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ABSTRACT 

A characterization is given for linear transformations on n x n matrices which 
map the classes of w and T-matrices into themselves, under certain nonsingularity 
assumptions on the mapping. These results are also used in obtaining the characteriza- 
tion of those linear transformations which map the above classes onto themselves. 

1. INTRODUCTION 

The question of characterizing the linear transformations which preserve 
certain properties of square matrices has been studied in several recent 
papers. In particular, it has been of interest to characterize those linear 
transformations which map certain classes of matrices into or onto themselves. 
The “into” case is, in general, harder than the “onto” case, and it is usually 
solved under some additional hypothesis, such as nonsingularity of the 
transformation or a somewhat weaker condition. 

The discussion here is devoted to the classes of w- and T-matrices, 
introduced by Engel and Schneider [3]. These classes, defined by eigenvalue 
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monotonicity, contain the important classes of Hermitian matrices, totally 
nonnegative matrices, Z and M-matrices, and triangular matrices with real 
diagonal elements, and hence studying their properties has been the theme of 
many papers, e.g. [5] and the references there. There are some interesting 
open problems concerning these matrices, especially the localization of their 
spectra; see [3] and [7]. 

In this paper we characterize the linear transformations which map the 

class O(n) [q,,l of all 71 X n w-matrices [r-matrices] into or onto itself. Our 
results and the methods used in our proofs seem to help in understanding the 
properties of these matrices better, and they may provide useful tools in 
solving the other open problems. 

The main results are introduced in Section 3 and proved in Section 4. In 
the same spirit as in [l] and [4], we show that a linear transformation which 
preserves a(,,) or r(,, is a composition of obvious types of mappings, namely 
transposition, diagonal similarity, permutation similarity, multiplication by a 
positive scalar, and addition of a scalar matrix. 

Among other results we show that a linear transformation L satisfies 
L(w(,)) = ucnj if and only if L(w(,)) G cocnj and L is nonsingular, and that 
L(r(,)) c r(,> implies L(o(,)) c We,). The theorems for tic,,) and r(,, are 
very similar. However, our assertions hold also when we restrict ourselves to 
real r-matrices, but not for real w-matrices. 

As in [4], our “into” results are proven under the assumption that the 
restriction of the transformation to the set of all matrices with zero diagonal 
elements is nonsingular. In part of our proof we follow the lines of the proofs 
given in [4], and some of our first propositions are similar to those in [4]. 

We remark that the problem of characterizing transformations which are 
not necessarily linear and preserve properties of matrices is also of interest. A 
result in this direction concerning a(,,) and TV,,, is found in [S]. 

2. DEFINITIONS AND NOTATION 

NOTATION 2.1. We denote: 

1~~1 = the cardinality of a set (Y. 
R = the field of real numbers. 
C = the field of complex numbers. 

NOTATION 2.2. For a field F and a positive integer n we denote: 

(n) = the set {1,2 ,..., n}. 
F R’n = the set of all n X n matrices over F. 

E, j = the matrix in F ‘, ” all of whose entries are zero except for the one in 
the (i, j) position, whose value is 1. 
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NOTATION 2.3. For A E F”,” and (Y c (n) we denote: 

A [ a] = the principal submatrix of A whose rows and columns are indexed 
by (Y. 

a( A) = the spectrum of A. 

DEFINITION 2.4. For A E C “xn we define the number Z(A) by 

Z(A)= 
min{a(A)nlW}, a(A)n[W ~0, 

00, a(A)nR =0. 

For A E C 3,3 we also define the number h(A) by 

DEFINITION 2.5. A matrix A E C”,” is said to be an w-matrix if 

w+- forall aC(n), aZ0, 

and if 

$+I) G z(A[Pl) forall (~,/?c(n), @+/3&a. 

An w-matrix is said to be a r-matrix if further Z(A) >, 0. We denote by a(,,) 
[ T(,, , ] the set of all n X n w-matrices [r-matrices], and by tit,,) [T?,, ,] the set 
of all n x n complex matrices whose principal submatrices of order less than 
or equal to k are all w-matrices [r-matrices]. 

DEFINITION 2.6. A matrix A E C n,n is said to be a PO-matrix if 

detA[(v] >,O forall aC(n), af0. 

The set of all n x n PO-matrices is denoted by PFni. 

NOTATION 2.7. For a linear transformation L on F”,” and for i, j E (n) 
we denote: 

N(L) = the null space (kernel) of L. 
Si j = the set { El,,, : I, m E (n>, ‘(Eij),m f 01. 
Si7; = the set { E,,(: E,,,, E S,,}. 
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L = the n2 x n2 matrix which represents L in the basis 

{E r1 ,..., E,,, E,,, E,,, E,, ,..., E,,“_1} of F”,“. We partition z 

by 

t= 
L L2 1 1 z2, L22 ’ 

where L r1 is an n X n matrix. 

DEFINITION 2.8. A (directed) graph G = (V, E) is a pair of finite sets 
with E c V X V. An element of V is called a vertex of G, and an element of 
E is called an arc of G. An arc of the type (i, i) where i E V is called a loop. 

DEFINITION 2.9. Let G be a graph. A cycle in G of length k is a set of k 
arcs of G 

where iI,..., i, are distinct. 

DEFINITION 2.10. Let A be an n X n matrix. A cyclic product of length 
k of A is a product u~,~,u~,~, . . . aik_,ikaiti,, where {(iI, i2), . . . , 
(i,_,, ik),(ik, i,)} is a cycle in the graph whose vertex set is (n) and whose 
arc set is (n) X (n). 

3. RESULTS 

Our first two theorems characterize the linear transformations which map 
a(,,) into itself, under some nonsingularity assumption. 

THEOREM 3.1. Let L be a linear transfmtion on C n5 “, n 3 3, satisfy- 
ing 

N(L)n{AEC”-“: a,,=O,ldiQn} = (0). 

Then J%q,)) c Q{,) f i and only if L is a composition of one or more of the 
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following types of transf~tions: 

(i) A + aDAD-‘, in which a is a positive scalar and D is nonsingular 
diagonal matrix (a combination of multiplication by a positive scalar and 
diagonal similarity); 

(ii) A + AT (transposition); 
(iii) A + PAPT, in which P is a permutation matrix (permutation similar- 

ity); and 
(iv) A + A + (YZ, in which a is a real linear combination of the diagonal 

entries of A. 

Moreover, the same is true if a(,,) is replaced by OF,,), k > 3. 

THEOREM 3.2. Let L be a linear transformation on C 2,2 satisfying 

N(L)n{AEC2~2:a,,=a2,=0} = (0). 

Then L(w(~))C q2) f i and only if L is a composition of one or more 
transformation of types (i) and (ii) as listed in Theorem 3.1, and 

and t, are real. 

a12 

tlall + t2aB 1 , in which k,, k,, t,, 

The following theorem characterizes the linear transformations which map 
w(,) onto itself. 

THEOREM 3.3. Let L be a linear transformation on C “xn. Then L(w(,)) 
= w(,) if and only if L(o(,)) C 6~~~) and L is nonsingular. 

In the following theorems we discuss linear transformations which map 
the class r(,> into or onto itself. Our results are given over the field F, which 
can be either R or C. In fact, since the reality of the images under L is not 
used in the proofs, our theorems hold also for transformations L satisfying 

L(r+, nR”+) c r(,). 

THEOREM 3.4. Let L be a linear transfmtion on F “s”, n 2 3, satisfy- 
ing 

N(L)n {A E F”,“: a,,=O,l<i<n} = (0). 

Then L(T(,) n F”,“), T(,, n F”,” if and only if L is a composition of one or 
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moTe transfmtions of types (i), (ii), and (iii) as listed in Theorem 3.1, 
and 

(vi) A -+ A + al, in which a is a nonnegative linear combination of the 
diagonal entries of A. 

Moreover, the same is true if r(,,, is replaced by T[,,,, k > 3. 

THEOREM 3.5. Let L be a linear transformation on F2,2 satisfying 

N(L)~{AEF~,~: a,,=a,,=O} = (0). 

Then L(T(~, n F2s2) c rC2, n F212 if and only if L is a composition of one or 
more transformations of types (i) and (ii) as listed in Theorem 3.1, and 

k,, k,, t,, t, > 0 satisfy either 

a 12 

t1a 11-t t2a 22 I , in which 

k,t, + k2t, > 1 

or 

1- 2(k,t, + k2t,)+ (k,t, - k2tJ2 < 0. 

THEOREM 3.6. Let L be a linear transformation on F”, “, n > 3. Then 
L(T~,, n Fnzn) = T(,, n F”,” if and only if L is a composition of one or more 
transformations of types (i), (ii) and (iii), as listed in Theorem 3.1. 

THEOREM 3.7. 
F2,2) = T(~, n F 

Let L be a linear transformation on F 2,2. Then L( rC2, n 
2,2 if and only if L is a composition of one or more transfor- 

mations of types (i) and (ii) as listed in Theorem 3.1, and 

(viii) [ Eit zz] -+ [ klal~~Ik2a22 t~aIIu:;?022], in which either 

k,=t,=O, k,, t, > 0, k2t, = 1 

or 

k, = t, = 0, k,, t, > 0, k,t, = 1. 
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4. PROOFS 

Proof of Theorems 3.1 and 3.4. The proofs of these two theorems are 
almost identical, and hence they are united. For convenience our proof is split 
into several propositions. 

It is easy to verify that each of the given transformations in Theorem 3.1 
[3.4] maps the class a(,,) [T(,,, n F”,“] into itself. Thus it suffices to prove the 
reverse direction, namely that every transformation which maps a(,,) [ r(,,, n 
F”, “1 into itself is a composition of transformations of the types specified in 
Theorem 3.1 [3.4]. 

In our proof we use the following four lemmas, which describe properties 
of o- and r-matrices. 

LEMMA 4.1 (Lemma 3.3 in [3]). Every o-matrix has real principal 
minors. 

LEMMA 4.2 (Theorem 3.6 in [3]). We have 

The following lemma is essentially known. A proof is provided for the sake 
of completeness. 

LEMMA 4.3. Let A E C ‘*‘. Then 

if and only if a 11 and a 22 are real and a 12a 21 >, 0. 

Proof. Let A be the following eigenvalue of A: 

X=i[a,,+a,,-\,:’ (all - a22)2+4a,2a2, . 1 
If A E wC2), then a,, and az2 are real and Z(A) = X. Hence, since Z(A) < 
min{ a,,, a,,}, it follows that a,,a,, > 0. 

Conversely, if a 11 and a 22 are real and a 12a21 > 0, then X is real and 
furthermore 
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LEMMA 4.4. Let A E C3,3. Then 

A E W(3) 

if and only if a,,, a=, and a33 are real, 

aijaji 2 0, i,jE(3), i+ j, 

and 

det[ A - h( A)Z] < 0. 

Proof. Our claim follows from Lemma 4.3 and Proposition 2 in [5]. n 

As mentioned in the introduction and in the previous section, Theorem 
3.4 holds also when we restrict ourselves to real matrices. The same does not 
hold for Theorem 3.1, which is valid only when complex matrices are 
considered [see transformation (ix) after the proof]. In order to prove all cases 
we assume from now on (until the end of the proof of Theorem 3.1 [3.4]) that 

(4.5) Z&J c W(n), 

or 

(4.6) 

Observe that the assumption (4.5) is weaker than the assumption 

fb(“)) c O(n)* 

In fact, we shall have to distinguish between (4.5) and (4.6) only in 
Propositions 4.7 and 4.9, Lemma 4.17, and Corollary 4.31. 

PROPOSITION 4.7. We have 

t,, = 0. 

Proof. Let (4.5) hold, and assume that for some i, j, k E (n), i Z j, we 
have 

(4.8) L( Eij) = aE,, + . . . , a # 0. 
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Since cEij E T(,, for all c E C, it follows that B(c)= L(cEij)c We,,). But for 
an appropriate value of c the matrix B(c) has a nonreal diagonal element, in 
contradiction to Lemma 4.1. Therefore the assumption (4.8) is false and our 
claim follows. 

If (4.6) holds, then since for i, j E (n), i # j, we have + Eij E T(,,) nlRn~n, 
it follows that + L(Eij) E TV,,. By Lemma 4.2, the diagonal entries of L(Eij) 

are both nonnegative and nonpositive, and therefore zero. n 

PROPOSITION 4.9. We have 

SijnSG=O, i,jE(n), if j. 

Proof Let i, j E (n), i # j, and assume that 

(4.10) E,, E Sij n S; for some Z,m E (n). 

Then 

L( Eij) = aElm + bE,, + . . . , 

where ab # 0. By Proposition 4.7 we have I # m, and by (4.5) or (4.6) and 
Lemma 4.3 we have ab > 0. 

If (4.5) holds, then since cEij E TV,,, for all c E C, it follows that B(c) = 
L(cEi .) G tic,,). But, in view of Proposition 4.7, for an appropriate value of c 
the {i,m} P rincipal minor of B(c) is complex, in contradiction to Lemma 
4.1. 

If (4.6) holds, then since Eij E T(,,, nR, it follows that L(Eij)~ T(,). 

Observe that by Proposition 4.7 we have 

detL(Eij)[{Z,m}] = -ab<O, 

in contradiction to Lemma 4.2. 
In any case our assumption (4.10) is false. 

PROPOSITION 4.11. We have 

s..nsT,=ra 
‘I , i,j,Z,mE(n), i#j, Z#m, {i,j}#{Z,m}. 
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Proof. Let i,j,I,mE(n), i+ j, Z#m, {i,j}# {Z,m}, and assume 
that 

(4.12) E,, E Si j C-J s;, for some p,g E (n). 

Then, 

L( Eij) = aE,, + . . . 

and 

L( E,,) = bE,, + . . . , 

5 
where ab # 0. Since Eij 5 E,, E T(,,, f~Iw”*“, it follows from (4.5) or (4.6) 
that B = L(E,, + E,,) E o(,) and C = L(E,, - E,,) E a(,,). By Proposition 
4.9 we have 

bP4=cpq=a, b,, = - cqp = b. 

It now follows from Lemma 4.3 that the product ab is positive as well as 
negative, which is impossible. Therefore, the assumption (4.12) is false. n 

PROPOSITION 4.13. Zf 

(4.14) N(L)n {A E cnsn: aii=O, l<i,<n} = {0}, 

then 

lSijl = 1 and sij= s; for all i, j E (n), i # j. 

Furthermore, LS2 is a generalized monomial matrix, i.e. a product of a 
permutation matrix and a non-singular diagonal matrix. 

Proof. Since the restriction of L to the subspace { A E Q= n,n : a ii = 0, 
1~ i < n } is nonsingular, we have 

>dimspan({L(EI,):Z,mE(n), I#m,(Lm>+(i,j>}) 

=n2-n-l. 

Our claims now follow from Propositions 4.9 and 4.11. n 
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We remark that for the real case in Theorem 3.4 we replace C by IR in 
(4.14) and in the proof of Proposition 4.13. 

From now on we assume that L satisfies (4.14) too. 

PROPOSITION 4.15. We have 

t,, = 0. 

Proof. Let i 6 (n) and assume that 

(4.16) 

L( Eij) = aEIn, + bE,, + *. *, a # 0, for some Z,mE(n), Z#m. 

By Proposition 4.13 there exist p, 9 E (n), p z 9, such that L(Ep,) = cE,,~ 

with c # 0. The matrix 

ii+b 
A = Eii - -E 

C 
P4 

is in r(,), so by (4.5) or (4.6) B = L(A) E We,,). Observe that bin, = a and 
bn,, = - ii. Hence, b,,b,, < 0, in contradiction to Lemma 4.3. We thus 
conclude that the assumption (4.16) is false, proving that z,, = 0. n 

Let Ce be the set of aII directed graphs whose vertex set is { 1,. . . , n } and 
whose arc set consists of three arcs none of which is a loop. Denote by E(G) 

the arc set of a directed graph G. In view of Proposition 4.13 we define a 
one-to-one function fL from c!? into itself by 

E(fL(G))= {<k j):L= {Eij}, (ktl)~E(G)}, GEM. 

LEMMA 4.17. Let G E 3. If G has no cycle then fijG) has no cycle. 

Proof. Let E(G)= {(i, j),(k, Z),(s,t)}. If G has no cycle, then the 
matrix 

A = aEii + bE,, + cE,, 

is in r(,,) for every choice of a, b, and c, and hence L(A) E r(,,, . Assume that 
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&(G) has a cycle. If (4.5) holds, then since for appropriate complex values of 
a, b, and c the matrix L(A) has a complex principal minor, we have a 
contradiction to Lemma 4.1. If (4.6) holds, then since for appropriate real 
values of a, b, and c the matrix L(A) has a negative principal minor, we 
have a contradiction to Lemma 4.2. n 

LEMMA 4.18. Let G E 9. Zf G has a cycle of length k (k = 2,3), then 

fL(G) has a cycle of length k. 

Proof. Since 9 is a finite set and fL is a one-to-one function, it follows 
from Lemma 4.17, using counting arguments, that if G has a cycle then 
f,(G) has a cycle. Our claim now follow9 observing that by Proposition 4.13, 
fL(G) has a cycle of length 2 if and only if G does. n 

PROPOSITION 4.19. Zf S,, = { Eilj,} and S,, = { Eizj2}, then either i, = i, 

or j, = j,. 

Proof. Let S, = { Eiaj3}, and let G E 9 be such that 

E(G)= {(L2),(2,3),(3,1)}. 

Since by Proposition 4.13 S,, = { E j2 ip }, we have 

By Lemma 4.18, f&G) has a cycle of length 3, and hence either i, = i, or 

ji = j2. n 

If follows from Propositions 4.13 and 4.19 that by applying an appropriate 
permutation similarity, as well as a transposition if needed, we may assume 
that for all i E (n), L maps the offdiagonal elements of the ith row onto the 
off-diagonal elements of the ith row, and the same holds for columns. Thus, 
from now on we may assume that 

(4.20) L(Eij) = bijEij, bij # 0, i, jE(n), if j. 

We define the n x n matrix C by 

‘ij= (:’ jr:). i, jE(n). 
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LEMMA 4.21. All cyclic products of length 2 and 3 of the matrix C are 
positive. 

Proof. The positivity of the cyclic products of length 2 follows easily 
using Lemma 4.2. To prove the positivity of cyclic products of length 3 we 
consider, without loss of generality, the cycle {(1,2), (2,3), (3,l)). Let A be 
the direct sum of the matrix 

[ -1 0 1 0 1 1 0 1 1 1 
and the identity matrix of order n - 3. By Proposition 4.15 and by (4.20), the 
matrix L(A) is a direct sum of a matrix 

M= 

and a diagonal matrix. Since A E r(,,, nR”s”, it follows by (4.5) or (4.6) that 
L(A)E aCn), and hence the matrix M is in oC3). Observe that 

h=h(M)=min{a,,as,a,}, 

and thus 

det( M - hZ) = - c~~c~c~,. 

By Lemma 4.4, since cij # 0 for i # j, it follows that c12c23c31 > 0. n 

COROLLARY 4.22. After an appropriate diagonal similarity we have 

(4.23) cij > 0, i, jE(n), if j. 

Proof. After an appropriate diagonal similarity we may obtain 

(4.24) clj>09 j=2 ,***, 12. 

By Lemma 4.21 we have 

(4.25) cir ’ O> i=2 >*e., n. 
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Let p, q E (n), p, q # 1, p # q. By Lemma 4.21 we have 

clpcp&ql’ 0, 

and by (4.24) and (4.25) we have 

C PQ ’ O* n 

In view of Corollary 4.22 we may assume from now on that (4.23) holds. 

PROPOSITION 4.26. The image under L of the identity matrix is a real 
scalar matrix. 

Proof, Let D = L(Z). By Proposition 4.15 the matrix D is diagonal. 
Since DE acnl, it follows that D is a real matrix. Without loss of generality 
(applying an appropriate permutation similarity) we may assume that 

d,, 6 d,, < . . . <d,,. 

There are three possibilities for the relations between d,,, d,, and d,,: 

(4.27) 

(4.28) 

and 

(4.29) 

d,, = d,, < d,,, 

d,, < d, < d,,, 

d,, = d, = d,. 

If (4.27) holds, then let A E C”,” be defined by 

i 

t, i= j=l,...,n, 

aij= 1, (i, j)E {(1,3),(2,1>,(2,3),(3,1),(3,2)}, 

0 otherwise, 

where t 2 1. It is easy to verify that A E r(,, n IR”,” and hence L(A) E tic,). 

Therefore, the matrix M = L(A)- td,,Z is in u(n). Observe that since 

t(dss -d,,)>O,wehave 

h=h(M[{1,2,3}])<0. 
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Furthermore, for t sufficiently large we have 

(4.30) 

It now follows from (4.30) that 

det(M - hZ)[ { 1,2,3}] > 0, 

in contradiction to Lemma 4.4. Hence, the possibility (4.27) is false. 
If (4.28) holds, then let A E C ‘1” be defined by 

i 

t, i= j=l,...,n, 

aij= 1, (i,j)~ {(I,2>,(1,3>,(2,1>,(2,3),(3,2)}, 

0 otherwise, 

where t > 1. Here too A E r(,,) f’[w”~” and hence L(A) E w(,,). Therefore, 
the matrix M = L(A)- td,,Z is in a(,). Since t(d,, - d,,)> 0 and t(d,, - 

d,,)>O, we have h=h(M[{1,2,3}])=Z(M[{1,2}])<0. As before, for t 
sufficiently large we have 

‘13’32’21 

PI < ~ 
c23c32 

and thus 

det(M-hZ)[{1,2,3}] >O, 

in contradiction to Lemma 4.4. Therefore, the possibility (4.28) is false too, 
and thus (4.29) holds. Similarly we show that 

dii=di+l,i+l=di+2,i+2~ i E (n - 2), 

proving that D is a scalar matrix. 

COROLLARY 4.31. Zf (4.5) holds then 

w 

GJ(n)) c O(“). 
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Zf (4.6) holds then 

L( W(n) nw”) c o(n) flR”~“. 

Proof. Let A E w&+,) nRn~n]. Then A + dZ E T~,)[T~,,, nR”,‘] for 
d 2 - Z(A). By (4.5) [(4.6)] we have 

L(A+dZ)=L(A)+dL(Z)Ew(,, [Tc,,inWn,n]. 

Since by Proposition 4.26 L(Z) is a real scalar matrix, it follows that 

L(A) E u(n) ]q,) nR”*“l. n 

PROPOSITION 4.32. After applying appropriate diagonal similarity and 
multiplication by a positive scalar we have 

Cij = 1, i, jE(n), i#j. 

Proof. Let 

(4.33) g=max{cijcji:i,jE(n), i#j}. 

By applying an appropriate permutation similarity we may assume, without 
loss of generality, that 

(4.34) g = c12c21. 

We prove our assertion by induction on n. For n = 1 there is nothing to 
prove. For n = 2 the claim follows immediately from (4.23). Assume that our 
proposition holds for n < m, and let n = m. Since the restriction of L to 
matrices with zero nth row and column induces a transformation on C “‘- ‘2 n’- ’ 
[IfUrn- 1*m-1] which preserves ~~~_r) [T(,_~) nWm-l,m-l], it follows by the 
inductive assumption that we may assume that 

(4.35) cij = 1, i,jE(m-1), i#j. 

Let p, q E (m - l), p f q, and define the n x n matrix A by 

i= j=l,...,n, 

(i,j)E ((p,4),((l,p),(p,n),(q,n),(n,q)), 
otherwise. 
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Observe that A E tic,,) n R n, ” and hence by Corollary 4.31 

(4.36) B = L(A) E win). 

The matrix it4 = B[{ p, 9, n}] is 

95 

i 0 0 1 cnq 0 1 cp* cqn 0 I 
up to permutation similarity. In view of (4.33) (4.34) and (4.35) we have 
h = h(M)= Z(M[{1,2}])= - 1. Thus, 

det( M - hl) = c,~( cPn - c,,), 

and by (4.36) and Lemma 4.4 we have 

c&,, - C,“> G 0. 

Since by (4.23) cnq > 0, we derive that 

(4.37) C qn 2 Cp*. 

Changing the roles of p and 9, we similarly show that 

and by (4.37) we obtain 

C 
P” 2 cqn, 

C 
Pn 

= cqn. 

In a similar way one can prove that 

C 
nP 

=c 
“4’ 

Thus, after applying an appropriate diagonal 
only the nth row and column) we have 

(4.38) Gin = C2” = . . . = C”_ 1, ” = c,1= C”2 = 

similarity (where we change 

. . . =c 
n,n-1 =a>o. 
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Now let A E R ‘, n be defined by 

aij = 
i 

1, (i,j>E {(1,2),(1,n),(2,n),(n,l),(n,2)} 
0 otherwise. 

Observe that A E u(n) nlW”,” and hence by Corollary 4.31 we have 

B = L(A) E a<,,). 

The matrix M = B[{1,2, n}] is 

0 1 a 

[ I 0 0 a. 
a a 0 

We have 

and so 

(4.39) 

h=h(M)= -a, 

det(M-hZ)=u(u-u2). 

By Lemma 4.4 it follows from (4.39) that 

and by (4.33), (4.34), (4.35), and (4.38) we obtain 

u=l. 

PROPOSITION 4.40. We have 

for all distinct i, j, k E (n). 

Proof. Let i, j, and k be distinct elements of (n), and let 

ul= (‘(Eii>)iiT u2= (L(Eii))jj* u3 = (‘(Eii)) kk’ 
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Let A E R “3 ” be defined by 

;,i; ;asa; to verify that A E a(“) r~ R “, “, and hence it follows from Corollary 

Z? = L(A) E We,,). 

By Proposition 4.32, the matrix M = B[ { i, j, k }] is 

i a1 0 1 a2 1 1 a3 1 1 1 
up to permutation similarity. Let t be a real number such that h( M - tr) = 0, 
and let G = M - tZ. Since h(G) = 0, it follows that g,,, g,,, g,, > 0 and that 

(4.41) detG[{1,3}] =0 

and/or 

(4.42) detG[{2,3}] =O. 

Assume that 

(4.43) g33 ’ g22. 

Since det G[ {2,3}] > 0, it follows from (4.43) that 

(4.44) g,>l. 

If (4.41) holds, then it follows from (4.44) that g,, < 1, but then 

detG=l-g,,>O, 

in contradiction to Lemma 4.4. 
If (4.42) holds, then it follows from (4.44) that g, < 1 and 

detG=l-g,>O, 
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which is again a contradiction to Lemma 4.4. Thus our assumption (4.43) is 
false and hence 

Similarly (changing the roles of j and k) we show that 

and therefore 

g22 = g3.3. 

Since 

gii = a, - t, i = 1,2,3, 

our claim follows. 

LEMMA 4.45. The matrix 

a b b 
A=0 1 0 1, 1 b B 0, a real, 

1 1 0 

kin wc3) ifandonlyifa>b-1. 

Proof. Let h = h(A). By Lemma 4.4, A E oC3) if and only if 

(4.46) det(A-hZ)<O. 

Observe that for a < b - 1 we have 

(4.47) 
&i%G-a 

> 1. 
2 

We now have 

+[{W}])= -1, aab-1, 

h= 
Z(A[{1,3}])= a- , acb-1, 
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and hence 

(4.48) dG+a 
b- 

2 ’ 
a<b-1. 

But since for a < b - 1 it follows from (4.47) that 

F a +4b+a 
= 

2 
\la2+4b-a<b9 2 

it now follows from (4.48) that (4.46) holds if and only if a >, b - 1. W 

In view of Proposition 4.40 we have 

(4.49) L( Eii) = b,E,, + d,Z, i E (n). 

Observe that if (4.6) holds, then di >, 0. 
In order to complete the proof of Theorem 3.1 [3.4] we have to show that 

b, = 1, i E (n). 
Let i, j, and k be distinct elements of (n), and let A E Iw”,” be defined 

by 

2, (p,9)E {(i, j)2(ipk)lT 
a = 

P4 1, (p,q)~ {(i,i>,(j,k>,(k,i>,(k,j)), 
0 otherwise. 

Observe that A E w(“) and hence by Corollary 4.31 we have 

(4.50) Z3 = L(A) E w<,). 

By (4.49) and Proposition 4.32, the matrix B[ { i, j, k }] is 

up to permutation similarity. By Lemma 4.45 it follows from (4.50) that 

(4.51) b,>l. 
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Consider now the matrix A E R “3 ” defined by 

1 
2’ (PY9b {GJ)4~J))> 
-1 

a 
PQ = 

2, p=9=i, 

1, (P>9k {w4k~m4))? 

0 otherwise. 

Here too A E a(n) and hence B = L(A) E a(,,). The matrix M = B[{ i, j, k}] 

is now 

up to permutation similarity. Since M E wc3), it follows from Lemma 4.45 
that 

or 

b,<l. 

Together with (4.51) we have 

bi = 1. 

The proof of Theorem 3.1 [3.4] is now completed. n 

Since, in all the propositions and lemmas, only principal submatrices of 
order no more than 3 were needed, it follows that Theorem 3.1 [3.4] holds 
also for the classes r&, [w:,,~], k >, 3. However, the “only if” part of 
Theorem 3.1 [3.4] does not hold for the class r&, [$,,I, as demonstrated by 
the transformation 

L:A-+MoA, 

where M is an n x n matrix all of whose entries are positive and further 

m,, >, 1, iE(n), 



LINEAR TRANSFORMATIONS 101 

and 

mijmji = 1, i, jE(n), i+ j. 

Here M 0 A denotes the Hadamard product of M and A, i.e. the matrix B 
whose entries are b, j = mijaij, i, j E (n). Using Lemmas 4.2 and 4.3 it is 
easy to verify that L preserves r&) [o?,)], although L is not a composition of 
transformations of the types specified in Theorem 3.1 [3.4]. 

The “only if” part of Theorem 3.1 does not hold if we restrict ourselves to 
real w-matrices. Observe that transformations of the type 

(ix) A -+ A + aZ, in which (Y is a real linear combination of the (not 
necessarily diagonal) entries of A, 

map a(“) nH n,n into itself. We pose the following open problem. 

QUESTION 4.52. Let L be a linear transformation on Iw”,“, n > 3, 
satisfying 

N(L)~{AEBP': aii=O, l<i<n} = (0). 

Isittruethat L(w~,)n7",")~~(,)nIW"," if and only if L is a composition 
of transformations of types (i), (ii), (iii), and (ix)? 

We remark that in the case n = 2 there is at least one more type of 
transformation, 

a11 

and 

(x) [:1: zii -+ t,a,,+ t,a,, kiaiaa:2’2a2i], in which k,, k,, t,, 
1 [ 

t, are nonnegative. It is easy to verify, using Lemma 4.3, that such a 
transformation maps the class o(,) nIR2-2 into itself. 

We remark that Theorems 3.1, 3.2, 3.4, and 3.5 do not hold in general 
when the nonsingularity assumption (4.14) (where C is replaced by Iw if 
needed) is omitted, as demonstrated by Example 5 in [4]. 

Before proving Theorems 3.2 and 3.5, we note that Lemmas 4.1, 4.2, and 
4.3 and Propositions 4.7, 4.9, 4.11, 4.13, and 4.15 hold also in the case n = 2. 

Proof of Theorem 3.2. By Lemma 4.3, transformations of types (i), (ii), 

and (v) map w(2) into itself. Conversely, if L satisfies (4.5) and (4.14) (n = 2), 
then it follows from Proposition 4.13 that after applying a transposition if 
needed we have 

L(E12) = a&,, L(E2,) = bE21. 
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Furthermore, it easily follows from Lemma 4.3 that ab > 0. Hence, by 
applying an appropriate diagonal similarity and multiplying by a positive 
scalar we obtain 

(4.53) L(E12) = En?, U%,) = E,,. 

It now follows that L is of type (v). The reality of k,, k,, t,, and t, follows 
from Lemma 4.1. n 

Proof of Theorem 3.5. Clearly, transformations of types (i) and (ii) map 

the c1ass r”k%” B Lemma 4.3 we have 
2*2 into itself. Let L be a transformation of type (vii), and 

let A E rc2, T . y 

(4.54) a,,a2i > 0. 

Since, by Lemma 4.2, A E P,$,, it follows from Proposition 11 in [4] (and the 
remark after the proof there concerning the fact that the arguments used in 
the proof are equivalences) that L(A) E P&,. Observe that L does not affect 
ai2 and aai, and therefore it follows from (4.54) and Lemmas 4.2 and 4.3 that 

L(A) E ~(2, n F2,2. 
Conversely, assume that 

(4.55) 

and that 

L(T(~) n F2z2)c T<~, n F2,2, 

N(L)n{AEF2~2:a11=a,=0}= (0). 

As in the proof of Theorem 3.2, we may assume that (4.53) holds. We now 
prove that 

(4.56) L(P& nF2s2)c P& nF2s2. 

Let A E Pp2, n F2p2. If a,,a2i 2 0, then it follows from Lemmas 4.2 and 4.3 
that 

A E rc2, n F2s2, 

and hence by (4.55) we have 

L(A)e 7(Z) n F2x2 c P&, n F2,2. 
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If a isu s1 < 0, then, since by (4.55) and Proposition 4.15 the matrix 

is a nonnegative diagonal matrix, it follows that L(A) E P&) f~ F2v2. There- 
fore, (4.56) holds and by Proposition 11 of [4] the transformation L is of type 
(vii). w 

In order to prove our “onto” theorems we need the following immediate 
lemma. 

LEMMA 4.57. 
nonsingular. 

lf the range of L contains the class T(,, I” W n, “, then L is 

Proof. 

{E 

Our claim follows observing that TV,) n R n, ” contains the basis 
11,. . . > En,, E,,, E,,, E,,,.. .> &n-1} of F”,“. 8 

Proof of Theorem 3.3. 
and 

If L(w(,))= acnj, then clearly L(o(,>)G w(,,>, 
L is nonsingular by Lemma 4.57. Conversely, assume that 

(4.58) %q,)) c @(II)7 

and that L is nonsingular. Then L satisfies the nonsingularity conditions of 
Theorems 3.1 and 3.2. We distinguish between two cases: 

(1) n = 2. By Theorem 3.2, L(w(,)) c wc2) if and only if i,, is real, 
L,, = 0, z,, = 0 and z, is a nonnegative generalized monomial. Observe 
that in that case L- ’ has the same form. Thus, it follows from (4.58) that 

L-Y@(z)) c W(Z) 

(2) n > 3. 
and hence L(w(,)) = wc2). 

In view of Theorem 3.1, since clearly transformations of types 
(i), (ii), and (iii) map the class o(,) onto itself, it is enough to show that a 
nonsingular transformation of type (iv) maps the class u(n) onto itself. 
Observe that L is such a transformation if and only if 

z,, = 0, i2i = 0, Las = I, and t,, = I + evT, 

where e is an n X 1 matrix all of whose entries are 1, v is an n X 1 matrix, and 
i,, is nonsingular. Observe that in that case vTe # - 1 (otherwise L,, would 
have zero row sums) and that 

Z,’ = I + ezT, 
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Therefore, z ~ ’ has the same form as I!,. Thus, it follows from (4.58) that 

L-‘(w(,))G O(n) and hence L(o(,)) = a(,). n 

Proof of Theorem 3.6. Since clearly transformations of types (i), (ii), or 
(iii) map the class r(,, f~ F”‘” onto itself, it follows that if L is a composition 
of such transformations, then 

Conversely, we assume_ that (4.59) holds. By Lemma 4.57 L is nonsjngular, 
and by Theorem 3.4 L is the direct sum of L,, and L,,, where L,, is a 
nonnegative matrix whose diagonal entries are greater than or 
equal to 1. Furthermore, we have L-~(T(,,, CT Fnxn), T(,,, CI F”,“, and hence 
i;r’ too is a nonnegative matrix with diagonal entries greater than or equal to 
1. As is well known (e.g. [2, p. 84]), a nonnegative matrix which has a 
nonnegative inverse is a generalized monomial. Thus, the matrix L,, is a 
generalized monomial. Since both &rr and t,’ have diagonal entries greater 
than or equal to 1, it follows that L,, = I. Therefore, L is a composition of 
transformations of types (i), (ii), and (iii) only. n 

Proof of Theorem 3.7. Assume that 

(4.60) L(~(~, n F212)= T(~, n F2,2. 

By Lemma 4.57 L is nonsingular, and by Theorem 3.5 L is a composition of 
transformations of types (i), (ii), and (vii). S ince clearly transformations of 
types (i) or (ii) map the class rc2, n F212 onto itself, we may assume that L is 
of type (vii). Observe that L is such a transformation if and only if Lr2 = 0, 
La, = 0, z,, = I, and 

t,, = kl t1 

[ 1 k2 t2 

is a nonnegative matrix, where either 

(4.61) k,t,+ k,t,> 1 
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or 

(4.62) 1 - 2(k,t, + kzt,)+ (k,t, - kzt,)2 < 0. 

By (4.60) we have 

L-q T(2) l-l F2s2) c T(2) c-l F2,2, 

and hence the matrix t-’ has the same form as i. Since E,, and LI,, are 
nonnegative, it follows that ii, is a generalized monomial and so either 

(4.63) k, = t, = 0, k,, tz > 0, 

(4.64) k,=t,=O, k,, t, > 0. 

If (4.63) holds, then it follows from (4.61) and (4.62) that k,t2 > 1. Similarly, 
considering i - ‘, we deduce that l/kit, > 1, and therefore k,t, = 1. Using 
the same arguments, we show that if (4.64) holds, then we have k,t, = 1. 
Therefore, the transformation L is of type (viii). 

Conversely, it is enough to show that a transformation L of type (viii) 
maps the class rc2, f? F2y2 onto itself. Observe that L is a nonsingular 
transformation of type (vii) and thus, by Theorem 3.5, 

(4.65) L( TC2, n F2s2) L T(~, n F2s2. 

Also, the transformation L-’ is of type (viii) and hence 

(4.66) L-I( 7C2) n F2,2) c T(~, n F2,2. 

The inclusions (4.65) and (4.66) imply (4.60). 
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