a(1)
21 a(2)

21 a(3)
21 a(4)

21

a(1)
12 a(2)

12 a(3)
12 a(4)

12

a(1)
22 a(2)

22 a(3)
22 a(4)

22


,

where Ar =


a(r)
ij


2×2

, r = 1, 2, 3, 4. Form ≤ 4 the generators det(Ar) andM(Ar1 , Ar2) are algebraically independent and for

m = 4 the algebra R2,4(K) is a freemodule over the polynomial subalgebra generated by themwith basis 1,D(A1, A2, A3, A4).
It is pointed out in [13,20] that R2,m(K) can be interpreted as the ring of vector invariants of the special orthogonal group of
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degree 4. Therefore the relations among the generators can be deduced from classically known results, and even a Gröbner
basis of the ideal of relations can be obtained from [13]. Form = 2 and any n the algebra Rn,2 is generated by the algebraically
independent coefficients of det(t1A1 + t2A2), [17], see also [19].

Apart from the cases n = 2 for any m and m = 2 for any n, the only other case when a minimal system of generators of
Rn,m(K) is explicitly known is n = m = 3, and this algebra is the main object to study in the present paper. In the sequel we
denote R(K) := K [M3(K)3]SL3(K)×SL3(K), the algebra of SL3(K) × SL3(K)-invariant polynomial functions onM3(K)3.

Define polynomial functions fi,j,k onM3(K)3 by the equality

det(t1A1 + t2A2 + t3A3) =


i+j+k=3

t i1t
j
2t

k
3 fi,j,k(A1, A2, A3)

for all t1, t2, t3 ∈ K and A1, A2, A3 ∈ M3(K). Obviously the ten polynomials fi,j,k belong to R(K). Furthermore, define h as the
coefficient of t21 t

2
2 t

2
3 in

det


t2A2 t1A1
t1A1 t3A3


and define q as the coefficient of t21 t2t

2
3 t4t

2
5 t6 in

det

 0 t1A1 t2A2
t4A1 0 t3A3
t5A2 t6A3 0


.

Clearly h and q belong to R(K). It is proved in [10] that h and the ten polynomials fi,j,k (where i + j + k = 3) constitute
a homogeneous system of parameters in R(K). Denote by P(K) the subalgebra generated by these eleven algebraically
independent elements. In the case when the characteristic of the base field K is zero, using a result of Teranishi [23] it
was established in [10] that R(K) is a free P(K)-module generated by 1 and q:

R(K) = P(K) ⊕ P(K)q. (1)

A similar description of R(K) is stated by Mukai without proof in [20, Proposition 11.49]. It follows from (1) that q satisfies
a monic quadratic relation with coefficients from P(K). In the present paper we find the explicit form of this relation.

A crucial role in our considerations is played by the following right action of the general linear group GL3(K) onM3(K)3:
For g = (gij)3×3 ∈ GL3(K) and (A1, A2, A3) ∈ M3(K)3 we have

(A1, A2, A3) · g :=


3

i=1

gi1Ai,

2
i=1

gi2Ai,

3
i=1

gi3Ai


.

This induces a left action of GL3(K) on the coordinate ring ofM3(K)3: for a polynomial function f onM3(K)3 and g ∈ GL3(K),
the function g · f maps (A1, A2, A3) ∈ M3(K)3 to f ((A1, A2, A3) · g). Since this action of GL3(K) commutes with the action of
SL3(K) × SL3(K) introduced above, R(K) is a GL3(K)-submodule of the coordinate ring ofM3(K)3.

First in Section 2we treat the case when K is the field Q of rational numbers. By the theory of polynomial representations
of GL3(Q) one can read off from (1) that h and q can be replaced by H and Q that are highest weight vectors with respect to
GL3(Q). In fact H and Q are invariants with respect to the subgroup SL3(Q) of GL3(Q) and they are uniquely determined
up to non-zero scalar multiples. The relation among the new generators Q ,H, fi,j,k takes place in the subalgebra of
SL3(Q)-invariants in R(Q). This is a ‘‘small’’ subalgebra of R(Q), and a ‘‘large’’ part of it can be identified with the algebra of
SL3(C)-invariants of ternary cubic forms, whose explicit generators S and T are known from a famous classical computation
of Aronhold [3]. It is an easy matter to find H and Q explicitly, and then most of the computational difficulty in finding
the relation among Q ,H, fi,j,k is already contained in Aronhold’s computation, so one gets easily the desired relation
(cf. Theorem 1).

Rewriting the relation found in Section 2 in terms of our original generators q, h, fi,j,k, we obtain a relation A(q, h,
f1, . . . , f10) = 0with integer coefficients. This yields a uniform description for R(K) in terms of aminimal generating system
and the corresponding defining relations, valid over any infinite base field K and also for K = Z, the ring of integers, see
Theorem 3.

The results in Theorems 1 and 3 can be applied to recover in a transparent way known results in three other topics of
independent interest. In Remark 2 wemention the connection to the explicit determination of the Jacobian of a cubic curve,
and to the description of SL3(C) × SL3(C) × SL3(C)-invariants of tensors in C3

⊗ C3
⊗ C3. Furthermore, in Section 4 we

deduce from Theorem 3 the explicit combinatorial description of the ring of conjugation invariants of pairs of 3×3matrices.
In particular, we recover the complicated relation due to Nakamoto [21] as a simple consequence of our results on R(K). In
summary, the complicated relation mentioned above comes from the simple relation in Theorem 1 by specialization and
change of variables.

Let us note finally that R is an instance of a semi-invariant algebra of a quiver, and Theorems 1 and 3 give information
on the homogeneous coordinate ring of the moduli space of semistable (3, 3)-dimensional representations (cf. [18]) of the
generalized Kronecker quiver with three arrows.
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2. Characteristic zero

Throughout this section we assume that K = Q, the field of rational numbers. (Everything would hold for any
characteristic zero base field.) To simplify notation set R := R(Q), P := P(Q). The homogeneous components of R are
polynomial GL3(Q)-modules. Recall that given a representation of GL3(Q) on some vector space and α = (α1, α2, α3) ∈ Z3

we say that a non-zero vector v is a weight vector of weight α if diag(z1, z2, z3) · v = zα1
1 zα2

2 zα3
3 v for all diagonal elements

diag(z1, z2, z3) ∈ GL3(Q). A polynomial GL3(Q)-module is completely reducible, and the isomorphism classes of irreducible
polynomial GL3(Q)-modules are labeled by partitions λ with at most three non-zero parts, i.e., λ = (λ1, λ2, λ3) ∈ N3

0 is a
triple of non-negative integers with λ1 ≥ λ2 ≥ λ3. Write Vλ for the irreducible polynomial GL3(Q)-module corresponding
toλ. Given a polynomial representation ofGL3(Q), aweight vector is called a highestweight vector if it is fixed by all unipotent
upper triangular elements in GL3(Q). Then its weight is necessarily a partition λ, and it generates a GL3(Q)-submodule
isomorphic to Vλ.

The GL3(Q)-module structure of R is encoded in its 3-variable Hilbert series

H(R; t1, t2, t3) :=


α∈N3

0

dimQ(Rα)tα1
1 tα2

2 tα3
3 ∈ Z[[t1, t2, t3]],

where Rα denotes the α weight subspace of R. From (1) we know that

H(R; t1, t2, t3) =
1 + t31 t

3
2 t

3
3

(1 − t21 t
2
2 t

2
3 )


i+j+k=3(1 − t i1t
j
2t

k
3)

.

This shows that up to degree≤6, the homogeneous components ofR coincidewith those of P . Hence P is aGL3(Q)-submodule
in R. Denote by P0 the subalgebra of P generated by the fi,j,k. For g = (gij)3×3 ∈ GL3(Q) we have

i+j+k=3

t i1t
j
2t

k
3 fi,j,k((A1, A2, A3) · g) = det


3

j=1


tj

3
i=1

gijAi


= det


3

i=1


3

j=1

gijtj


Ai



=


l+m+n=3

fl,m,n(A1, A2, A3)


3

r=1

g1r tr

l  3
r=1

g2r tr

m  3
r=1

g3r tr

n

,

hence 
i+j+k=3

(g · fi,j,k)t i1t
j
2t

k
3 =


l+m+n=3

fl,m,n


3

r=1

g1r tr

l  3
r=1

g2r tr

m  3
r=1

g3r tr

n

. (2)

So the fi,j,k span aGL3(Q)-submodule, hence P0 is also aGL3(Q)-submodule, andwe see from theHilbert series that the degree
6 homogeneous component of P0 has a GL3(Q)-module direct complement in the degree 6 homogeneous component of P
isomorphic to V(2,2,2). Taking themultidegree into account we conclude that there exist unique scalars βi, i = 1, 2, 3, 4, such
thatH := h+β1f2,1,0f0,1,2 +β2f2,0,1f0,2,1 +β3f1,2,0f1,0,2 +β4f 21,1,1 is a highest weight vector (and hence spans the submodule
V(2,2,2) mentioned above). To find the values βi note that 1 1 0

0 1 0
0 0 1


and

 1 0 0
0 1 1
0 0 1


generate a Zariski dense subgroup in the subgroup of unipotent upper triangularmatrices inGL3(Q). Therefore the condition
that H is a highest weight vector is equivalent to the condition that the above two elements of GL3(Q) fix H . This gives a
system of linear equations for the βi, that can be easily solved (we used CoCoA [8]), and we get that

H = h −
1
3
f2,1,0f0,1,2 −

1
3
f2,0,1f0,2,1 +

2
3
f1,2,0f1,0,2 +

1
12

f 21,1,1. (3)

Denote by P+ the sum of the positive degree homogeneous components of P . Then by the above considerations we know
that P+R is a GL3(Q)-submodule in R, and the Hilbert series of R shows that P+R has a GL3(Q)-module direct complement
isomorphic to V(0) ⊕ V(3,3,3) (where V(0) is the trivial GL3(Q)-module). Consequently, there is a unique weight vector v in
P of weight (3, 3, 3) (i.e., a multihomogeneous element of multidegree (3, 3, 3)) such that Q := q + v is a highest weight
vector (and hence spans the submodule V(3,3,3) mentioned above). Solving a small system of linear equations as in the case
of H we obtain

Q = q −
1
2
hf1,1,1 +

3
2
f3,0,0f0,3,0f0,0,3 −

1
2
f3,0,0f0,2,1f0,1,2 −

1
2
f0,3,0f2,0,1f1,0,2 −

1
2
f0,0,3f2,1,0f1,2,0

−
1
2
f1,1,1f1,2,0f1,0,2 +

1
2
f2,1,0f1,0,2f0,2,1 +

1
2
f1,2,0f2,0,1f0,1,2. (4)
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It follows from (3), (4) and (1) that Q , H and the fi,j,k constitute a minimal generating system of R, and that Q satisfies
a monic quadratic polynomial with coefficients in P . Note that Q ,H ∈ RSL3(Q). Next we introduce two other distinguished
elementsS, T in RSL3(Q). Eq. (2) shows that the algebraically independent invariants fi,j,k span a GL3(Q)-submodule in R
isomorphic to the dual of the space of ternary cubic forms, hence PSL3(Q)

0 is isomorphic to the algebra of SL3(Q)-invariants of
ternary cubic forms. The latter was determined in [3], and is generated by two algebraically independent elements S and T .
Here S and T are homogeneous polynomials of degree four and six in the coefficients of the general cubic ternary form

aX3
+ bY 3

+ cZ3
+ 3a2X2Y + 3a3X2Z + 3b1XY 2

+ 3b3Y 2Z + 3c1XZ2
+ 3c2YZ2

+ 6mXYZ .

The expressions S and T can be found in [22], in [9, page 160], or in [2]. Now substitute in S and T the coefficients of the
general ternary form by the fi,j,k to get elementsS andT in P0. The exact substitution is given by the following table:

a a2 a3 b b1 b3 c c1 c2 m
f3,0,0 1

3 f2,1,0
1
3 f2,0,1 f0,3,0 1

3 f1,2,0
1
3 f0,2,1 f0,0,3 1

3 f1,0,2
1
3 f0,1,2

1
6 f1,1,1

By (2) this substitution induces a GL3(Q)-module isomorphism from the dual of the space of ternary cubic forms to the
subspace of R spanned by the fi,j,k. HenceS,T are SL3(Q)-invariants in P0, and by Aronhold [3] we have PSL3(Q)

0 = Q[S,T ].
Moreover, since H is SL3(Q)-invariant, we have PSL3(Q)

= (P0[H])SL3(Q)
= PSL3(Q)

0 [H] = Q[S,T ,H], a three-variable polyno-
mial algebra. Since Q is also SL3(Q)-invariant, we conclude from R = P ⊕ P · Q that

RSL3(Q)
= PSL3(Q)

⊕ Q · PSL3(Q)
= Q[S,T ,H] ⊕ Q · Q[S,T ,H].

Taking the degrees into account it follows that Q 2
= αH3

+βHS + γT for some unique scalars α, β, γ ∈ Q. The scalars can
be easily found by substituting special matrix triples into the above equality: on skew-symmetric triples all the fi,j,k vanish,
henceT andS vanish. On the other hand, the value of H on the triple 0 −x1 −y1

x1 0 −z1
y1 z1 0


,

 0 −x2 −y2
x2 0 −z2
y2 z2 0


,

 0 −x3 −y3
x3 0 −z3
y3 z3 0



is det2
 x1 x2 x3

y1 y2 y3
z1 z2 z3


, whereas the value of Q on this triple is det3

 x1 x2 x3
y1 y2 y3
z1 z2 z3


. This shows that α = 1. Note that

det

 t1 t3 0
0 at1 + t2 −bt1 + t3

bt1 + t3 0 −at1 + t2


= t33 + t22 t1 − b2t21 t3 − a2t31

(theWeierstrass canonical form of a plane cubic in homogeneous coordinates (t1 : t2 : t3) onP2). The values of the invariantsS,T , H , Q on the corresponding matrix triple 1 0 0
0 a −b
b 0 −a


,

 0 0 0
0 1 0
0 0 1


,

 0 1 0
0 0 1
1 0 0


are −b2/27, −4a2/27, −b, −a. It follows that β = 27 and γ = −27/4. Hence we proved the following:

Theorem 1. We have the equality

Q 2
= H3

+ 27HS −
27
4
T (5)

where H and Q are given explicitly in (3) and (4), and they are characterized (up to non-zero scalar multiples) in R as the unique
degree 6 and degree 9 SL3(Q)-invariants in R.

Remark 2. (i) The relation (5) essentially coincides with the relation

J2 = 4Θ3
+ 108SΘH4

− 27TH6

among the basic covariants of plane cubics (cf. [22]). It was observed byWeil [26] that this gives the equation of the Jacobian
of a plane cubic, see [2] for a proof. As it is pointed out in the book of Mukai [20, page 430], an alternative approach to this
result can be based on the study of R and its defining relation (5).Wemention that the results on the equation of the Jacobian
of a plane cubic are extended to arbitrary characteristic (including 2 and 3) in [4]. Our results in Section 3 have relevance for
this.

(ii) The algebra RSL3(Q) can be identified with the algebra of SL3(Q) × SL3(Q) × SL3(Q)-invariants on Q3
⊗ Q3

⊗ Q3. The
arguments above show that this is a three-variable polynomial algebra generated byS, H , and Q . This result is well known,
see [7,24,25,6]. Our results provide an alternative proof, and an alternative interpretation of the basic invariants.



2102 M. Domokos, V. Drensky / Journal of Pure and Applied Algebra 216 (2012) 2098–2105

3. Relation over the integers

To shorten the expressions, set

f1 := f3,0,0, f2 := f2,1,0, f3 := f2,0,1, f4 := f1,2,0, f5 := f1,1,1,
f6 := f1,0,2, f7 := f0,3,0, f8 := f0,2,1, f9 := f0,1,2, f10 := f0,0,3.

It turns out thatQ 2
−H3

−27HS+ 27
4
T = A(q, h, f1, . . . , f10), whereA is a 12-variable polynomialwith integer coefficients,

given explicitly as follows:

A(q, h, f1, . . . , f10) = q2 − qhf5 + 3qf1f7f10 − qf1f8f9 − qf2f4f10 + qf2f6f8 + qf3f4f9 − qf3f6f7 − qf4f5f6
− h3

+ h2f2f9 + h2f3f8 − 2h2f4f6
+ 3hf1f4f8f10 − hf1f4f 29 − 6hf1f5f7f10 + hf1f5f8f9 + 3hf1f6f7f9 − hf1f6f 28
− hf 22 f8f10 + 3hf2f3f7f10 − hf2f3f8f9 + hf2f4f5f10 + hf2f4f6f9 − hf2f 26 f7
− hf 23 f7f9 − hf3f 24 f10 + hf3f4f6f8 + hf3f5f6f7 − hf 24 f

2
6 + 9f 21 f

2
7 f

2
10

− 6f 21 f7f8f9f10 + f 21 f7f
3
9 + f 21 f

3
8 f10 − 6f1f2f4f7f 210 + f1f2f4f8f9f10

+ 3f1f2f5f7f9f10 − f1f2f5f 28 f10 + 3f1f2f6f7f8f10 − 2f1f2f6f7f 29
+ 3f1f3f4f7f9f10 − 2f1f3f4f 28 f10 + 3f1f3f5f7f8f10 − f1f3f5f7f 29 − 6f1f3f6f 27 f10
+ f1f3f6f7f8f9 + f1f 34 f

2
10 − f1f 24 f5f9f10 + f1f 24 f6f8f10 + f1f4f 25 f8f10

− 3f1f4f5f6f7f10 + f1f4f 26 f7f9 − f1f 35 f7f10 + f1f 25 f6f7f9 − f1f5f 26 f7f8 + f1f 36 f
2
7

+ f 32 f7f
2
10 − 2f 22 f3f7f9f10 + f 22 f3f

2
8 f10 − f 22 f4f6f8f10 − f 22 f5f6f7f10 + f 22 f

2
6 f7f9

− 2f2f 23 f7f8f10 + f2f 23 f7f
2
9 − f2f3f4f5f8f10 + 4f2f3f4f6f7f10 + f2f3f 25 f7f10

− f2f3f5f6f7f9 + f2f 24 f5f6f10 − f2f4f 36 f7 + f 33 f
2
7 f10 + f 23 f

2
4 f8f10 − f 23 f4f5f7f10

− f 23 f4f6f7f9 − f3f 34 f6f10 + f3f4f5f 26 f7.

For i, j, k ∈ {1, 2, 3} denote by x(r)
ij the coordinate function on M3(Q)3 mapping the matrix triple (A1, A2, A3) to the

(i, j)-entry of Ar . Then R(Q) contains the subring

R(Z) := R(Q) ∩ Z[x(r)
ij | i, j, r = 1, 2, 3].

Theorem 3. Let K be an infinite field or the ring of integers. Then R(K) is minimally generated as a K-algebra by the twelve
elements q, h, fj, j = 1, . . . , 10, satisfying the single algebraic relation A(q, h, f1, . . . , f10) = 0 (where A is given explicitly
above). Moreover, R(K) is a free module with basis 1, q over its K-subalgebra generated by the eleven algebraically independent
elements h, f1, . . . , f10.

Proof. We know already from [10] and Section 2 that the statement holds when K is a field of characteristic zero. We also
know already that for any K , the given twelve elements satisfy the relation A(q, h, f1, . . . , f10) = 0.

Suppose next that K is an infinite field of positive characteristic. We claim that 1 and q generate a free P(K)-submodule
in R(K). Indeed, otherwise q belongs to the field of fractions of P(K). By the above relation q is integral over P(K). Since
P(K) is a unique factorization domain, it follows that q belongs to P(K). Taking the grading of R into account, we conclude
that q = hc + d, where c is a linear combination of the fi, and d is a cubic polynomial in the fi. Now substitute into this
equality a triple (A1, A2, A3), where the Ai constitute a basis of the space of 3× 3 skew-symmetric matrices. All the fi vanish
on this triple, hence (hc + d)(A1, A2, A3) = 0, whereas q does not vanish on this triple as we pointed out in Section 2.
So P(K) ⊕ P(K)q ⊆ R(K). It follows from the theory of modules with good filtration (cf. [16, page 399]) that the Hilbert
series of R(K) coincides with the Hilbert series of R(Q). We know already that the latter coincides with the Hilbert series of
P(K) ⊕ P(K)q, hence we have the equality R(K) = P(K) ⊕ P(K)q. This shows both the statement on the generators and the
relation.

Finally we turn to R(Z). Denote by P(Z) the Z-subalgebra of R(Z) generated by the eleven elements h, f1, . . . , f10. From
the caseK = Qweknow that P(Z) is a polynomial ring, andR(Z) contains the free P(Z)-submoduleM := P(Z)⊕P(Z)q. Take
any f ∈ R(Z). It follows from the case K = Q that some positive integermultiplemf of f belongs toM , somf = c+dq, where
c, d ∈ P(Z). We may assume that m is minimal. If m ≠ 1, then let p be a prime divisor of m, and let L be an infinite field of
characteristic p. Reductionmod p of coefficients gives a ring homomorphismπ : Z := Z[x(r)

ij | i, j, r = 1, 2, 3] → L[M3(L)3],
and this restricts to a ring homomorphism π : R(Z) → R(L) and π : P(Z) → P(L). Since π(mf ) = 0, we get that π(c) +

π(d)q = 0 holds in R(L). From the case K = L of our theoremwe know that 1, q are independent over P(L), hence π(c) = 0
and π(d) = 0, i.e. c, d ∈ P(Z) ∩ pZ . Clearly P(Z) ∩ pZ = pP(Z), since the eleven generators of P(Z) are mapped under π
to algebraically independent elements of R(L). Consequently, (m/p)f ∈ M , contradicting the minimality ofm. Thus we have
proved the equality R(Z) = P(Z) ⊕ P(Z)q. This implies both the statement on the generators of R(Z) and the statement on
the relation. �
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Remark 4. The fact that aminimalZ-algebra generating systemofR(Z) stays aminimalK -algebra generating systemofR(K)
when exchanging the base ring to any infinite field K is accidental, and the analogous property does not hold in general in
similar situations. For example, denote by Rn,m(K) the ring of SLn(K) × SLn(K)-invariants of m-tuples of n × n matrices. It
is proved in [15] that the method we used to construct generators in the special case n = m = 3 (i.e. polarization of the
determinant of blockmatrices) yields in general an (infinite) generating system of Rn,m(K) for any infinite base field K , hence
also for K = Z. (The latter claim follows in the same way as it is explained by Donkin [16] in a related situation.) However,
Proposition 5 below and the results of [14] imply that ifm is sufficiently large, then a minimal Z-algebra generating system
of Rn,m(Z) becomes redundant over fields K whose characteristic is zero or greater than n.

4. Conjugation invariants of pairs of 3 × 3 matrices

The general linear group GL3(K) acts on M3(K)2 = M3(K) ⊕ M3(K) by simultaneous conjugation: for g ∈ GL3(K)
and A, B ∈ M3(K) we set g · (A, B) = (gAg−1, gBg−1). For any infinite field K denote by U(K) := K [M3(K)2]GL3(K) the
corresponding algebra of invariants. Similarly to Section 3, consider

U(Z) := U(Q) ∩ Z[x(r)
ij | i, j = 1, 2, 3; r = 1, 2]

where x(r)
ij is the coordinate function assigning to the pair (A1, A2) ∈ M3(Q)2 the (i, j)-entry of Ar . A minimal system of

generators of U(K) was given by Teranishi [23] when char(K) = 0; Nakamoto [21] extended the result for any infinite base
field K or K = Z, and determined the single defining relation among the generators. An exact description of U(K) can also
be obtained from Theorem 3, using the following statement (proved in [10, Proposition 4.1]):

Proposition 5. The specialization x(3)
ij → δi

j (where δi
j = 1 if i = j and δi

j = 0 otherwise) induces a surjection ϕ : R(K) → U(K).

Corollary 6. Let K be an infinite field or the ring of integers. Then U(K) is minimally generated as a K-algebra by the eleven
elements ϕ(q), ϕ(h), ϕ(fj), j = 1, . . . , 9, satisfying the single algebraic relation A(ϕ(q), ϕ(h), ϕ(f1), . . . , ϕ(f9), 1) = 0 (where
A is given explicitly in Section 3). Moreover, R(K) is a free module with basis 1, ϕ(q) over its K-subalgebra generated by the ten
algebraically independent elements ϕ(h), ϕ(f1), . . . , ϕ(f9).

Proof. First we express theϕ-images of the generators of R(K) in terms of the usual generators ofU(K). Define the functions
t, s, d onM3(K) by the equality

det(zI + A) = z3 + t(A)z2 + s(A)z + d(A),

where I is the 3 × 3 identity matrix and z ∈ K arbitrary. One has the equality

s(AB) = t(A2B2) + t(AB)t(A)t(B) − t(A2B)t(B) − t(AB2)t(A) − s(A)s(B)

for A, B ∈ M3(K) (see [12, Lemma 2] for a generalization). Furthermore, we have

ϕ(f3,0,0)(A, B) = d(A), ϕ(f0,3,0)(A, B) = d(B), ϕ(f0,0,3)(A, B) = 1,
ϕ(f2,0,1)(A, B) = s(A), ϕ(f0,2,1)(A, B) = s(B),
ϕ(f1,0,2(A, B) = t(A), ϕ(f0,1,2)(A, B) = t(B),
ϕ(f1,1,1)(A, B) = t(A)t(B) − t(AB),

ϕ(f2,1,0)(A, B) = t(A2B) − t(AB)t(A) + s(A)t(B),

ϕ(f1,2,0)(A, B) = t(AB2) − t(AB)t(B) + t(A)s(B).

Applying Amitsur’s formula [1] one gets

ϕ(h)(A, B) = −t(A2B2) + t(A2B)t(B) − t2(A)s(B) + 2s(A)s(B),
ϕ(q)(A, B) = t(B2A2BA) − s(A)s(B)t(AB) − t(A2B)t(AB)t(B) − t(AB2)t(AB)t(A) + t2(AB)t(A)t(B).

Therefore by Theorem 3 and Proposition 5, the eleven elements

t(A), s(A), d(A), t(B), s(B), d(B), t(AB), t(A2B), t(AB2), t(A2B2), t(B2A2BA) (6)

generate U(K). Moreover, t(B2A2BA) satisfies a monic quadratic relation over the subalgebra W (K) of U(K) generated by
the first ten elements. Since by general principles on group actions, the transcendence degree of U(K) is ten, the first ten
generators are algebraically independent. Moreover, t(B2A2BA) does not vanish on the pair (E21 − E32, E12 + E23) (where
Eij is the matrix unit whose only non-zero entry is a 1 in the (i, j)-position), whereas all the first nine generators vanish
on this pair. Since the tenth generator has degree 4 and the eleventh generator has degree 6, it follows that t(B2A2BA)
is not contained in W (K). Hence by the integral closedness of W (K) and by the quadratic relation we conclude that
U(K) = W (K) ⊕ t(B2A2BA)W (K). The statements in our corollary obviously follow. �
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Corollary 7. When K is an infinite field with char(K) ≠ 2 or 3, then the algebra U(K) is minimally generated by ϕ(Q ), ϕ(H),
ϕ(f1), . . . , ϕ(f9), and these generators satisfy the single algebraic relation

ϕ(Q )2 = ϕ(H)3 + 27ϕ(H)ϕ(S) −
27
4

ϕ(T ).

Remark 8. (i) Expressing the left-hand side of A(ϕ(q), ϕ(h), ϕ(f1), . . . , ϕ(f9), 1) = 0 in terms of the generators (6) we
obtain a transparent derivation of the relation found originally by hard computational labor by Nakamoto [21]. We include
this relation in the Appendix.

(ii) The formof the relation in Corollary 7 is rather simple (or better to say that the complication is built into thenineteenth
century expressions for S and T due to [3]): indeed, the quartic or sextic generators appear only in three terms, and the
remaining 9 generators appear only in two prominent classically known (though complicated) expressions.

(iii) We note that working over a characteristic zero base field, another minimal generating system of U(K) is found in
[5], such that the relation between them takes a simpler form than the relation in [21]. This relation is of a different nature
than the one in Corollary 7.
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Appendix

Setting

t1 := t(A), s1 := s(A), d1 := d(A), t2 := t(B), s2 := s(B), d2 := d(B)
r := t(B2A2BA), k := t(A2B2), w1 := t(A2B), w2 := t(AB2), z := t(AB)

we have

0 = r2 − rkz + rkt1t2 − rw1w2 − rw1t1t22 − rw2t21 t2 + rzt21 t
2
2 + 3rd1d2 − rd1s2t2 − rd2s1t1 − rs1s2t1t2

+ k3 − 2k2w1t2 − 2k2w2t1 + k2zt1t2 − 5k2s1s2 + k2s1t22 + k2s2t21
+ kw2

1s2 + kw2
1t

2
2 + kw1w2z + 2kw1w2t1t2 − kw1zs2t1 − kw1zt1t22 − 3kw1d2s1

+ kw1d2t21 + 9kw1s1s2t2 − 2kw1s1t32 − 2kw1s2t21 t2 + kw2
2s1 + kw2

2t
2
1 − kw2zs1t2

− kw2zt21 t2 − 3kw2d1s2 + kw2d1t22 + 9kw2s1s2t1 − 2kw2s1t1t22 − 2kw2s2t31 + kz2s1s2
− 6kzd1d2 + 4kzd1s2t2 − kzd1t32 + 4kzd2s1t1 − kzd2t31 − 8kzs1s2t1t2 + 2kzs1t1t32
+ 2kzs2t31 t2 + 3kd1d2t1t2 − 2kd1s22t1 − 2kd2s21t2 + 8ks21s

2
2 − 2ks21s2t

2
2 − 2ks1s22t

2
1

+ w3
1d2 − w3

1s2t2 − w2
1w2s2t1 − 2w2

1zd2t1 + 2w2
1zs2t1t2 + 4w2

1d2s1t2 − w2
1d2t

2
1 t2

− w2
1s1s

2
2 − 4w2

1s1s2t
2
2 + w2

1s1t
4
2 + w2

1s2t
2
1 t

2
2 − w1w

2
2s1t2 + w1w2zs1t22 + w1w2zs2t21

− 6w1w2d1d2 + 4w1w2d1s2t2 − w1w2d1t32 + 4w1w2d2s1t1 − w1w2d2t31 − 8w1w2s1s2t1t2
+ 2w1w2s1t1t32 + 2w1w2s2t31 t2 + w1z2d2s1 + w1z2d2t21 − w1z2s1s2t2 − w1z2s2t21 t2
+ 6w1zd1d2t2 + w1zd1s22 − 4w1zd1s2t22 + w1zd1t42 − 8w1zd2s1t1t2 + 2w1zd2t31 t2
+ w1zs1s22t1 + 8w1zs1s2t1t22 − 2w1zs1t1t42 − 2w1zs2t31 t

2
2 − 3w1d1d2s2t1 − 2w1d1d2t1t22

+ 2w1d1s22t1t2 + 4w1d2s21s2 + 2w1d2s21t
2
2 − w1d2s1s2t21 − 8w1s21s

2
2t2 + 2w1s21s2t

3
2

+ 2w1s1s22t
2
1 t2 + w3

2d1 − w3
2s1t1 − 2w2

2zd1t2 + 2w2
2zs1t1t2 + 4w2

2d1s2t1 − w2
2d1t1t

2
2

− w2
2s

2
1s2 − 4w2

2s1s2t
2
1 + w2

2s1t
2
1 t

2
2 + w2

2s2t
4
1 + w2z2d1s2 + w2z2d1t22 − w2z2s1s2t1

− w2z2s1t1t22 + 6w2zd1d2t1 − 8w2zd1s2t1t2 + 2w2zd1t1t32 + w2zd2s21 − 4w2zd2s1t21
+ w2zd2t41 + w2zs21s2t2 + 8w2zs1s2t21 t2 − 2w2zs1t21 t

3
2 − 2w2zs2t41 t2 − 3w2d1d2s1t2

− 2w2d1d2t21 t2 + 4w2d1s1s22 − w2d1s1s2t22 + 2w2d1s22t
2
1 + 2w2d2s21t1t2 − 8w2s21s

2
2t1

+ 2w2s21s2t1t
2
2 + 2w2s1s22t

3
1 + z3d1d2 − z3d1s2t2 − z3d2s1t1 + z3s1s2t1t2 − 5z2d1d2t1t2

+ 4z2d1s2t1t22 − z2d1t1t42 + 4z2d2s1t21 t2 − z2d2t41 t2 − z2s21s
2
2 − 4z2s1s2t21 t

2
2 + z2s1t21 t

4
2

+ z2s2t41 t
2
2 + 6zd1d2s1s2 + zd1d2s1t22 + zd1d2s2t21 + 2zd1d2t21 t

2
2 − 4zd1s1s22t2

+ zd1s1s2t32 − 2zd1s22t
2
1 t2 − 4zd2s21s2t1 − 2zd2s21t1t

2
2 + zd2s1s2t31 + 8zs21s

2
2t1t2

− 2zs21s2t1t
3
2 − 2zs1s22t

3
1 t2 + 9d21d

2
2 − 6d21d2s2t2 + d21d2t

3
2 + d21s

3
2 − 6d1d22s1t1 + d1d22t

3
1

− 2d1d2s1s2t1t2 + 2d1s1s32t1 + d22s
3
1 + 2d2s31s2t2 − 4s31s

3
2 + s31s

2
2t

2
2 + s21s

3
2t

2
1 .



M. Domokos, V. Drensky / Journal of Pure and Applied Algebra 216 (2012) 2098–2105 2105

References
[1] S.A. Amitsur, On the characteristic polynomial of a sum of matrices, Linear Multilinear Algebra 8 (1980) 177–182.
[2] S.Y. An, S.Y. Kim, D.C. Marshall, S.H. Marshall, W.G. McCallum, A.R. Perlis, Jacobians of genus one curves, J. Number Theory 90 (2001) 304–315.
[3] S. Aronhold, Zur Theorie der homogenen Functionen dritten Grades von drei Variablen, Crelle J. 39 (1850) 140–159.
[4] M. Artin, F. Rodriguez-Villegas, J. Tate, On the Jacobians of plane cubics, Adv. Math. 198 (2005) 366–382.
[5] H. Aslaksen, V. Drensky, L. Sadikova, Defining relations of invariants of two 3 × 3 matrices, J. Algebra 298 (2006) 41–57.
[6] E. Briand, J-G. Luque, J-Y. Thibon, The moduli space of three-qutrit states, J. Math. Phys. 45 (2004) 4855–4867.
[7] J.H. Chanler, The invariant theory of the ternary trilinear form, Duke Math. J. 5 (1939) 552–566.
[8] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, Available at http://cocoa.dima.unige.it.
[9] I. Dolgachev, Lectures on Invariant Theory, in: London Math. Soc. Lecture Notes Series, 296, Cambridge Univ. Press, 2003.

[10] M. Domokos, Relative invariants of 3 × 3 matrix triples, Linear Multilinear Algebra 47 (2000) 175–190.
[11] M. Domokos, Poincaré series of semi-invariants of 2 × 2 matrices, Linear Algebra Appl. 310 (2000) 183–194.
[12] M. Domokos, Finite generating system of matrix invariants, Math. Pannon. 13 (2002) 175–181.
[13] M. Domokos, V. Drensky, Gröbner bases for the rings of special orthogonal and 2 × 2 matrix invariants, J. Algebra 243 (2001) 706–716.
[14] M. Domokos, S.G. Kuzmin, A.N. Zubkov, Rings of matrix invariants in positive characteristic, J. Pure Appl. Algebra 176 (2002) 61–80.
[15] M. Domokos, A.N. Zubkov, Semi-invariants of quivers as determinants, Transform. Groups 6 (2001) 9–24.
[16] S. Donkin, Invariants of several matrices, Invent. Math. 110 (1992) 389–401.
[17] D. Happel, Relative invariants of quivers of tame type, J. Algebra 86 (1984) 315–335.
[18] A.D. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford (2) 45 (1994) 515–530.
[19] K. Koike, Relative invariants of the polynomial rings over type Ar ,Ar quivers, Adv. Math. 86 (1991) 235–262.
[20] S. Mukai, An Introduction to Invariants and Moduli, Cambridge Univ. Press, 2003.
[21] K. Nakamoto, The structure of the invariant ring of two matrices of degree 3, J. Pure Appl. Algebra 166 (2002) 125–148.
[22] G. Salmon, A Treatise on the Higher Plane Curves, second ed., Dublin, Hodges, Smith, and Co, 1873.
[23] Y. Teranishi, The ring of invariants of matrices, Nagoya Math. J. 104 (1986) 149–161.
[24] E.B. Vinberg, Linear groups that are connected with periodic automorphisms of semisimple algebraic groups, Dokl. Akad. Nauk SSSR 221 (4) (1975)

767–770. (in Russian).
[25] E.B. Vinberg, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat. 40( (3) (1976) 488–526 (in Russian).
[26] A. Weil, Remarques sur un mémoire d’Hermite (Remark on a paper of Hermite]), Arch. Math. (Basel) 5 (1954) 197–202; Collected papers, Vol. II,

Springer-Verlag, 1979, pp. 111–116.

http://cocoa.dima.unige.it

	Defining relation for semi-invariants of three by three matrix triples
	Introduction
	Characteristic zero
	Relation over the integers
	Conjugation invariants of pairs of 3×3 matrices
	Acknowledgements
	Appendix
	References


