CLOSED STRUCTURES ON REFLECTIVE SUBCATEGORIES OF THE CATEGORY OF TOPOLOGICAL SPACES

Juraj ČINČURA
Department of Algebra and Number Theory, MFF UK, 84215 Bratislava, Czechoslovakia

Received 13 October 1988
Revised 24 August 1989

Let \(\mathcal{A} \) be a reflective subcategory of the category of all topological spaces which contains a discrete doubleton. We prove that \(\mathcal{A} \) admits a symmetric monoidal closed structure if and only if it is closed under the formation of function spaces endowed with the topology of pointwise convergence. Moreover, if a symmetric monoidal closed structure on \(\mathcal{A} \) exists it is (up to isomorphism) unique.

AMS (MOS) Subj. Class.: 18D15, 54B30
reflective subcategory
reflective hull
closed category
filter space

Introduction

We shall use the term closed category (see [16]) instead of the term symmetric monoidal closed category used in [6]. It is known (see [3]) that any epireflective subcategory of the category \(\mathcal{T} \) of all topological spaces and continuous maps admits exactly one structure of closed category. Brandenburg and Hušek proved in [2] that any reflective subcategory of the category \(\mathcal{T} \) containing a discrete doubleton is not cartesian closed. The result presented in this paper completes these two results. We shall prove that if \(\mathcal{A} \) is a reflective subcategory of the category \(\mathcal{T} \) containing a discrete doubleton and \((\square, H)\) a closed structure on \(\mathcal{A} \), then for any \(X, Y \in \mathcal{A} \), \(H(X, Y) \) is the space of all continuous maps from \(X \) to \(Y \) endowed with the topology of pointwise convergence, i.e., there exists at most one closed structure on \(\mathcal{A} \). Moreover, the property of being closed under the formation of function spaces with the topology of pointwise convergence is sufficient for the existence of a closed structure on \(\mathcal{A} \). As an application we shall show that, for example, many known epireflective (i.e., productive and closed-hereditary) subcategories of the category of all Hausdorff spaces do not admit a closed structure so that they are not closed under the formation of function spaces with the topology of pointwise convergence.

0166-8641/91/$03.50 © 1990—Elsevier Science Publishers B.V. (North-Holland)
1. Preliminaries and notations

All undefined terminology is that of [10]. We shall always use the following notations: \(\mathcal{A}(X, Y) \) denotes the set of all \(\mathcal{A} \)-morphisms \(X \to Y \). If \(A, B, C \) are sets and \(f: A \times B \to C \) is a map, then \(f^* \) is the map \(A \to C^B \) given by \(f^*(a)(b) = f(a, b) \) for all \(a \in A, b \in B \). If \(g: A \to C^B \) is a map, then \(g_* \) is the map \(A \times B \to C \) given by \(g_*(a, b) = g(a)(b) \) for all \(a \in A, b \in B \). The term clopen means closed and open (simultaneously). \(UX \) denotes the underlying set of \(X \).

Recall (see [16]) that a triple \((\mathcal{A}, \square, H) \) is said to be a closed category provided that \((\mathcal{A}, \square) \) is a symmetric monoidal category (see [16, p. 180]), \(H: \mathcal{A}^{op} \times \mathcal{A} \to \mathcal{A} \) is a functor (called an internal horn-functor) and there exists a natural equivalence \(\gamma = (\gamma_{ABC}): \mathcal{A}(A \square B, C) \to \mathcal{A}(A, H(B, C)) \). A tensor product is a symmetric monoidal structure extendable to a structure of closed category.

Theorem 1.1 [14]. Let \((\mathcal{K}, V) \) be a concrete category with the following properties:

1. for any constant map \(c: VA \to VB \) there exists a \(\mathcal{K} \)-morphism \(k: A \to B \) with \(Vk = c \),
2. for any bijection \(f: VA \to X \) there exists a \(\mathcal{K} \)-isomorphism \(s: A \to B \) with \(Vs = f \),
3. there exists a \(\mathcal{K} \)-object \(A \) with \(card VA \geq 2 \).

Then for any closed structure \((\square, G) \) on \(\mathcal{K} \) there exists a closed structure \((\square, H) \) on \(\mathcal{K} \) isomorphic with \((\square, G) \) with the following properties:

a) \(card VI = 1 \) where \(I \) is the unit of \(\square \),
b) \(VA \times VB \subseteq V(A \square B) \) for all \(A, B \in \mathcal{K} \),
c) for any \(r, s: A \square B \to C \), \(Vr|_{VA \times VB} = Vs|_{VA \times VB} \) implies that \(r = s \),
d) \(V(f \square g)|_{VA \times VB} = V(f \times Vg) \) for all \(f: A \to C, g: B \to D \),
e) \(VH(B, C) = \mathcal{H}(B, C) \) for all \(B, C \in \mathcal{K} \),
f) if \(\gamma: \mathcal{K}(A \square B, C) \to \mathcal{K}(A, H(B, C)) \) is the natural equivalence corresponding to \((\square, H) \), then \(V\gamma(r) = (Vs)_r^* \) and \(V\gamma^{-1}(s)|_{VA \times VB} = (Vs)_s \) for all \(A, B, C \in \mathcal{K}, r \in \mathcal{K}(A \square B, C) \) and \(s \in \mathcal{K}(A, H(B, C)) \).

Definition 1.2. Let \(A \) be an infinite set, \(\mathcal{F} \) a filter on \(A \) with \(\bigcap \{ F: F \in \mathcal{F} \} = \emptyset \) and \(a \notin A \). Define a topology on \(A \cup \{a\} \) as follows: If \(U \subset A \cup \{a\} \), then \(U \) is open if and only if \(U \subset A \) or \(U - \{a\} \in \mathcal{F} \). The obtained topological space is said to be a filter space and denoted by \((A, a, \mathcal{F})\). If \(\mathcal{F} \) is an ultrafilter, then \((A, a, \mathcal{F})\) is said to be an ultraspace.

A filter space \((A, a, \mathcal{F})\) is said to be \(\mathbb{N} \)-incomplete provided that the filter \(\mathcal{F} \) is \(\mathbb{N} \)-incomplete, i.e., there exists a family \(\{ F_n: n \in \mathbb{N} \} \subset \mathcal{F} \) such that \(\bigcap \{ F_n: n \in \mathbb{N} \} = \emptyset \) (see [4]).

Conventions 1.3. (a) All reflective subcategories will be assumed to be full and isomorphism-closed.

(b) Since any nontrivial (i.e., containing a space with more than one element) reflective subcategory \(\mathcal{A} \) of the category \(\mathcal{T} \) satisfies (1)-(3) of Theorem 1.1 all
closed structures on \mathcal{A} will be assumed to satisfy the conditions (a)-(f) of Theorem 1.1.

Let X, Y be topological spaces, UX, UY the underlying sets of X, Y respectively. Then $X \otimes Y$ denotes the space on $UX \times UY$ given by the topology of separate continuity and $[X, Y]$ denotes the space on $\mathcal{T}(X, Y)$ given by the topology of pointwise convergence. The pair of functors $\otimes, [-, -]$ is the well-known (unique) closed structure on \mathcal{T}.

Let \mathcal{A} be a subcategory of the category \mathcal{T}, $\mathcal{E}(\mathcal{A}) = \{X \in \mathcal{T}: X$ is a subspace of a product of \mathcal{A}-objects $\}$, $\mathcal{E}(\mathcal{A}) = \{X \in \mathcal{T}:$ there exists a monomorphism $m: X \to Y$ where $Y \in \mathcal{E}(\mathcal{A})\}$. Then (see [10]) $\mathcal{E}(\mathcal{A}) (\mathcal{E}(\mathcal{A}))$ is the epireflective (extremal-epireflective) hull of \mathcal{A} in \mathcal{T} and it holds:

Theorem 1.4. (a) [8] If \mathcal{A} is a reflective subcategory of \mathcal{T}, $X \in \mathcal{E}(\mathcal{A})$ and $r_X: X \to A_X$ is the \mathcal{A}-reflection of X, then r_X is a \mathcal{T}-embedding and an $\mathcal{E}(\mathcal{A})$-epimorphism.

(b) [10] If $\mathcal{E}(\mathcal{A})$ is a co-well-powered category, then \mathcal{A} has a reflective hull in \mathcal{T} that coincides with the epireflective hull of \mathcal{A} in $\mathcal{E}(\mathcal{A})$.

(c) [19] Let \mathcal{A} be a subcategory of \mathcal{T} closed under the formation of limits in \mathcal{T}. Then the following statements are equivalent:

(i) \mathcal{A} is reflective and co-well-powered,

(ii) $\mathcal{E}(\mathcal{A})$ is co-well-powered,

(iii) $\mathcal{E}(\mathcal{A})$ is co-well-powered.

2. Closed structures on reflective subcategories of the category \mathcal{T}

Our aim is to prove that reflective subcategories of the category \mathcal{T} that contain a discrete doubleton have such properties that the method used in [3] for epireflective subcategories of \mathcal{T} works also in this case.

The following assertion follows from [5] (it can be easily proved directly):

Theorem 2.1. Let \mathcal{A} be a reflective subcategory of the category \mathcal{T}. If for any $A, B \in \mathcal{A}$, $[A, B] \in \mathcal{A}$, then there exists a closed structure (\square, H) on \mathcal{A} with $H(A, B) = [A, B]$ and $A \square B = A \otimes B$ for any $A, B \in \mathcal{A}$ where $A \otimes B$ is the \mathcal{A}-reflection of $A \otimes B$.

Proposition 2.2. Let (\square, H) be a closed structure on a reflective subcategory \mathcal{A} of \mathcal{T} and $A, B, C \in \mathcal{A}$. Then:

(i) the map $j_{AB}: A \otimes B \to A \square B$, $(x, y) \mapsto (x, y)$, is continuous,

(ii) the map $i_{BC}: H(B, C) \to [B, C]$, $t \mapsto t$, is continuous.

Proof. (i) The map j_{AB} is evidently separately continuous and therefore continuous. (ii) Consider the bijections

\[\gamma: \mathcal{T}(H(B, C) \square B, C) \to \mathcal{T}(H(B, C), [B, C]), \]
\[\delta: \mathcal{A}(H(B, C) \square B, C) \to \mathcal{A}(H(B, C), H(B, C)). \]
Denote by 1 the identity morphism on $H(B, C)$ and put $e = \delta^{-1}(1)$. Then $e' = e\gamma_{H(B, C)B}$ belongs to $\mathcal{F}(H(B, C) \otimes B, C)$ and $i_{BC} = \gamma(e')$. □

Convention 2.3. In the following \mathcal{A} will always denote a reflective subcategory of \mathcal{F} containing a discrete doubleton.

It is obvious (see [8]) that \mathcal{A} contains all zero-dimensional compact Hausdorff spaces.

Proposition 2.4. If there exists a closed structure (\square, H) on \mathcal{A}, then \mathcal{A} contains all discrete spaces.

Proof. Let D be a discrete space with $D \in \mathcal{A}$ and D_2 the discrete space on the set $\{0, 1\}$. Let $r: D \to R(D)$ be the \mathcal{A}-reflection of D. Since $D = \bigsqcup \{\{d\}: d \in D\}$ in \mathcal{F}, $R(D) = \bigsqcup \{\{d\}: d \in D\}$ in \mathcal{A} (any reflector preserves colimits). Then $H(R(D), D_2) = H(\bigsqcup \{\{d\}: d \in D\}, D_2) \cong \prod \{H(\{d\}, D_2): d \in D\} \cong [D, D_2]$ (the functor $H(-, D_2)$: $\mathcal{A}^{op} \to \mathcal{A}$ preserves limits) where the isomorphism $\varphi: H(R(D), D_2) \to [D, D_2]$ is given by $t \mapsto t|_D$. Clearly, $\varphi^{-1}: [D, D_2] \to H(R(D), D_2)$ is given by $s \mapsto \tilde{s}$ where \tilde{s} is the unique extension of s. Since $D_2 \in \mathcal{A}$ $\mathcal{F}(\mathcal{A})$ contains D so that we can assume that D is a subspace of $R(D)$ (see Theorem 1.4(a)). Let $c \in R(D) - D$, $V_c = \{t \in H(R(D), D_2): t(c) = 1\}$. The set V_c is open in $[R(D), D_2]$ and according to Proposition 2.2(ii) also in $H(R(D), D_2)$. Denote by s the map $D \to D_2$ defined by $s(x) = 1$ for all $x \in D$. Evidently, $\tilde{s} = \varphi^{-1}(s)$ is given by $\tilde{s}(x) = 1$ for all $x \in R(D)$ so that $\tilde{s} \in V_c$. Let W be an arbitrary element of the standard neighbourhood base of s in $[D, D_2]$, i.e., there exist $x_1, \ldots, x_n \in D$ such that $W = \{t \in [D, D_2]: t(x_i) = 1$ for all $i = 1, \ldots, n\}$. Consider the element $t \in [D, D_2]$ with $t(x_i) = 1$ for $i = 1, \ldots, n$ and $t(x) = 0$ otherwise. Since $D = \{x_1, \ldots, x_n\} \sqcup D'$ in \mathcal{F} and $R(\{x_1, \ldots, x_n\}) = \{x_1, \ldots, x_n, y\}$ we obtain that $R(D) = \{x_1, \ldots, x_n\} \sqcup R(D')$ (\mathcal{A} contains all finite discrete spaces and the \mathcal{A}-coproduct of two \mathcal{A}-objects coincides with their \mathcal{F}-coproduct). Hence the map \tilde{t} is given by $\tilde{t}(x_i) = 1$ for $i = 1, \ldots, n$ and $\tilde{t}(x) = 0$ otherwise so that $\tilde{t} \notin V_c$. Thus $\varphi^{-1}[W] \notin V_c$ for all elements of the standard neighbourhood base of s in $[D, D_2]$, a contradiction. □

Corollary 2.5. If \mathcal{A} admits a closed structure, then any \mathcal{F}-coproduct of a family of \mathcal{A}-objects belongs to \mathcal{A} and coincides with the \mathcal{A}-coproduct of this family.

It is obvious that the epireflective hull $\mathcal{E}(\mathcal{D})$ of the class \mathcal{D} of all discrete spaces is the category of all zero-dimensional Hausdorff spaces. Since $\mathcal{E}(\mathcal{D})$ is co-well-powered \mathcal{D} has also a reflective hull $\mathcal{R}(\mathcal{D})$ which coincides with the epireflective hull of \mathcal{D} in $\mathcal{E}(\mathcal{D})$ (see Theorem 1.4(b)). Now, we can prove the following:
Proposition 2.6. The reflective hull $\mathcal{R}(\mathcal{D})$ of the class \mathcal{D} of all discrete spaces in \mathcal{I} contains all filter spaces.

Proof. Let $K = (A, a, \mathcal{F})$ be a filter space with $K \not\in \mathcal{R}(\mathcal{D})$ and $r: K \to R(K)$ the $\mathcal{R}(\mathcal{D})$-reflection of K. Since $K \in \mathcal{F}(\mathcal{R}(\mathcal{D}))$, r is a \mathcal{F}-embedding and an epimorphism in $\mathcal{F}(\mathcal{D})$ (see Theorem 1.4(a)) and K can be assumed to be a subspace of $R(K)$.

Let $d \in R(K) - K$. Since the space $R(K)$ is zero-dimensional, there exist clopen neighbourhoods V of a and W of d such that $V \cap W = \emptyset$. The set $B = W \cap A$ is a clopen discrete subspace of K. Clearly, B is also clopen in $R(K)$ ($K = B \cup R(K)$) so that $W - B = T$ is a clopen neighbourhood of d with $T \cap K = \emptyset$. Hence, r is not an $\mathcal{F}(\mathcal{D})$-epimorphism, a contradiction. \(\Box\)

As a consequence of Propositions 2.4 and 2.6 we obtain:

Proposition 2.7. If \mathcal{A} admits a closed structure, then \mathcal{A} contains all filter spaces.

Proposition 2.8. Any tensor product on \mathcal{A} is uniquely determined by its values on $\mathcal{L} \times \mathcal{L}$.

Proposition 2.9. If \mathcal{A} admits a closed structure and $K = (A, a, \mathcal{F})$, $L = (B, b, \mathcal{G})$ are filter spaces, then $K \otimes L$ belongs to \mathcal{A}.
obtain \(t \not\in \text{cl} M_3 \) in \(R(K \otimes L) \) for every \(t \in R(K \otimes L) - (K \otimes L) \) (\(g \) is continuous). Hence, if there exists \(t \in R(K \otimes L) - (K \otimes L) \) with \(t \in \text{cl} M \) in \(R(K \otimes L) \), then \(t \in \text{cl} M' \) in \(R(K \otimes L) \). It is obvious that \(M' \) is a clopen discrete subspace of \(K \otimes L \) so that \(K \otimes L = M' \sqcup X \) where \(X \) is the subspace of \(K \otimes L \) given by the set \((K \otimes L) - M' \). Then \(R(K \otimes L) = R(M') \sqcup R(X) = M' \sqcup R(X) \). Since \(t \not\in M' \), \(t \in R(X) \) so that \(t \not\in \text{cl} M' \) in \(R(K \otimes L) \), a contradiction. \(\square \)

Now it is easy to see that we can continue in the same way as in [3], using 2.8–2.25 of [3] with only formal modifications. Namely, we change the meaning of \(\mathcal{A} \) (according to Convention 2.3) and substitute “extremal \(\mathcal{A} \)-epimorphism” by “regular \(\mathcal{A} \)-epimorphism” (in epireflective subcategories of \(\mathcal{F} \) the notions regular epimorphism and extremal epimorphism coincide).

Remark 2.10. In the first part of the proof of [3, 2.14] the following consideration can be used for proving the existence of \(K \in \mathcal{F} \) and \(s \in (1 \square e)_{-1}(t) \cap (N^* \square K) \) with \(s \in \text{cl} \Delta_n \) in \(N^* \square K \) (for an epireflective \(\mathcal{A} \) it can be simplified): Since for any \(n \in \mathbb{N} \), \(P_n = (N^* \square N^*) - \{(n, n)\} \) is clopen in \(N^* \square N^* \), \(P_n \in \mathcal{A} \). Then \(P = \bigcap \{P_n : n \in \mathbb{N}\} = (N^* \square N^*) - \Delta_n \) belongs to \(\mathcal{A} \) (\(\mathcal{A} \) is closed under limits) so that \(P \sqcup \Delta_n \in \mathcal{A} \) (\(\Delta_n \) with the discrete topology). If for any \(K \in \mathcal{F} \) and \(s \in (1 \square e)_{-1}(t) \cap (N^* \square K) \), \(s \not\in \text{cl} \Delta_n \) in \(N^* \square K \), then the map \(h : \bigsqcup \{\{(N^* \square K) : K \in \mathcal{F}\} \rightarrow P \sqcup \Delta_n ; \ h(x) = (1 \square e)(x) \) for all \(x \) is continuous so that \(1 \square e \) is not a regular \(\mathcal{A} \)-epimorphism, a contradiction.

Theorem 2.11. If \((\square, H)\) is a closed structure on \(\mathcal{A} \), then for any \(Y, Z \in \mathcal{A} \), \(H(Y, Z) = [Y, Z] \).

Proof. Since for any \(K, L \in \mathcal{L} \), \(K \square L = K \otimes L \) [3, 2.25] we obtain that for any \(X, Y \in \mathcal{A} \), \(X \square Y = X \otimes_{\mathcal{A}} Y \) where \(X \otimes_{\mathcal{A}} Y \) is (the object part of) the \(\mathcal{A} \)-reflection of \(X \otimes Y \). Let there exist \(Y, Z \in \mathcal{A} \) with \(H(Y, Z) \neq [Y, Z] \) i.e. (according to Proposition 2.2(ii)) the topology of \(H(Y, Z) \) is finer than the topology of \([Y, Z]\). Then there exists a filter space \(K \) and a continuous map \(s : K \rightarrow [Y, Z] \) such that the map \(s' : K \rightarrow H(Y, Z) \) with \(s'(x) = s(x) \) for all \(x \in K \) is not continuous. Denote by \(a : K \otimes Y \rightarrow K \otimes Y \) the \(\mathcal{A} \)-reflection of \(K \otimes Y \), consider the equivalences
\[
\gamma : \mathcal{F}(K \otimes_Y Z) \rightarrow \mathcal{F}(K, [Y, Z]),
\]
\[
\delta : \mathcal{A}(K \otimes_{\mathcal{A}} Y, Z) \rightarrow \mathcal{A}(K, H(Y, Z))
\]
and put \(t = \gamma^{-1}(s) \). Let \(t' \) be the (unique) continuous map \(K \otimes_{\mathcal{A}} Y \rightarrow Z \) with \(t' \circ a = t \). Evidently, \(\delta(t) = t' \) so that \(t' \) is continuous, a contradiction. \(\square \)

Corollary 2.12. There exists at most one closed structure on \(\mathcal{A} \).

Corollary 2.13. If \(\mathcal{K} \) is a collection of closed reflective subcategories of \(\mathcal{F} \) each of which contains a discrete doubleton, and \(\mathcal{B} = \bigcap \{\mathcal{A} : \mathcal{A} \in \mathcal{K}\} \) is reflective, then \(\mathcal{B} \) is closed.

Remark 2.14. The case of nontrivial (Convention 1.3(b)) reflective subcategories of \(\mathcal{F} \) which do not contain a discrete doubleton remains still open. The best known
examples of such categories are those consisting of all powers of a nontrivial rigid T_1-space and it is not difficult to prove that they do not admit a closed structure.

Another special case is solved in the following:

Proposition 2.15. Let \mathcal{B} be a nontrivial reflective subcategory of \mathcal{F} which does not contain a discrete doubleton and $r: \mathbb{N} \to b\mathbb{N}$ the \mathcal{B}-reflection of \mathbb{N}. If $r[\mathbb{N}]$ is not closed in $b\mathbb{N}$, then \mathcal{B} does not admit a closed structure.

Proof. We can suppose that \mathbb{N} is a subspace of $b\mathbb{N}$ ($\mathbb{N} \in \mathcal{F}(\mathcal{B})$). Let $x \in \text{cl } \mathbb{N} - \mathbb{N}$ in $b\mathbb{N}$. Put $B_n = \{k \in \mathbb{N}: k \geq n\}$. Since \mathcal{B} is contained in the category of all T_1-spaces $x \in \text{cl } B_n$ for all $n \in \mathbb{N}$. Let (\boxtimes, H) be a closed structure on \mathcal{B}. Similarly as in the proof of Proposition 2.4 we can show that the map $\varphi: [\mathbb{N}, bD_2] \to H(b\mathbb{N}, bD_2)$ where $\varphi(s) = s$ is the (unique) extension of s for each $s \in [\mathbb{N}, bD_2]$ is an isomorphism (bD_2 is the \mathcal{B}-reflection of D_2, $D_2 \subset bD_2$). Consider the sequence $(s_n: n \in \mathbb{N})$ in $[\mathbb{N}, bD_2]$ where $s_n: \mathbb{N} \to bD_2$, $s_n(k) = 1$ for each $k \in B_n$ and $s_n(k) = 0$ otherwise. Clearly, (s_n) converges to $o \in [\mathbb{N}, bD_2]$ given by $o(k) = 0$ for all $k \in \mathbb{N}$. Therefore the sequence (s_n) converges to o in $H(b\mathbb{N}, bD_2)$. But for each $n \in \mathbb{N}$, $s_n(x) = 1$ and considering the neighbourhood $V = \{t \in H(b\mathbb{N}, bD_2): t(x) \neq 1\}$ of o we obtain a contradiction. \(\square\)

Corollary 2.16. If \mathcal{B} is a nontrivial reflective subcategory of \mathcal{F} which does not contain a discrete doubleton, and all spaces in \mathcal{B} are countably compact, then \mathcal{B} does not admit a closed structure.

It is easy to see that the space \mathbb{N} can be replaced by an arbitrary infinite discrete space in Proposition 2.15.

3. Applications and examples

First of all we give an example of a closed reflective subcategory of \mathcal{F} that is not epireflective in \mathcal{F}. Recall that a T_0-space X is said to be sober provided that for any nonempty irreducible closed subset A of X there exists $a \in A$ with $\text{cl } \{a\} = A$ (see [11]). The category \mathcal{S} of all sober spaces is the reflective hull of the Sierpinski doubleton and it is an epireflective subcategory of the category \mathcal{F}_0 of all T_0-spaces.

Example 3.1. The category \mathcal{S} of all sober spaces is closed.

Proof. Denote by S the Sierpinski doubleton with elements $0, 1$ and closed sets \emptyset, $\{0\}$, $\{0, 1\}$. First we show that for any sober space X, $[X, S]$ belongs to \mathcal{S}. The space $[X, S]$ is a subspace of the space $S^{UX} \in \mathcal{F}$. Let A be an irreducible closed subset of $[X, S]$, $A \neq \emptyset$ and B the closure of A in S^{UX}. It is easy to see that B is an irreducible
closed subset of S^{UX} so that there exists $t \in B$ with $\text{cl}\{t\} = B$ in S^{UX}. Put $V = \{x \in X: t(x) = 0\}$ and define $s: X \to S$ by $s(x) = 0$ for all $x \in \text{cl} V$ and $s(x) = 1$ otherwise. It is easy to see that $s \in A$ and $\text{cl}\{s\} = A$ in $[X, S]$. Since (a restriction of) $(\otimes, [-,-])$ is a closed structure on \mathcal{T}_0 the functor $[X, -]: \mathcal{T}_0 \to \mathcal{T}$ preserves products and \mathcal{T}_0-extremal (= \mathcal{T}_0-regular (see [18])) monomorphisms. If $Y \in \mathcal{F}$, then it is a \mathcal{T}_0-extremal subobject of a suitable power S^I so that $[X, Y]$ is a \mathcal{T}_0-extremal subobject of $[X, S]^I$. Hence, $[X, Y] \in \mathcal{F}$. □

In the following we shall show that many reflective subcategories of \mathcal{F} are not closed and therefore they are not closed under the formation of function spaces with the topology of pointwise convergence.

Denote by \mathcal{H} the category of all totally disconnected spaces. It is known that \mathcal{H} is the extremal-epireflective hull of the space D_2 (the discrete space on the set $\{0, 1\}$). Recall that the meaning of \otimes is given by Convention 2.3.

Proposition 3.2. If \mathcal{A} admits a closed structure, then $\mathcal{A}' = \mathcal{A} \cap \mathcal{H}$ is an epireflective subcategory of \mathcal{F}.

Proof. Since $D_2 \in \mathcal{H}$ and $\otimes(\mathcal{A}) = \mathcal{H}$ ($\otimes(\mathcal{A}')$ is the extremal-epireflective hull of \mathcal{A}'). \mathcal{A}' is closed under the formation of limits in \mathcal{F}, \mathcal{H} is co-well-powered so that by Theorem 1.4(c) and Corollary 2.13 \mathcal{A}' is reflective in \mathcal{F} and has a closed structure. Let $\mathcal{A}' = \mathcal{H}(\mathcal{A}')$, $X \in \mathcal{H}(\mathcal{A}') - \mathcal{A}'$ and $r: X \to R(X)$ be the \mathcal{A}'-reflection of X. We can assume that X is a subspace of $R(X)$ (and $r(x) = x$ for all x). According to [5] (\mathcal{A}' is a closed reflective subcategory of the closed category \mathcal{F}) $[r, 1]: [R(X), D_2] \to [X, D_2]$ is an isomorphism. Let $c \in R(X) - X$, $V_c = \{t \in [R(X), D_2]: t(c) = 1\}$. The set V_c is a neighbourhood of $u': R(X) \to D_2$ where $u'(x) = 1$ for all $x \in R(X)$. Put $u = [r, 1](u')$ and choose arbitrary $x_1, \ldots, x_n \in X$. Then $W = \{s \in [X, D_2]: s(x_i) = 1\}$ and $s(x_i) = 1$ for $i = 1, \ldots, n$ is an element of the standard neighbourhood base of u. Since $R(X)$ is totally disconnected there exists $t \in [R(X), D_2]$ with $t(x_i) = 1$ for $i = 1, \ldots, n$ and $t(c) = 0$. Clearly, $t \not\in V_c$ and $[r, 1](t) \in W$. Hence, for any element W of the standard base of neighbourhoods of u, $[r, 1]^{-1}[W]$ is not contained in V_c so that $[r, 1]^{-1}$ is not continuous, a contradiction. □

Corollary 3.3. If \mathcal{A} is a closed category, then \mathcal{A} contains the category of all zero-dimensional Hausdorff spaces.

Proof. The category of all zero-dimensional Hausdorff spaces is the smallest epireflective subcategory of \mathcal{F} containing D_2 (see [8]). □

Denote by I the closed unit interval with the usual topology. Recall that a space X is said to be functionally Hausdorff provided that for any $x, y \in X$ with $x \neq y$, there exists a continuous map $f: X \to I$ with $f(x) = 0$ and $f(y) = 1$. It is obvious that
the category \(\mathcal{F} \) of all functionally Hausdorff spaces is the extremal-epireflective hull of the space \(I \).

Proposition 3.4. Let \(\mathcal{A} \) be closed and contain a functionally Hausdorff space \(Y \) such that there exists a subspace \(I' \) of \(Y \) homeomorphic with \(I \). Then \(\mathcal{A}' = \mathcal{A} \cap \mathcal{F} \) is an epireflective subcategory of \(\mathcal{F} \).

Proof. Since \(\mathcal{F} \) is co-well-powered (\(\mathcal{F} \) is the extremal-epireflective hull of the category of all compact Hausdorff spaces, Theorem 1.4(c)) and \(\mathcal{F}(\mathcal{A}') = \mathcal{F} \mathcal{A}' \) is reflective and closed (Theorem 1.4(c), Corollary 2.1). Denote by \(f \) a homeomorphism \(I \to I' \) and put \(y_0 = f(0), y_1 = f(1) \). The rest of the proof is analogous as the proof of Proposition 3.2. Instead of \(D_2, 0, 1 \) we use \(Y, y_0, y_1 \), respectively. (Since \(R(X) \) is functionally Hausdorff there exists a continuous map \(t_i : R(X) \to I' \) with \(t_i(x_i) = y_0 \) for \(i = 1, \ldots, n \) and \(t_i(e) = y_1 \) so that there exists \(t \in [R(X), Y] \) with \(t(x_i) = y_0 \) for \(i = 1, \ldots, n \) and \(t(e) = y_1 \)) \(\square \)

Corollary 3.5. If \(\mathcal{A} \) is closed and \(\mathcal{A} \) contains a Tychonoff space \(X \) with a subspace homeomorphic with \(I \), then \(\mathcal{A} \) contains all Tychonoff spaces.

Corollary 3.6. Any proper epireflective (i.e., productive and closed-hereditary) subcategory of the category of all Tychonoff spaces containing the space \(I \) is not closed.

Note that in the case of reflective subcategories of the category of topological spaces we have obtained a similar result as in [15] for varieties of algebras. But in general there are topological categories (over the category of sets) with many closed structures. In [12] Kelly and Rossi constructed for any cardinal \(a \) a (fibre small) topological category of quasitopological spaces with (at least) \(a \) different closed structures and they also showed that the category of all quasitopological spaces which is not fibre small has a collection of closed structures equivalent to a proper class. In the following example we give a very simple construction of topological categories with many closed structures.

Example 3.7. Let \(\mathcal{C} \) be the category of all sequential topological spaces and continuous maps (the coreflective hull of \(\mathcal{N}^* \) in \(\mathcal{F} \)). It is well known that \(\mathcal{C} \) is cartesian closed and has also a closed structure \(\otimes [\cdot, \cdot]_e \) where the tensor product \(\otimes \) is given by the topology of separate continuity and for any \(X, Y \in \mathcal{C}, [X, Y]_e \) is the \(\mathcal{C} \)-coreflection of \([X, Y]\) in \(\mathcal{F} \). Let \(a \) be a cardinal, \(a \geq 2 \). Define a category \(\mathcal{C}^a \) as follows: The objects of \(\mathcal{C}^a \) are all pairs \((X, u)\) where \(X \) is a set and \(u \) is a map \(a \to ST(X) \) where \(ST(X) \) is the set of all sequential topologies on \(X \). A \(\mathcal{C}^a \)-morphism \(f : (X, u) \to (Y, v) \) is a map \(X \to Y \) such that for each \(x \in a, f : (X, u(x)) \to (Y, v(x)) \) is a continuous map. It is easy to see that \(\mathcal{C}^a \) is a topological category. Now for any subset \(B \) of \(a \) we can define a tensor product \(\Box_B \) as follows: For any \((X, u), (Y, v) \in \mathcal{C}^a, (X, u) \Box_B (Y, v) = (X \times Y, w) \) where for each \(x \in B \) \(w(x) \) is the topology
of the space \((X, u(x)) \otimes (Y, v(x)) \) and for each \(x \in a - B \), \(w(x) \) is the topology of \((X, u(x)) \cap (Y, v(x)) \) (\(\cap \) denotes the product in \(\mathcal{C} \)). Denote by \(G \) the internal hom-functor corresponding to \(\cap \) in \(\mathcal{C} \). Then the internal hom-functor \(H_B \) corresponding to \(\Box_B \) is given by \(H_B((X, u), (Y, v)) = (\mathcal{C}^a((X, u), (Y, v)), t) \) where for each \(x \in B \), \(t(x) \) is the topology of the subspace of \([(X, u(x)), (Y, v(x))]_c \) given by the subset \(\mathcal{C}^a((X, u), (Y, v)) \) and for each \(x \in a - B \), \(t(x) \) is given similarly using \(G((X, u(x)), (Y, v(x))) \). It is evident that for any \(B \subseteq a \), \((\Box_B, H_B) \) is a closed structure on \(\mathcal{C}^a \) and for different subsets of \(a \) we obtain different closed structures. Hence, the category \(\mathcal{C}^a \) has (at least) \(2^a \) closed structures. Now, let \((\Box, H) \) be a closed structure on \(\mathcal{C}^a \). Then there is \(B \subseteq a \) such that \((\Box, H) = (\Box_B, H_B) \). In fact, put \(\mathcal{C}^a_s = \{(X, u) \in \mathcal{C}^a: \text{for each } y \in a - \{x\}, u(y) \text{ is the discrete topology} \} \) for each \(x \in a \). The restriction \((\Box_x, H_x) \) of the closed structure \((\Box, H) \) to the subcategory \(\mathcal{C}^a_s \) is a closed structure on \(\mathcal{C}^a_s \). Since for each \(x \in a \), \(C^a_x \) is isomorphic with \(\mathcal{C}^a \) and \(\mathcal{C} \) has precisely two closed structures, \((\Box_x, H_x) \) is isomorphic either with \((\otimes, [-, -]_\mathcal{C}) \) or with \((\cap, G) \). Now, let \((X, u) \in \mathcal{C}^a, x \in a \). Denote by \((X, u^*) \) the \(\mathcal{C}^a_s \)-object for which \(u^*(x) = u(x) \). Clearly, the map \(e: \bigoplus \{(X, u^*): x \in a\} \rightarrow (X, u) \) such that \(e|_{(X, u^*)} = 1_X \) for each \(x \in a \) is a regular epimorphism in \(\mathcal{C}^a \). This implies that the tensor product \(\Box \) is uniquely determined by its values on all subcategories \(\mathcal{C}^a_s \). Put \(B = \{x \in a: (\Box_x, H_x) \text{ is isomorphic with } (\otimes, [-, -]_\mathcal{C}) \} \). Then, obviously, \((\Box, H) = (\Box_B, H_B) \). Thus, we obtain that the category \(\mathcal{C}^a \) has precisely \(2^a \) (different) closed structures.

Remark 3.8. It is obvious that in Example 3.7 the category \(\mathcal{C} \) can be replaced by an arbitrary topological category with at least two (different) closed structures (even for different elements of \(a \) we can take different topological categories). If we replace \(a \) by a proper class \(K \) and construct a category \(\mathcal{C}^K \) in the same way as \(\mathcal{C}^a \), we obtain a topological category which is not fibre small and has a collection of closed structures equivalent to the collection of all subclasses of the class \(K \).

References