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A Primitive Non-symmetric 3-Class Association Scheme on 36
Elements with pj, =0 Exists and is Unique

R. W. GorpBacH aND H. L. CLAASEN

In this paper we construct a primitive, non-symmetric 3-class association scheme with
parameters v =36, v, =7, p}, =0 and p%, = 4 and show that such a scheme is determined by its
parameters,

1. INTRODUCTION

In [4] we gave a set of necessary conditions in order that a symmetric 2-scheme (we
call an n-class association scheme briefly an n-scheme) is the symmetric closure of a
non-symimetric 3-scheme. There we found that it is ‘feasible’ that a primitive symmetric
2-scheme (X, R) of type NL,(6) (that is, a scheme with parameter v =36, ¥, = 14 and
P11 =4) can be ‘split’ into a non-symmetric 3-scheme with the parameters mentioned
in the abstract. We set out to construct the latter scheme and from its construction its
uniqueness follows. :

We mention here that there exist two imprimitive non-symmetric 3-schemes (X, R)
on 36 elements with pj, = 0. Of the first one the graph of the first relation is the union
of 12 directed 3-circuits. The graph of the first relation of the other scheme can be
described as follows. Let A, B and C be three subsets of X, each of cardinality 12 and
forming a partition of X. If a € A, b € B and ¢ € C, then (a,b) e R,, (b,c} e R, and
(¢, @) € R,. Imprimitive non-symmetric 3-schemes are discussed in [3, 6].

For more details on non-symmetric 3-schemes we refer to [4,5]. We shall use the
notation of Delsarte as it was introduced for association schemes in [3].

2. PRELIMINARIES

Dermnition 2.1, Let X be a set with v elements. Let R={Ry, R;,...,R,} be a
family of n + 1 binary relations on X. The pair (X, R) will be called an association
scheme with n classes {(also called an n-scheme) if the following conditions are satisfied:
(1) the family R is a partition of X* and R, is the diagonal (equality) relation;

(2) for any i €{0,1,...,n} the inverse R;'={(y,x)|(x,y) € R} of the relation R,
belongs to R (the index of the relation R; ! is denoted by ig);
(3) for i, j, k €{0, 1, ..., n} the so-called intersection numbers

pi={zeX | (x,z) e R, (z,y) e R}}|

are independent of the choice of (x, ¥) € R,;
(4) for all i, j, k {0, 1,..., n} we have pk=ph.

For every i the number p;, is called the valency of R; and is denoted by v, An
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association scheme (X, R) is called symmerric if all its relations are symmetric, i.e. i = iy
for all i; otherwise it is called non-symmetric. We denote the symmetric closure of an
n-scheme (X, R) by (X, R) (here R={RUR ' | R € R}). The adjacency matrix of the
relation R; is denoted by D;, while the n + 1 maximal common eigenspaces of (X, R)
are denoted by V,. L, is the matrix with (k, j)-entry p% I and J denote the identity
matrix and the all-one matrix, respectively, of dimensions determined by the context.

From now on in this paper (X, R) denotes a symmetric 2-scheme and its parameters
are provided with a bar. (X,R) denotes a non-symmetric 3-scheme. We assume
throughout this paper that R, = R{! and V§ =V, (following Delsarte, V¥ denotes the
space of all the complex conjugates of the vectors in V,).

In this paper we shall use the following shorthand notation for the parameters of
(X,R): u=v,/v5, @ =p},, B :P%b Y =P53; 8=pls € =pj; and A = p3;.

Using L,L;=L,L;, one proves that the matrices L; of (X,R) have the following
form: L,= 1 and

0 0 0 v, ¢ 0
lela OaBs,

0 B 1 ¢ a 68
0 ue ud uy 0 ud wue uy

0 0 0 v

8

L3=0 g v

0 ¢ & vy

1 wuy wy A

Let (X, R) be such that (X, R) is its symmetric closure then we call (X, R) a splitting of
(X, R). We denote by s the index such that R, = R, U R, and by n the index such that
Rn = R3.

In [4] we gave a set of necessary conditions in order that it is feasible that a
symmetric 2-scheme can be split into a non-symmetric 3-scheme (the ‘feasibility
conditions’). We call a splitting feasible if the parameters of (X,R) satisfy those
conditions, and the splitting is called realizable if the splitting exists.

The feasibility conditions are such that the parameters of (X, R) can be calculated
from its symmetric closure once the feasibility of the splitting has been established.

THEOREM 2.2.  Let (X, R) be a symmetric 2-scheme the splitting of which is feasible.
Then that splitting is realizable iff there are two matrices D, and D, of order v and with
entries O and 1 such that:

(1) DI =D,;

(2) l:)s Dl + DZ

(3) D(Dy— D7) = (a ~ By — Dz)

(4) (D, — D, = —v,Dy— (a'— B)D, — 2u(8 — £)D,.

Proor. If the splitting is realizable then the conditions are obviously met.

So let D, and D, be two matrices satisfying the given conditions. By taking the
transposes we find from the third condition D, D, = D,D,. Since an entry of D, — D, is 0
iff the corresponding entry of D, is 0, we derive from (3) (considering the diagonal
entries) JD, =JD,, while (2) implies JD, +JD,=4J and so JD,=DJ=ID,=D,/[.
Therefore D,D; = D3D, for i =1,2, where Dy=J — [ — D,— D,. Since (D, + D,y and
(D, — D,)* belong to the linear space A, generated by 7, D,, D, and D, also D\ D, € A.
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This implies that A is a commutative, normal algebra and therefore corresponds in
this case to a non-symmetric 3-scheme; cf. [3, Theorem 2.1]. d

3. Tue MaiN RESULT

In this section we assume that (X, R) is a non-symmetric 3-scheme with parameters
v=36, vy=7, «a =0 and 8 =4. From the elementary properties of an association
scheme one derives v, =21, y=12, 8 =6, =3, A=12, uy=4, ub =2 and ue = 1.

For any given aeX we define Out(a)={deX|(a,d)eR), In(a)={de
X | (a, d) € Ry} and Not(a) = {d e X | (a, d) € R;}. Obviously, |Out(a)| = {In(a)| = 7 and
|Not(a)| =21 for all a € X.

Throughout this section x € X, fixed. Then y with or without sub- or superscripts
denotes an element of Out(x), z with or without sub- or superscripts denotes an
clement of In(x), and e and f with or without sub- or superscripts denote elements of
Not(x).

(y,¥),(z,2)eRs and (y,z)e R{UR; allfollowfrom «=0.
LemMa 3.1, |In(x) N Out(y) N Out(y')| = |[Out(x) N In{z) NIn(z")| = 2.

Proor. Since (y, y') € Ra, |Out{y) N Out{y')| = ud = 2 and, from ue =1, [Not(x} N
Qut(y) N Out(y’) =0 follows. This implies the first assertion, while the second one
follows analogously. a

CoroLLary 3.2, The design (Out{x), In(x), R} is isomorphic to the finite geometry
PG(2,2).

Proor. Since B =4, |In{x)NNot(y)=|Out(x)NNot(z)|=3. Using this and
Lemma 3.1, we obtain

In(x) N Not(y) N Not(y ') = i{Out(x) N Not(z )} N Not(z")| = 1. O

Henceforth we shall also consider Qut(x) and In(x} as the sets of the points and the
lines of PG(2,2), respectively. So y and z are incident in PG (2, 2) (that is, they form a
fleg) iff (y, 2) € R,

LemMa 3.3, [Not(x) NIn{y) N In(y')} = [Not(x) N Qut(z) N Out(z’)| = 1.

Proor. Since 48 =2 and |Not(x}| = 21, there corresponds to each of the 21 subsets
{y, y'} from Out(x) exactly one element e € Not(x) such that e € In(y) N In(y’). This
effectively proves the lemma. |

The unique element ¢ € Not(x) NIn(y) N In(y’) will be denoted by in(y, y') and the
unique element f € Not(x) N Out(z} N Out(z’) will be denoted by out(z, 7).
The next lemma is an immediate consequence of a =0 and us = 1.

LEmma 3.4, For any given e, [Out{x)NIn(e)| = In(x) " Out{e)| =1 holds and if
y € Out(x) NIn(e) and z  In{x) N Out{e) then (y, z) € Rs.

The unique elements in Out{x) N In(e) and In(x) N Out(e) will be denoted by y*© and
z%, respectively. Once {y, z) € R; is given there is exactly one ¢ such that y = y* and
z =z". So the 21 elements of Not{x) can also be characterized as the flags of PG(2, 2).
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FiGURE 1. The points and lines in PG(2, 2) connected with e = Not(x).

LemMa 3.5, Ife=in(y, y')Y=out(z, 2'), then y, vy’ and y° are incident with z° and z,
z' and z° are incident with y*.

Proor. Since (e,y)e R, (e,y')e R, and (e, z°) € R;., we find (y, z°) e R; and
(¥', 2°) € R;. But now it is easy to complete the proof of the lemma. O

Since y* and z° are incident, we find by Lemma 3.5 that y and y’ are not incident
with z or z'. So the situation is as in Figure 1. Plainly, each one of the three sets {y, y'},
{z, 2’} and {y°, z°} determines e uniquely. Note that (e, y,) € R; if yo#y, ¥, y"

LemMa 3.6. The following hold:
(1) (e, /) e R if y*#y, 2°# " and (y%, /) € Rs; in that case (y/, z°) e R|.
(2) (e, f) € R in the case that either y* =y' or 7° =7/ or in the case that y* #y’, 2°# 7/
and both (y%,2) e R, and (3, z°) e R,.

Procor. Let e =in(y;, y;) = out(zy, z;) and f = in(y,,, y,} = out(z,, z,).

Since y° is incident with z/, y* #y/ and z° # z/ we find y* e {y,,, v.} and 2/ e {z;, 2},
But this implies that there are two directed paths f -2z —e and f—y*—e¢ and so
(e, f} € R, necessarily.

If either y* =y’ or z¢ = z/ then one simply checks that (e, f) € R; (a = 0). If neither
y* is incident with z/ nor is y incident with z¢ we may assume that z° and z’ intersect in
Yi=¥n But (e, v) e R, and (f, ..} € R;; hence (e, f) € R;. O

As PG(2, 2) is unique, the next theorem follows immediately from the results of this
section.

TreoReM 3.7.  If (X, R) exists then it is uniquely determined by its parameters.

In order to show that there exists a non-symmetric 3-scheme with the parameters
v=36, v, =7, a =0and B =4, it is obvious what to do. Let X be the set consisting of
the points and the lines of a PG(2, 2), of the flags of this geometry and of an element x
not equal to the afore-mentioned entities. Then we define a set {R,, R;, R,, R;} of four
relations on X in accordance with the results that we found in the first part of this
section.
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Now form a square matrix D of order 36 as follows. For a, b € X the entry D, , of D
isQif (a,b) e RyURs, +1if (s, b) e R, and —1if {(a, b) e R,.

In order to be able to apply Theorem 2.2 we must first have a symmetric 2-scheme
which acts as the symmetric closure for the scheme (X, R). To this end replace in D
every —1 by +1 and call this matrix D,.

THEOREM 3.8.  Let [ be the identity matrix of order 36 and let J be the all-one matrix
of the same order. Then with Dy=1and D,=J — D, — D, the matrices Dy, D, and D,
are the adjacency matrices of a symmetric 2-scheme (X, R) of the type NL,(6).

Proor. It obviously suffices to prove that D?=14D,+ 4D, + 6D,. But this is not
difficult to check, either by hand or by computer. We leave this to the reader. O

Seidel has shown in [7] that there are at least 105 non-isomorphic schemes of type
NL,(6), one of which is the scheme found in the above theorem. Schemes of type
NL,(6) are symmetric 2-schemes with v =36, v, =14 and p}, =4 and if we take the
eigenvalue of D, on V| as —4, then if the splitting of such a scheme exists this splitting
must be according to case I, to use the terminology of [4].

THEOREM 3.9.  The following hoid:
(1) A symmetric 2-scheme of the type NL(6) can be split into a non-symmetric
3-scheme iff it is isomorphic to the scheme (X, R) found in Theorem 3.8.
(2) Such a splitting (X, R) has the parameters v=36, v, =Ta=0and B =4.
(3) There exists one, and up to isomorphisms, only one non-symmetric 3-scheme with
these parameters.

Proor. First replace in D every —1 by 0 and call this matrix D,. Then replace in
—D every —1 by 0 and call this matrix D,.

Then apply Theorem 2.2 to (X, R) in Theorem 3.8. For the D, and D, mentioned in
Theorem 2.2 we can take the matrices found at the beginning of this proof and we have
‘only” still to check the conditions (3) and {4) of Theoem 2.2.

The uniqueness of (X, R) follows from Theorem 3.7. O
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The automorphism group of (X, R) is in fact G,(2)' in its permutation representation
of degree 36, and the automorphism group of (X, R) is G,(2). The existence of (X, R)
can easily be derived from the character table of this group, and from the
decomposition of the permutation character in irreducibles; cf. [2].

Also, after Corollary 3.2 has been proved, uniqueness of (X, R) immediately follows
from the recent characterization of locally co-Heawood graphs in [1].
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