
e

A

ler, The
(2000)
onsider

e in these
t

Physics Letters B 558 (2003) 1–8

www.elsevier.com/locate/np

The ultimate fate of life in an accelerating universe

Katherine Freesea,b, William H. Kinneyb

a Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109, USA
b Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, 550 W. 120th St., New York, NY 10027, US

Received 25 May 2002; received in revised form 27 January 2003; accepted 27 January 2003

Editor: J. Frieman

Abstract

The ultimate fate of life in a universe with accelerated expansion is considered. Previous work [J.D. Barrow, F. Tip
Anthropic Cosmological Principle, Oxford Univ. Press, Oxford, 1986; L.M. Krauss, G.D. Starkman, Astrophys. J. 531
22] showed that life cannot go on indefinitely in a universe dominated by a cosmological constant. In this Letter we c
instead other models of acceleration (including quintessence and Cardassian expansion). We find that it is possibl
cosmologies for life to persist indefinitely. As an example we study potentials of the formV ∝ φn and find the requiremen
n < −2.
 2003 Elsevier Science B.V. Open access under CC BY license.
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1. Introduction

The question of the ultimate fate of life in an e
panding universe has been a subject of debate in
physics community for over two decades [1]. In 197
Dyson [2] proposed a framework within which to di
cuss whether or not some form of life, material or o
erwise, can go on. At the time of his work the un
verse was assumed to be decelerating. Howeve
the light of recent evidence that the universe is
celerating, the conclusions of Dyson’s original wo
deserve reinvestigation. Observations of Type IA S
pernovae [3,4] as well as concordance with other
servations (including the microwave background a

E-mail addresses:ktfreese@umich.edu (K. Freese),
kinney@physics.columbia.edu (W.H. Kinney).
0370-2693 2003 Elsevier Science B.V.
doi:10.1016/S0370-2693(03)00239-9

 Open access under CC BY license.
galaxy power spectra) indicate that the universe is
celerating. Hence the question of the future of life
our universe deserves another look in the contex
this acceleration. Barrow and Tipler [5] and Krau
and Starkman [6] followed the basic approach outlin
by Dyson to consider life in a universe dominated b
cosmological constant. They concluded that life is
evitably doomed to oblivion in such a universe. A
lifeform would eventually fry to death in the bath
thermal Hawking radiation produced by the de Sit
vacuum [6]. Beings of any kind generate heat by
process of living and eventually are unable to dissip
their heat in the background of this thermal bath.

In this Letter we consider the consequences
other explanations for the acceleration of our unive
Other than a cosmological constant, alternatives
clude a decaying vacuum energy [7,8], quintesse
[9–18], and Cardassian expansion [20] as possible

http://www.elsevier.com/locate/npe
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


2 K. Freese, W.H. Kinney / Physics Letters B 558 (2003) 1–8

has
ing
at-

ch
n–
if-

olog
o-

ny
ef-
We
tate

nen
of
the
t
ate

ce

e
ex

ing
ble
en.
life
le-
to

ce-
-
y a
ta-
ry-
rgu-
of a
ren-
ue

er-
res
fore

s on

h-
en-
.
e-
ead
e im-
is is
te

ture

nd

e in
om
ver

tal

e
ity
of
he
a

the
tity

per
e

hat
ness
planations for such an acceleration. Quintessence
a time dependent vacuum energy given by a roll
scalar field. Cardassian expansion is a model with m
ter and radiation alone (no vacuum at all) in whi
acceleration is driven by a modified Friedman
Robertson–Walker (FRW) equation. The crucial d
ference between these cases and that of a cosm
ical constant is that the temperature of the cosm
logical Hawking radiation decreases in time, in ma
cases quickly enough to allow life to continue ind
initely despite the presence of the thermal bath.
consider two cases: (1) a constant equation of s
p = wρ with −1 � w < −1/3 (which includes the
case of Cardassian expansion for constant expo
n defined below), and (2) a time-varying equation
state generated by a “quintessence” potential of
form V (φ) ∝ φn with n < 0. In the case of constan
equation of state, we find that any equation of st
excepta cosmological constant (w = −1) allows for
the indefinite continuation of life. In the quintessen
case, we find that any potentialV ∝ φn with n <−2 is
consistent with the indefinite continuation of life. W
note at the outset that our arguments assume the
istence of Hawking radiation in generic accelerat
spacetimes; while such Hawking radiation is plausi
(see, e.g., [21]), it existence has never been prov1

If there is no such radiation, then these issues of
burning up in the Hawking radiation become irre
vant, and it is even easier for some type of lifeform
continue to exist.

In the conclusions, we discuss speculative s
narios in which life might avoid inevitable extinc
tion even in the case of a universe dominated b
cosmological constant, including quantum compu
tion, oscillating universes, wormholes, and laborato
created universes. We also comment on the a
ment of Krauss and Starkman that the presence
quantum-mechanical ground state for the system
ders Dyson’s argument invalid in general. We arg
that the inclusion of a cosmological Hawking temp
ature in Dyson’s classical argument correctly captu
the quantum nature of the system and that there
Dyson’s conclusions are in fact valid.

1 We thank an anonymous referee as well as Gary Gibbon
this point.
-

t

-

2. The premise set out by Dyson

Dyson introduced the “biological scaling” hypot
esis to estimate the rate at which an organism in an
vironment of temperatureT can perform computation
We refer the reader to Ref. [2] for a definition and d
tailed discussion of the scaling hypothesis, and inst
concentrate here on its relevant consequences. Th
portant consequence of Dyson’s scaling hypothes
the notion of “subjective time”, i.e., the appropria
measure of time as experienced by a living crea
is the quantity

(1)u(t) = f

t∫
t0

T (t ′) dt ′,

where T (t) is the temperature of the creature a
f = (300 deg s)−1 is introduced so as to makeu
dimensionless.2 One can think of the quantityu as the
number of possible computations in a timet . We can
define one “computation” as some change of stat
a quantum system. Then a single computation, fr
the energy/time uncertainty relation, takes place o
a characteristic timescale

(2)�t � h̄

�E
∼ h̄

kT
,

where k is Boltzmann’s constant. Then the to
number of computations�u over time �t is then
given by

(3)
�u

�t
∝ kT

h̄
,

which leads directly to the definition of subjectiv
time in Eq. (1). (Later we comment on the possibil
of using quantum computation to alter this notion
subjective time.) The continuation of life requires t
possibility of an infinite number of computations in
system with only a finite amount of energy.

Dyson points out a second consequence of
scaling law: any creature is characterized by a quan
Q which measures its rate of entropy production
unit of subjective time,dS = Qdu, in some sense th

2 The value off suggested by Dyson is motivated by the fact t
human life takes place at 300 K with each moment of conscious
lasting about a second; the precise value off is immaterial to the
arguments.
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“complexity” of the creature. Dyson estimates that,
a human dissipating about 200 W of power at 300
Q ∼ 1023 bits. Krauss and Starkman estimate that
uncertainty in this number suggests that a civilizat
of conscious beings requires logQ > 50–100. Any
creature in the process of living and computing w
dissipate energy. A lifeform with givenQ and given
temperatureT will dissipate energy at a rate

(4)m ≡ dE

dt
= kT

dS

dt
= kfQT 2,

wherem is the metabolic rate measured in ergs
second. The total energy consumed by the creatu
then

(5)E = kfQ

t∫
t0

T 2(t ′) dt ′.

Since the rate of computation scales asT while the
rate of energy consumption scales atT 2, it at first
appears possible that an organism can perform
infinite number of computations using a finite amou
of energy, as long as the operating temperature
the organism continuously decreases in time,T (t) ∝
t−α , with 1/2 < α � 1. We will refer to this as
Dyson’s condition: life can be considered “infinite” i
the number of computations, or “subjective time”, (
can be infinite while the total energy consumed (5
finite.

This naive analysis assumes that the organism
completely free to choose its temperatureT (t) so
as to satisfy Dyson’s condition. Several constrai
restrict this temperature. The creature must be ab
get rid of the heatE generated by the computatio
it performs (4). However, Dyson estimates an up
limit to the rate at which waste heat can be radiate

(6)I (t) < 2.84
Nee

2

meh̄
2c3

(kT )3.

The creature will fry to death unless it can dissipate
heatE that it creates; dissipation by radiation impli
a lower limit on the operating temperature for t
organism:

(7)T (t) > Tmin = (Q/Ne)× 10−12 K.

Since the ratio(Q/Ne) between the complexity of th
society and the number of electrons at its dispo
cannot be made arbitrarily small, there must be
finite minimum temperature for which computatio
is possible. Therefore, Dyson’s condition cannot
satisfied, and the creature or society cannot sur
indefinitely.

However, Dyson proposes a strategy to avoid
sad conclusion: hibernation. Life may find a way
metabolize intermittently, yet continue to radiate wa
heat into space during its periods of hibernation. T
society can remain active for a fractiong(t) of its time
while hibernating for the remaining 1− g(t) fraction
of the time. During these periods of hibernatio
metabolism can be effectively stopped while radiat
of waste heat continues. Then the total subjective t
is modified to

(8)u(t) = f

t∫
0

g(t ′)T (t ′) dt ′,

while the average rate of heat production by
organism becomes

(9)m= kfQgT 2.

Therefore, the temperature of the organism can d
below Tmin in Eq. (7) and the heat generated by
computation can still be dissipated: the condition
becomes

(10)T (t) > Tmin ≡ Q

Ne
g(t)× 10−12 K.

As long as the operating temperature of the organ
is above this limit, it can dispose of waste heat. T
total energy consumed is

(11)E = kfQ

t∫
t0

g(t ′)T 2(t ′) dt ′.

The organism is free to chooseg(t) andT (t) to satisfy
Dyson’s condition. We will assume (consistent w
other authors) thatg(t) ∝ T (t) ∝ t−p , the minimum
amount of hibernation consistent with the ene
dissipation condition (11). Then the subjective time
given by

(12)u(t) ∝
t∫

t0

(t ′)−2p dt ′,
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and the total energy consumed scales as

(13)E(t) ∝
t∫

t0

(t ′)−3p dt ′.

Dyson’s condition

(14)u(t → ∞)→ ∞, E(t → ∞)→ const

is then satisfied for

(15)
1

3
<p � 1

2
.

An additional constraint is generated by the fact t
the creatures, even if hibernating, cannot cool off a
faster than the background universe. Hence, if
universe temperature scales as

(16)Tu(t) ∝ t−q ,

then this second constraint requires that

(17)p < q.

It is clear that Eqs. (15) and (17) can both
simultaneously satisfied in a (decelerating) Cold D
Matter-dominated cosmology. There the tempera
of the background universe is given by the Cosm
Microwave Background temperature, which scales
a matter-dominated cosmology atTCMB ∝ t−2/3, i.e.,
q = 2/3. Hence the background temperature ind
drops more quickly than the temperature required
the organism to satisfy Dyson’s bound.

3. Cosmological constant dominated universe

Krauss and Starkman considered modification
these questions in the context of a universe domin
by a cosmological constantΛ. In de Sitter space
Hawking radiation creates a thermal bath of partic
at the de Sitter temperature,

(18)TdeS=
√

Λ

12π2 = const.

Hence the universe itself has a fundamental m
mum temperature, withq = 0. Then the constraint in
Eq. (10) is replaced by

(19)T (t) > Tmin ≡ max

[
TdeS,

Q

N
g(t)× 10−12 K

]
.

Therefore, no hibernation strategy will be sufficient
satisfy Dyson’s condition. The first term in Eq. (1
eventually dominates, and then Eq. (17) cannot be
isfied withq = 0. Eventually thermal equilibrium wil
be reached with everything at the Hawking tempe
ture of the thermal bath, and further computation w
be an impossibility. Life in a universe with a cosm
logical constant is doomed to extinction.

4. Dark energy

The “dark energy” driving the acceleration
the universe, however, need not be a cosmolog
constant. In a more general scenario, the ene
density driving the acceleration can be variable
time, or, equivalently, have an equation of statep >

−ρ. Acceleration takes place for any equation of st
p < −1/3ρ. In this section, we examine the case o
more general equation of state and show that Dys
condition for infinite computation can be met for
wide range of accelerating cosmologies.

4.1. Constant equation of state

We first consider the simple case of equat
of state p = wρ, with w constant in time. Any
accelerating cosmology evolves toward flatness at
time, so we can assume a flat cosmology. From
Friedmann equation

(20)H 2 ≡
(
ȧ

a

)2

= 8π

3m2
Pl

ρ

and the Raychaudhuri equation

(21)

(
ä

a

)
= − 4π

3m2
Pl

(ρ + 3p),

we have, forw = const,

(22)
dH

dt
= −3

2
(1+w)H 2.

For the case of a cosmological constant,w = −1 and
H = const, so thatq = 0 and one can never satis
Eq. (17). Therefore, Dyson’s condition is violate
However, forw > −1, we haveH ∝ t−1. The Hawk-
ing temperature of the space (the generalization
the de Sitter temperature in de Sitter space) there
also decreases asTH ∝ H ∝ t−1, i.e., q = 1. Then,
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in Eq. (17), the first term (∝ t−1) drops more rapidly
than the second (∝ t−p), and one is back to Dyson
original condition in Eq. (10). As long as Eq. (15)
satisfied, the Dyson condition that an infinite amo
of computation be possible with finite total energy e
pended can be met in any cosmology withw = const
exceptthe special case of a cosmological consta
w = −1.

4.2. Time-varying equation of state

In general, however, the equation of state of
dark energy need not remain constant. We can
comment in general upon all time-varying equatio
of state. We here concentrate upon the particular c
of “quintessence” models, in which the dark ene
consists of a slowly rolling scalar field. The tim
dependence of the equation of state depends on
form of the potential for the quintessence fieldφ. The
equation of motion for a scalar field in a cosmologi
background is

(23)φ̈ + 3Hφ̇ + V ′(φ) = 0.

The case of an exponential potential,V (φ) ∝ eφ/M

is just that of a constant equation of state conside
above, since

(24)a(t)∝ t1/ε,

with ε = const< 1 corresponding to accelerate
expansion. The equation of state is

(25)w = 2

3
ε − 1= const.

This example can be generalized to an arbitr
potential as follows. For a slowly rolling scalar fie
φ, the equation of motion (23) is approximately

(26)3Hφ̇ � −V ′(φ),

and the Friedmann equation is

(27)H 2 = 8π

3m2
Pl

[
1

2
φ̇2 + V (φ)

]
� 8π

3m2
Pl

V (φ).

Then

(28)
dH

dt
= 1

2
H

(
V ′(φ)
V (φ)

)
φ̇ = −εH 2,
where the slow-roll parameterε is

(29)ε = m2
Pl

16π

(
V ′(φ)
V (φ)

)2

.

The exponential potential then hasε = const as above
but ε varies with time for arbitrary potential. Th
equation of state

(30)w � 2

3
ε − 1,

therefore varies in time as well. We consider the cl
of potentials

(31)V (φ)∝ φn.

We first consider quintessence models withn < 0, so
that the universe is accelerating in the late-time lim
The slow-roll parameterε is then

(32)ε = n2m2
Pl

16π

(
1

φ2

)
∝H−4/n.

The equation of motion for the Hubble parameter is

(33)
dH

dt
∝ −H 2(n−2)/n,

with solution

(34)H(t)∝
[(

n− 4

n

)
t + const

]n/(4−n)

.

We are interested in the solution at late times,
that for the quintessence case ofn < 0, the Hubble
parameter and the Hawking temperature evolve as

(35)TH ∝H ∝ t−|n/(4−n)|

so thatq = |n/(4− n)|. The Dyson condition require
p < q as t → ∞, where we are allowed to choo
p anywhere in the range 1/3 < p � 1/2. Taking the
slowestrate of falloff forTmin, we have the condition

(36)

∣∣∣∣ n

4− n

∣∣∣∣>p >
1

3
,

so that Dyson’s condition can be satisfied for qu
tessence models withn <−2.

Some quintessence models, for example, th
based on light pseudo Nambu–Goldstone bosons [
taken > 0. In these models, the minimum of the p
tential is at zero or negative energy and the acceler
expansion generically ends at late times. In such a s
ation it is a simple matter to satisfy Dyson’s conditio
and we do not consider this case further here.
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5. Modified FRW equations

An alternative way to drive acceleration of the u
verse is modification of the Friedmann–Robertso
Walker equations. In Cardassian expansion [20],
FRW equations become

(37)H 2 = 8π

3m2
Pl

ρ +Bρn

with n < 2/3. In this model there is no vacuum ter
at all, and the energy densityρ is simply given by
ordinary matter and radiation. The second term
comes more important as time goes on and for r
shiftsz < 1/2 drives acceleration of the universe. T
universe is thus flat, matter dominated, and accele
ing in this model. An alternate way to modify the FR
equations has been studied by [22]. For constant c
ficientn in the Cardassian model, the background e
lution of the universe behaves dynamically the sa
as a constant equation of statew = n − 1 so that the
conclusion in the previous section implies that life c
persist in a universe withn > 0.

6. Conclusion and discussion

We have found that life can go on indefinitely
an accelerating universe, depending on what en
density drives the acceleration. Previous authors [
showed that the (time-independent) de Sitter radia
in a cosmological constant driven expansion destr
all life eventually. But in other cases we consider
including quintessence and Cardassian expansion
found that the de Sitter radiation cools off just rapid
enough to allow life to survive. In particular, for an
constant effective equation of statew = p/ρ > −1,
and any constant Cardassian exponentn > 0, life
can persist. In addition, we considered time-vary
equations of state for the case of a quintessence
potentialV ∝ φn, and found successful futures for li
if n <−2.

As mentioned in the Introduction, our argume
have assumed the existence of Hawking radiatio
generic accelerating spacetimes. If there is no s
radiation, then these issues of life burning up in
Hawking radiation become irrelevant, and it is ev
easier for some type of lifeform to continue to exist
In this work we followed the basic premise set
by Dyson. Currently we understand that there is a
agreement between Dyson on the one hand and Kr
and Starkman (KS) on the other hand as to whe
or not there is a flaw in the premise. KS argue t
any system in which computation is an irreversi
process must eventually reach a quantum-mecha
ground state, beyond which further metabolism w
not be possible. If such a system is finite, it must n
essarily reach the ground state in finite time. We ar
that this line of reasoning is valid only in the limit o
a static (i.e., de Sitter) spacetime. Consider the ph
space available for quantum modes in an accelera
spacetime. The horizon sizedH ∼ H−1 provides an
infrared cutoff, since modes with momentump < H

have wavelength longer than the horizon size, at wh
point they become classical perturbations. Theref
the horizon size defines an effective ground state
quantum modes in the spacetime,E > H . However,
this is exactly the physics which leads to the Hawk
temperatureTdeS∼ H ! In the case of exact de Sitte
space, the ground state energy is constant in time,
therefore the argument of KS that any finite syst
must relax to its ground state in finite subjective tim
is valid. However, in backgrounds where the horiz
size is increasing in time, the “ground state” ene
defined by the infrared cutoff is decreasing in time a
the system continuously has new, lower-energy st
made available to it. Classically, this behavior is m
ifest in the time-dependence of the Hawking temp
ature. Thus the system can continue to radiate w
heat and reaches a ground state only after infinite
jective time, exactly as suggested by the classical
culation. This argument is obviously speculative, a
it would be desirable to frame it in a more quanti
tive way. In particular, it is not clear that a system w
these properties can truly be considered “finite”.

One might wonder if quantum computing wou
allow us to modify the Dyson condition in a usef
way. Then the number of computations (the “subj
tive time”) given in Eq. (1) will be much larger fo
a given rate of energy dissipation. A lifeform ma
clearly continue to live or compute for a much long
time period with the same energy consumption. Ho
ever, it is straightforward to show that including qua
tum computation as a possibility does not affect
conclusions about the ultimate fate of life. The abo
discussion was based on the thermodynamics of a
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ventional computer, which uses energy at a rate
m = fQkT 2 to “flip” Q bits at temperatureT . We
can make an optimistic estimate of the increase in
ficiency afforded by quantum computing by supp
ing that any operation performed onQ bits by a con-
ventional computer can be performed on a supe
sition of 2Q entangled quantum states by a quant
computer, with identical energy consumption. Thu
classical system with complexityQ can be built as a
quantum system with complexity log2(Q), which dis-
sipates energy at a rate

(38)mquant= f log2(Q)kT 2.

However, this improvement in efficiency alters the e
ergy integral (11) by a multiplicative factor, and h
no effect on whether the total energy consumed is
nite or infinite. Therefore, our arguments apply equa
well to quantum as well as classical computers. Ho
ever, we note that an organism of a given comple
Q can live exponentially longer in subjective time
adopting quantum computing as a strategy.

We note that a finite system, while it may b
capable of an infinite amount of computation, is on
capable of storing afinite number of memories. A
long as the expansion of the universe is accelera
any system which is initially finite must remain s
since any additional material with which to build ne
“memory” has redshifted beyond the horizon and
therefore unavailable. We thus reach the appare
inescapable conclusion that, while life itself may
immortal, any individual is doomed to mortality.

There are certainly limitations to Dyson’s premis
One alternative cosmology which would viola
Dyson’s premise would be if the universe oscilla
[23–26] or is cyclic [27]. Then the current accelerati
phase might be followed by a subsequent recontrac
and then again an expansion, and life could begin
over again. Of course the new burst of life might n
have any memory of our current cycle, so that this d
not provide an altogether satisfactory solution to
problem of enabling life to continue indefinitely [2].

However, while it is not given to us to choo
what kind of universe we live in now, we do ha
the freedom to improve our strategy for continu
existence. It is of course hubris to believe that hum
can at this point foresee all the ideas that all fut
life forms will come up with to save themselves.
the future, there may be many ways to work arou
the basic premises we have here assumed. We list
a few of the ones one can imagine. Perhaps Dys
scaling hypothesis could be violated under the cor
conditions. Perhaps someday one can find a wa
create and use wormholes. Then we could either b
in energy from far distant points in the universe for o
use, or we could travel to some other more conge
place in the universe where there are still suffici
resources for our consumption. Another alterna
would be to create a universe in a lab, along the li
of suggestions made by Guth and Farhi [28], and t
move into it. Future beings are likely to apply ne
technology and sophistication, far beyond anything
can anticipate, towards these questions of survival
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