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Taking a spacetime average as a measure of the strength of singularities we show that big-rips (type I)
are stronger than big-bangs. The former have infinite spacetime averages while the latter have them
equal to zero. The sudden future singularities (type II) and w-singularities (type V) have finite spacetime
averages. The finite scale factor (type IIl) singularities for some values of the parameters may have an

infinite average and in that sense they may be considered stronger than big-bangs.
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1. Introduction

Following the observational evidence for the universe accelera-
tion [1] some new types of cosmological singularities were pro-
posed (cf. Refs. [2,3]). These were first of all big-rips, due to a
phantom matter [4], and then sudden future singularities [5], fi-
nite scale factor (type III) singularities [2], big separation (type IV)
[2], and w-singularities (type V) [6].

Phantom dark energy leads to a big-rip singularity in which all
the matter is dissociated by gravity in a large and a dense uni-
verse. This behavior is of course different from the standard picture
of cosmic evolution which allows big-bang or big-crunch types of
singularities only. Standard dark energy models are based on the
matter which violates the strong energy condition (0 + p > 0 and
© + 3p > 0). Phantom matter, on the other hand, violates all the
remaining energy conditions too, i.e., the null (o0 + p > 0), weak
(0 >0 and ¢ + p > 0), and dominant energy (0 >0, —0 < p <0)
(here c =1, o is the energy density, and p is the pressure). A sud-
den future singularity model violates only the dominant energy
condition, its generalized version known as a generalized sudden
future singularity model [5], does not violate any of the energy
conditions and this is also true for a big-separation and a w-
singularity. The exotic singularities are characterized by a blow-up
of all or some of the appropriate physical quantities such as: the
scale factor, the energy density, the pressure, and the barotropic
index (for a review see Ref. [3]). It is interesting that these singu-
larities may be inspected observationally by using the higher-order
characteristics of the expansion of the universe [10] known as
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statefinders [12]. In particular, sudden future singularities (which
include the so-called big-brakes [8]) have been tested against su-
pernovae data [9].

One of the problems in cosmology is that for exotic singularity
models one cannot tight the standard tools known from relativity
such as the energy conditions with the presence of singularities.
A suggestion to formulate higher-order energy conditions to deal
with the problem has been made in Ref. [10]. The task of this Let-
ter is to exercise yet another tool which is the spacetime averaging
of the singular cosmological quantities.

2. Spacetime averaging

According to Raychaudhuri (Ref. [13]) one is always able to take
an average of any physical or kinematic scalar quantity x over the
entire (open) spacetime in the form

_ [ffio...ffzx /—gd4X]
ffigfffg \/__gd4x limxo X3—>00

(2.1)

<

Using (2.1), Raychaudhuri made a claim that any singularity-free
non-rotating universe which is open in all directions had the
spacetime average of the stress-energy tensor invariants, includ-
ing the energy density, equal to zero. By open in all directions he
meant that the ratio of the 3-volume hypersurfaces of any type
(spacelike, timelike) to the 4-volume of spacetime vanishes, i.e.,

[ [ [VPgldx dx dxk _o

[[]]v=gdx
where i, j, k are different and can be both spatial and temporal co-
ordinates. That way he wanted to paradigm a non-singular model

of Senovilla [14] which apparently had the average (2.1) vanish-
ing. However, it emerged that the problem is subtler and that to

(2.2)
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relate the vanishing of spacetime average to a lack of spacetime
singularity is not very conclusive. The situation is analogous to
what we face when we try to tight the energy conditions (which
in fact follow from famous Raychaudhuri equation anyway) with
the appearance of singularities. For example, even if all the energy
conditions are fulfilled, the big-bang singularity is possible in stan-
dard cosmology. On the other hand, for phantom, all the energy
conditions are violated and the big-rip singularity appears [10]. Let
us remind that both big-bang and big-rip singularities are geodesi-
cally incomplete [11] so that they are the true singularities ac-
cording to singularity theorems of Hawking and Penrose. As it was
already mentioned, for exotic singularities [3], which are generally
weak singularities (geodesically complete) [11], it might be that
these singularities lead to violation of some of the energy condi-
tions only.

Similar way to average, though applied to spatially inhomo-
geneous universes, was proposed by Buchert [15] who defined a
spatial average of a quantity A as

_ [ A/PEid
J1IVPaidx

The method was applied, among others, for the Tolman uni-
verses [16]. However, since in our case only the homogeneous
models are studied, we will use the spacetime averaging (2.1) fur-
ther.

Yet another approach to differentiate between singular and
non-singular cosmologies was applied in Ref. [17], where the
method of canonical (Liouville-Henneaux-Gibbons-Hawking-Stew-
art) measure was applied. It was shown in Ref. [18] that this
measure was finite for non-singular Friedmann cosmologies with
a minimally coupled scalar field and a positive cosmological con-
stant. This also happens to be finite for the models with a mini-
mally coupled scalar field and a positive A-term allowing a big-
bang and a big-crunch. On the other hand, it was also shown in
Ref. [18] that the models which expand forever had an infinite
canonical measure.

Coming back to the Raychaudhuri claim made in Ref. [13], it
was easy to show [19] that his claim was not true even for a flat
Friedmann universe. In fact, for such a model (,/—g = a3(t), where
a(t) is the scale factor) an average acceleration of the universe van-
ishes for dust and radiation models. Thus, it is not correct to tight
the appearance of singularities to a vanishing of the spacetime av-
erage of the physical and kinematical scalars.

In this Letter we will discuss an issue of spacetime averaging of
the standard and exotic singularity Friedmann models to support
this claim in the context of a more general set of models which
violate only some or none of the energy conditions.

(A) (2.3)

3. Application to standard and exotic singularity models

Let us first take an average acceleration scalar x =6 ,u” ac-
cording to (2.1) for a flat Friedmann model which reads as

, 33— &gy
)= lim ftoﬁ+”l (31)

to—0 ffo a’dt
Assuming the standard barotropic equation of state p = (y —1)o =
wo (y is the barotropic index, more recently written down as w),
we basically have three cases: y > 0 (standard matter), y =0 (de
Sitter), y < 0 (phantom). For y =0 we have a(t) = agetot which
gives (9) = 0 no matter what are the time limits. For y > 0 we
have a(t) =t%/37 and so for y 2

t,2(1-1)
. 2 t vy de
(0)stana = lim ——ftoi

2
R
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251y~ —to7
= lim —>7 12+] °2+]—>0 (3.2)
920 7Tl g
and for y = 2 (stiff-fluid)
. . Int; —Intg
(0)sep = lim 2————° (3.3)

2 _ ;2
A
Apparently, the limit (3.3) is singular, but after calculating it care-
fully, one sees that it also gives zero so that the limit of (3.1)
is zero for an arbitrary, but positive value of the barotropic in-
dex y > 0. However, the situation is entirely different for phantom
y < 0. Defining y = —|y| < 0 for a phantom case, one has that
the scale factor a(t) =t~2/37!, and so the integral (3.1) for |y| # 2
reads as

1 o041
5 U200 g

()ph = lim — =0 .
tt]O—_:oOo Y1 [;1 t i dt
2 9., -Z-1 -2 1
T B A R (3.4)
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and for |y|=2itis
1_1
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0 = lim ————°% . 3.5
()ph,st to>0 21nt1—1nt0 ( )

t1— o0

One should mention that the limits tg and t; in (3.2)-(3.3) could
have been taken for a second branch solution for negative times
and so we would have tg — —oo, t; — 0. However, this dual so-
lution also gives the limit for () to be zero, and it does not
change the whole picture. The same is true for phantom. Usu-
ally, a big-rip singularity is considered to take place in the end
of the evolution (t; — 0, tg — 00), but we chose in (3.4)-(3.5)
that the evolution starts at a big-rip. In conclusion, we can see
a large difference between the behavior of the acceleration scalar
in a standard and a phantom case. For the former, an average ac-
celeration vanishes, while for the latter, it diverges. The conclusion
is interesting, since it may suggest that the phantom cosmologi-
cal models possess stronger singularities (big-rips) than standard
big-bang models.

Similar conclusion follows from the averaging of the energy
density o and the pressure p (877G =1)

Joad@l+ Dyde

(p) =— lim : (3.6)
28 Jn
and
31 a3 (L) de
(0) = lim ftotl;“z (3.7)
to—0 ft aldt
t1—>o0 0

For a barotropic perfect fluid we obtain the same integrals as for
average acceleration up to constants, i.e.,

1
VIR
(P)stand = lim —— <_ - 1) 5 ,
to—0 YV \V [fl t7 dt
1 0

t1—>o0
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t1,2(1-1)
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for standard matter, and

’
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to—0 140
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(0)ph =

for phantom.

Now, we consider a pressure singularity model which starts
with a big-bang, then continues to a sudden future singularity of
pressure, and due to its geodesic completeness [11] continues to a
big-crunch as follows [20]:

aL(t):a5|:8+(1+i) (1—8)—5<—i> j| (3.8)
tg tp

with tg <0 — a big-bang time, a;(—tg) =0, t =0 a sudden future
singularity time, a; (0) =ar(0) =as:

ar(t) =as |:5 + <1 — i) 1-9)— 5<£> ] (3.9)
tc tc

with t¢ > 0 — a big-crunch time, ag(t¢) =0, and as, §, m = const.,
1 <n < 2. Near to a pressure singularity t — 0 (3.8) and (3.9) are
approximated by

m
ap~ as[l + t_(l - 8)t], (3.10)
B

m
aR%as[l——(l—S)t}. (3.11)
tc

The first and the second derivatives of the scale factors (3.8)-(3.9)
on the left and right of sudden singularity are given by

. [m < t )”” n ,H]

ait)y=as| —| 14+ — (1=08) +d85(=0) , (312)
tg tg tp
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Only the last terms in (3.14)-(3.15) blow up for 1 <n<2 att =0,
so that to calculate (§), (p) and () which reflect the effect of a
sudden singularity only (we have already shown that average over
the big-bang for standard matter is zero), one may also use the last
terms of (3.8)-(3.9) and (3.12)-(3.13). This of course is valid only,
if we take a non-phantom matter (m > 0) into account. Using (3.1),
we then have

. fﬁ (—t)3"_2 dt

. to
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independently of 3, as, tg, and t¢ and for 1 < n < 2. This last condi-
tion (1 <n < 2) guarantees that a sudden singularity appears, and
so we deal with a type Il model (finite scale factor and the energy
density, divergent pressure). However, for a type Il model with a
finite scale factor singularity (both pressure and the energy density
divergent), one has 0 <n < 1 and the situation changes. Evidently,
the averages (3.16) and (3.17) blow-up for 0 <n < 1/3. In that
sense a finite scale factor singularity is stronger than a big-bang
singularity. Of course this is not the case for generalized sudden
future singularity models for which n > 2 [3,5].

As for the pressure and the energy density averages, according
to (3.6) and (3.7) we have that

t1 3n—-2
o (=t)>"—=dt

(p)L = lim —n(3n—2)t7, (3.18)

e Ji e

ftt] t3”_2 dt

(p)r = lim —n(3n —2)—="——, (3.19)

fo—0 Jile3ndt
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t1 3n-2
(=) dt

(o)L= lim 2‘/;()“73, (3.20)
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From (3.18)-(3.21), after taking appropriate limits, we can easily
conclude that the spacetime averages are also finite.

It is possible to show that a w-singularity [6] has also a finite
spacetime average. In order to do that, one can take the Taylor
series of the scale factor a(t) at tg, as given in Ref. [7]

o0
at) =as+ Y _ailts — ) =as+as(ts —0)> + -,
i=3

(3.22)

where t; is a w-singularity time, and as, a; are constants. The
derivatives of (3.22) are

o0
== iai(ts =)' = =3a3(6— 0>+ -+,
i=3

(o)
i=Y i(i—Dai(ts—t) > =6as(ts —t) +---,
i=3

so that the barotropic index which reads as

(3.23)

blows-up for t = t;. Having (3.22)-(3.23), one may calculate space-
time averages of the acceleration scalar, the pressure and the en-
ergy density as follows
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. —9asast? + - -- — 9asast3 + - -
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where we have taken the limits from tg = 0 to t; = t;. One easily
sees from (3.24)-(3.26) that these averages are finite.

4. Conclusion

We have shown that the spacetime average of the standard
matter (barotropic index ¥ = w + 1 > 0) big-bang models is zero.
On the other hand, we have found that the phantom matter
(y < 0) spacetime average is infinite. This may suggest that the
appearance of the phantom-driven big-rip singularities can be con-
nected with a blow-up of the spacetime average while this is not
the case for standard big-bang singularities. In other words, bear-
ing in mind these tools, phantom-driven singularities are stronger
singularities than big-bangs and big-crunches.

We have also shown that for sudden future singularities (and
their generalizations) the spacetime average is zero while for finite
scale factor singularity (which allows both the energy density and
the pressure to diverge) this average for some values of the model
parameters can be infinite. In that sense finite scale factor sin-
gularities may be considered stronger singularities than big-bangs
and big-crunches. We have proven that w-singularities have finite
spacetime average, too.

The final conclusion is that it is not obvious to find the proper
measure/indicators for the appearance of singularities in the uni-
verse.
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