A Noncollision Periodic Solution for
N-Body Problems

Shiqing Zhang

Department of Mathematics, Shanghai Jiao Tong University,
Shanghai 200030, People's Republic of China;
and
Department of Mathematics, Chongqing University,
Chongqing 400044, People's Republic of China

and

Qing Zhou

Department of Mathematics, East China Normal University,
Shanghai 200062, People's Republic of China

Submitted by F. E. Udwadia

Received April 11, 2000

Using variational minimization methods, we prove the existence of one
noncollision periodic solution for N-body type problems whose potentials are
pinched between two homogeneous potentials in \(R^k \) \((k \geq 2)\).

Key Words: N-body problems; noncollision periodic solution; variational methods.

1. INTRODUCTION AND MAIN RESULTS

The motion of N-body type problems \([1, 2, 9, 12, 19, 20]\) is related with
solving the following second order differential equations,

\[
m_i \ddot{q}_i = \frac{\partial U}{\partial q_i},
\]

where \(m_i > 0 \) is the mass of the \(i \)th body and \(q_i \in R^k \) \((k \geq 2)\) is the position
of the \(i \)th body, and the potential

\[
U(q) = U(q_1, \ldots, q_N) = \sum_{1 \leq i < j \leq N} U_{ij}(q_i - q_j),
\]

where \(U_{ij}(x) \in C^1(R^k \setminus \{0, R\}) \).

\(^1\)Partially supported by grants of MOST, NSFC, and QSSTF.
In the last 20 years, some researchers applied variational methods to study the periodic solutions of N-body type problems [3–8, 10, 13, 14, 18, 21, 22], but they didn’t get the existence of one noncollision periodic solution for any given masses of N bodies. Observing the symmetry and choosing a suitable domain of the Lagrangian action integral for (1.1), we prove that the minimizer of the Lagrangian action integral is one noncollision periodic solution of (1.1)–(1.2) assuming the potential $U(q)$ is pinched between two homogeneous potentials.

Let $O(k)(k \geq 2)$ denote the rotational group in \mathbb{R}^k and

\[A(\theta) = \begin{pmatrix} B(\theta) & 0 \\ 0 & -I_{k-2} \end{pmatrix} \in O(k) \quad \theta \in (0, 2\pi), \tag{1.3} \]

where I_{k-2} is a unit matrix with order $k - 2$ and

\[B(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}. \tag{1.4} \]

Let

\[H = W^{1,2}(\mathbb{R}/TZ, \mathbb{R}^k) \]

\[H_\# = \left\{ x \in H | x(t + \frac{T}{r}) = A\left(\frac{2\pi}{r}\right)x(t), r \geq 2 \text{ an integer} \right\} \tag{1.5} \]

\[E = \left\{ q = (q_1, \ldots, q_N) q_i - q_j \in H_\#, i, j = 1, \ldots, N \right\} \tag{1.6} \]

\[\tilde{E} = \left\{ q = (q_1, \ldots, q_N) \in E | \sum_{i=1}^{N} m_i q_i(t) \equiv 0 \right\} \tag{1.7} \]

\[\Lambda = \left\{ q = (q_1, \ldots, q_N) \in \tilde{E} | q_i(t) \neq q_j(t), \quad \forall t \in \mathbb{R}, 1 \leq i \neq j \leq N \right\} \tag{1.8} \]

\[f(q) = \frac{1}{2} \int_0^T \sum_{i=1}^{N} m_i |\dot{q}_i|^2 dt + \int_0^T U(q)dt. \tag{1.9} \]

Theorem 1.1. Assume $U(q)$ satisfies

\[(1) \]

\[\frac{a}{2} \sum_{1 \leq i < j \leq N} \frac{m_i m_j}{|q_i - q_j|^\alpha} \leq U(q) \leq \frac{b}{2} \sum_{1 \leq i < j \leq N} \frac{m_i m_j}{|q_i - q_j|^\alpha}, \quad \alpha > 0 \tag{1.10} \]
for some
\[A = A(2\pi/r) \in O(k), \]
where \(r \) will be defined later.

Then there is an integer \(r \) depending on \(\alpha \) and masses \(m_1, \ldots, m_N \) such that the minimizer of \(f(q) \) on \(\Lambda \) is one noncollision \(T \)-periodic solution for (1.1)–(1.2).

Theorem 1.2. If \(\alpha = 1, N = 3, m_1 = m_2 = m_3 = 1, \) and \(a = b = 1 \) then the minimizer of \(f(q) \) on \(\Lambda \) with \(r = 2 \) is one noncollision \(T \)-periodic solution.

Remark. The domain \(\Lambda \) for \(f(q) \) is different from the one defined by Bessi and Coti Zelati [4].

2. THE PROOF OF THEOREM 1.1

In order to prove Theorem 1.1, first we give some lemmas:

Lemma 2.1. The critical points of \(f(q) \) in \(\Lambda \) are noncollision \(T \)-periodic solutions of (1.1)–(1.2).

First, we prove that the critical point \(q \in \tilde{E} \) for \(f(q) \) restricted on \(\tilde{E} \) is also a critical point for \(f(q) \) on \(E \).

In fact, the condition that the center of masses is fixed at the origin is equivalent to
\[
g(q) = \left| \sum_{i=1}^{N} m_i q_i(t) \right|^2 = 0. \tag{2.1} \]

Hence by the Lagrangian multiplier rule, for any critical point \(q \) of \(f(q) \) on \(\tilde{E} \), we have
\[
f'(q) + \lambda g'(q) = 0; \tag{2.2} \]
that is, for any \(\varphi = (\varphi_1, \ldots, \varphi_N), \varphi_i \in W^{1,2}(\mathbb{R}/TZ, \mathbb{R}^k) \) we have
\[
\langle f'(q), \varphi \rangle + \lambda \langle g'(q), \varphi \rangle = 0 \tag{2.3} \]
\[
\langle f'(q), \varphi \rangle + 2\lambda \left| \sum_{i=1}^{N} m_i q_i \right| \sum_{i=1}^{N} (m_i \dot{q}_i, \varphi_i) = 0, \tag{2.4} \]
that is,
\[\langle f'(q), \varphi \rangle = 0. \]
(2.5)

Now assume \(q \in E \) is a critical point of \(f(q) \) on \(E \). Then
\[\langle f'(q), y \rangle = 0, \quad \forall y \in E. \]
(2.6)

Hence we have \(p = (p_1, \ldots, p_N) \in E^\perp \), where
\[p_i \equiv \ddot{q}_i - \frac{\partial U}{\partial q_i}, \quad i = 1, \ldots, N. \]
(2.7)

On the other hand, we notice that
\[p_i - p_j = \ddot{q}_i - \ddot{q}_j - \frac{\partial U}{\partial q_i} + \frac{\partial U}{\partial q_j} \]
\[= (q_i - q_j)'' - \sum_{j \neq i, j=1}^{N} \frac{aam_i m_j (q_j - q_i)}{|q_i - q_j|^{n+2}} \]
\[+ \sum_{j \neq i, i=1}^{N} \frac{aam_i m_j (q_i - q_j)}{|q_j - q_i|^{n+2}}. \]
(2.8)

Hence \(p_i - p_j \in H_\#, p \in E \). Hence \(p \in E^\perp \cap E = \{0\} \); that is, \(q \) is a solution of (1.1).

Lemma 2.2. The functional \(f \) is coercive on \(\Lambda \); that is, for any \(\{q_n\} \subset \Lambda \), \(\|q_n\|_H \rightarrow +\infty, f(q_n) \rightarrow +\infty \).

Proof. For any \(q = (q_1, \ldots, q_N) \in \Lambda \), we have
\[(q_i - q_j) \left(t + \frac{T}{r} \right) = q_i \left(t + \frac{T}{r} \right) - q_j \left(t + \frac{T}{r} \right) \]
\[= A \left(\frac{2\pi}{r} \right) (q_i(t) - q_j(t)) \]
\[= A \left(\frac{2\pi}{r} \right) (q_i - q_j)(t) \]
(2.9)

\[\left| (q_i - q_j) \left(t + \frac{T}{l} \right) - (q_i - q_j)(t) \right|^2 \]
\[= \left| A \left(\frac{2\pi}{r} \right) (q_i - q_j)(t) - (q_i - q_j)(t) \right|^2 \]
\[= \left| 2 \sin \frac{\pi}{r} \right|^2 \left| (q_i - q_j)(t) \right|^2. \]
(2.10)
On the other hand,
\[
\left| (q_i - q_j) \left(t + \frac{T}{r} \right) - (q_i - q_j)(t) \right|^2 \\
= \left| \int_t^{t+\frac{T}{r}} (\dot{q}_i - \dot{q}_j) dt \right|^2 \\
\leq \frac{T}{r} \left(\int_t^{t+\frac{T}{r}} |(\dot{q}_i - \dot{q}_j)(t)|^2 dt \right) \\
= \frac{T}{r^2} \int_0^T |(\dot{q}_i - \dot{q}_j)(t)|^2 dt.
\]
(2.11)

Hence we have
\[
\int_0^T |(\dot{q}_i - \dot{q}_j)(t)|^2 dt \geq \frac{r^2}{T} \left| 2 \sin \frac{\pi}{r} \right|^2 |(q_i - q_j)(t)|^2 \\
\int_0^T \sum_{1 \leq i < j \leq N} m_i m_j |\dot{q}_i - \dot{q}_j|^2 dt \\
\geq \frac{r^2}{T} \left| 2 \sin \frac{\pi}{r} \right|^2 \sum_{1 \leq i < j \leq N} m_i m_j |q_i - q_j|^2 \\
M \int_0^T \sum_{i=1}^N m_i |\dot{q}_i|^2 dt \geq \frac{r^2}{T} \left| 2 \sin \frac{\pi}{r} \right|^2 M \sum_{i=1}^N m_i |q_i|^2,
\]
(2.13)
(2.14)

where
\[
M = \sum_{i=1}^N m_i.
\]
(2.15)

Hence the standard norm for \(H \) is equivalent to
\[
\| \dot{q} \|_2 = \left(\int_0^1 \sum_{i=1}^N m_i |\dot{q}_i|^2 dt \right)^{1/2}.
\]
(2.16)

Hence the definition of \(f(q) \) implies \(f \) is coercive.

Lemma 2.3. The system (1.1)–(1.2) has a weak \(T \)-periodic solution \(q = (q_1, \ldots, q_N) \in \mathcal{X} \) in the sense of Bari and Rabinowitz [3]:

(1°) \(q_i \in W^{1,2}(\mathbb{R}/T\mathbb{Z}, \mathbb{R}^k) \).

(2°) The collision set \(C = \{ t \in [0, T] | q_i(t) = q_j(t) \text{ for some } 1 \leq i \neq j \leq N \} \) has Lebesgue measure 0.
(3') q_i is C^2 on $[0, T] \cap C$ and satisfies (1.1) and energy conservation,

$$\frac{1}{2} \sum_{i=1}^{N} m_i |\dot{q}_i|^2 - U(q_1, \ldots, q_N) = h. \quad (2.17)$$

Proof. It’s easy to prove $f(q)$ has positive lower bound and is weakly lower semi-continuous, so Lemma 2.2 implies Lemma 2.3.

In order to get a good lower bound estimate of $f(q)$ on the collision solutions, we need another lemma:

Lemma 2.4. Let index sets A and B satisfy $A \cap B = \emptyset$ and $A \cup B = \{1, 2, \ldots, N\}$. Then

$$\sum_{(i,j) \in A \times B} \frac{m_i m_j}{|q_i - q_j|^\alpha} \geq \left(\sum_{(i,j) \in (A \times B)} m_i m_j \right)^{1+\frac{\alpha}{2}} \left(\sum_{(i,j) \in (A \times B)} m_i m_j |q_i - q_j|^2 \right)^{-\frac{\alpha}{2}}. \quad (2.18)$$

For the proof of Lemma 2.4 refer to Long and Zhang [13]. In order to facilitate the reader, we repeat it. By Hölder’s inequality, we have

$$\left(\sum_{i \in A, j \in B} m_i m_j \right)^2 \leq \left(\sum_{i \in A, j \in B} \frac{m_i m_j}{|q_i - q_j|^\alpha} \right) \left(\sum_{i \in A, j \in B} m_i m_j |q_i - q_j|^2 \right)^{\frac{\alpha}{2}}. \quad (2.19)$$

By Hölder’s inequality, we have

$$\sum_{i \in A, j \in B} m_i m_j |q_i - q_j|^\alpha \leq \left(\sum_{i \in A, j \in B} m_i m_j \right)^{\frac{2\alpha}{2-\alpha}} \left(\sum_{i \in A, j \in B} m_i m_j |q_i - q_j|^2 \right)^{\frac{-\alpha}{2-\alpha}}. \quad (2.20)$$

By (2.19) and (2.20) we get (2.18).

Now we estimate the lower bound of $f(q)$ on the collision solutions. Let S_N denote the group of all the permutations of $\{1, \ldots, N\}$. For $l = 2, \ldots, N$, we set

$$\partial \Lambda_l = \{ q \in E \mid \exists s \in S_N, \exists \bar{t} \in [0, T] \text{ s.t. } q_{s(i)}(\bar{t}) = \cdots = q_{s(i)}(\bar{t}) \}. \quad (2.21)$$

First, we assume $l = 2$, s is the identity, and $\bar{t} = 0$. Then by the Lagrangian identity and the symmetry property $(q_i - q_j)(t + \frac{T}{2}) = A(\frac{2\pi}{T})(q_i - q_j)(t)$ we have

$$f(q) \geq g_1(q) + g_2(q) + g_3(q). \quad (2.22)$$
where

\[g_1(q) = r \left[\frac{1}{2M} \sum_{1 \leq i \neq j \leq 2} m_i m_j \right. \]
\[\left. \times \int_0^{T/r} \left(\frac{1}{2} |q_i - \dot{q}_j|^2 + M a \frac{1}{|q_i - q_j|^\alpha} \right) dt \right] \quad (2.23) \]

\[g_2(q) = r \left[\frac{1}{2M} \sum_{3 \leq i \neq j \leq N} m_i m_j \right. \]
\[\left. \times \int_0^{T/r} \left(\frac{1}{2} |q_i - \dot{q}_j|^2 + M a \frac{1}{|q_i - q_j|^\alpha} \right) dt \right] \quad (2.24) \]

\[g_3(q) = r \left[\frac{2}{2M} \sum_{1 \leq i \leq 2, 3 \leq j \leq N} m_i m_j \right. \]
\[\left. \times \int_0^{T/r} \left(\frac{1}{2} |q_i - \dot{q}_j|^2 + M a \frac{1}{|q_i - q_j|^\alpha} \right) dt \right]. \quad (2.25) \]

Using the estimates of the Lagrangian action integral on collision solutions of two body [7] problems we have

Lemma 2.5.

\[g_1(q) \geq C_1 r^{2\alpha} T^{\frac{1}{\alpha}} , \quad (2.26) \]

where

\[C_1 = AM_2^{\frac{2}{\alpha}} \sum_{1 \leq i \neq j \leq 2} m_i m_j \quad (2.27) \]

\[M_2 = \sum_{i=1}^2 m_i \quad (2.28) \]

\[A = \frac{1}{2} \left(2 + \frac{1}{\alpha} \right) (\alpha a)^{2/(\alpha + 2)} (2\pi)^{\frac{2}{\alpha}} . \quad (2.29) \]

Let

\[B_2 = \min_{j \in S_N} \left(\sum_{1 \leq i \neq j \leq 2} \frac{m_i m_j}{\alpha/(2 + \alpha)} \right) \quad (2.30) \]

\[C_1 = A B_2 . \quad (2.31) \]

Then

\[\inf \{g_1(q), q \in \partial \Lambda_2 \} \geq \tilde{C}_1 r^{2\alpha} T^{\frac{1}{\alpha}} . \quad (2.32) \]
By the arguments of Degiovanni and Giannoni [7], we can get the lower bound estimate on $g_2(q)$.

$$g_2(q) \geq C_2 T^{\frac{2}{3N}},$$

where

$$C_2 = AM_{N-2}^\frac{2}{3N} \sum_{i=3}^{N} m_i m_j$$

(2.34)

$$M_{N-2} = \sum_{i=3}^{N} m_i.$$

(2.35)

Let

$$B_{N-2} = \min_{s \in SN} \sum_{1 \leq i \leq 2}^{N} \sum_{3 \leq j \leq N} \sum_{m_{(i, j)}} m_i m_j |q_i - q_j|^2$$

(2.36)

$$\tilde{C}_2 = AB_{N-2}.$$

(2.37)

Then

$$\inf \{ g_2(q), q \in \partial \Lambda_2 \} \geq \tilde{C}_2 T^{\frac{2}{3N}}.$$

(2.38)

We use inequality (2.18) of Lemma 2.4, Sundman's inequality [19], and the arguments of Degiovanni and Giannoni [7] to estimate the lower bound for $g_3(q)$:

$$g_3(q) \geq \frac{1}{2M} \int_0^T \sum_{1 \leq i \leq 2, 3 \leq j \leq N} m_i m_j |\dot{q}_i - \dot{q}_j|^2 dt + a \left(\sum_{1 \leq i \leq 2, 3 \leq j \leq N} m_i m_j \right)^{1+\frac{3}{2}}$$

$$\times \left(\sum_{1 \leq i \leq 2, 3 \leq j \leq N} m_i m_j |q_i - q_j|^2 \right)^{-\alpha/2} dt$$

(2.39)

$$\geq \frac{1}{2M} \int_0^T \left[\left(\sum_{1 \leq i \leq 2, 3 \leq j \leq N} m_i m_j |q_i - q_j|^2 \right)^{1/2} \right]^2 dt$$

$$+ a \left(\sum_{1 \leq i \leq 2, 3 \leq j \leq N} m_i m_j \right)^{1+\frac{3}{2}}$$

$$\times \int_0^T \left(\sum_{1 \leq i \leq 2, 3 \leq j \leq N} m_i m_j |q_i - q_j|^2 \right)^{-\alpha/2} dt$$

(2.40)

$$\geq \inf \left\{ \frac{1}{2M} \int_0^T |\dot{r}|^2 dt + a \left(\sum_{1 \leq i \leq 2, 3 \leq j \leq N} m_i m_j \right)^{1+\frac{3}{2}} \right.$$

$$\times \left. \int_0^T r^{-\alpha} dr, r \in W^{1,2}([0, T], R^+) \right\}$$

(2.41)
\[T \inf \left\{ \frac{1}{2M} \left(\frac{2\pi}{T} \right)^2 R^2 + a \left(\sum_{1 \leq i \leq 2, 3 \leq j \leq N} m_i m_j \right)^{1+\gamma} \times \frac{1}{R^\gamma}, R > 0 \right\} \] (2.42)

\[= \left(\frac{\alpha}{2} \right)^{\frac{1}{1+\gamma}} \left(1 + \frac{2}{\alpha} \right) \frac{1}{2M} \left(\frac{2\pi}{T} \right)^{2\gamma} \left(\left(a \sum_{1 \leq i \leq 2, 3 \leq j \leq N} m_i m_j \right)^{1+\gamma} \right)^{\frac{1}{1+\gamma}} \] (2.43)

Let

\[B = \frac{\min_{\delta \in \Sigma} \sum_{1 \leq i \neq j \leq N} m_{\delta(i)m_{\delta(j)}}}{M^{\alpha/(\alpha+2)}} \] (2.44)

\[\tilde{C}_3 = 2AB. \] (2.45)

Then

\[\inf\{g_\delta(q), q \in \partial \Lambda_2\} \geq \tilde{C}_3 T^{\frac{1+\gamma}{2}} \] (2.46)

\[\inf\{f(q), q \in \partial \Lambda_2\} \geq (\tilde{C}_1 r^{\frac{1+\gamma}{2}} + \tilde{C}_2 + \tilde{C}_3) T^{\frac{1+\gamma}{2}}. \] (2.47)

It’s easy to see that for \(l > 2 \) we also have

\[\inf\{f(q), q \in \partial \Lambda_l\} \geq (\tilde{C}_1 r^{\frac{1+\gamma}{2}} + \tilde{C}_2 + \tilde{C}_3) T^{\frac{1+\gamma}{2}}. \] (2.48)

Remark. The corresponding lower bound estimate in Bessi and Coti Zelati [4] is not correct since the symmetry breaks down when they move the binary collision to the origin and they work on their domain.

Lemma 2.6 [6]. Let

\[\rho = \sum_{1 \leq i \neq j \leq N} \frac{m_i m_j}{\sin(\pi(i-j))/N}^{\alpha} \] (2.49)

\[\sigma = \sum_{1 \leq i \neq j \leq N} m_i m_j \left| \sin \frac{\pi(i-j)}{N} \right|^2. \] (2.50)
Then the minimizing value for Lagrangian action $f(q)$ has upper bound estimate

$$f(q) \leq \frac{1}{2} \left(\frac{1}{2} + \frac{1}{\alpha} \right) (b \alpha \frac{\pi}{2}) \rho \sigma M^{-\alpha/(\alpha+2)} T \frac{\pi}{3} \equiv \widetilde{C} T \frac{\pi}{3}.\quad (2.51)$$

Now we can prove Theorem 1.1.
Assume the minimizer q for $f(q)$ on $\widetilde{\Lambda}$ has a collision time $i \in [0, T]$. Then by Lemma 2.5, we can get a lower bound estimate $(\widetilde{C}_1 r^{2a/(2+a)} + \widetilde{C}_2 + \widetilde{C}_3) T^{(2-a)/(2+a)}$ for $f(q)$, which depends on the integer $r \geq 2$. By Lemma 2.6 we can choose r large enough so that

$$\widetilde{C}_1 r^{2a} + \widetilde{C}_2 + \widetilde{C}_3 > \widetilde{C}.\quad (2.52)$$

This is a contradiction.

Now we prove Theorem 1.2.
If $\alpha = 1, m_1 = m_2 = m_3 = 1, a = 1$, and $r = 2$ then we have

$$A = \frac{1}{2} (2\pi)^{2/3}$$
$$B_1 = 2^{2/3}$$
$$\widetilde{C}_1 = 3 \cdot 2^{-4/3} (2\pi)^{2/3}, \quad \widetilde{C}_1 r^{2a} = 3 \cdot 2^{-2/3} (2\pi)^{2/3}$$
$$\widetilde{C}_2 = 0$$
$$B = 2 \cdot 3^{1/3}$$
$$\widetilde{C}_3 = 2AB = 3^{2/3} (2\pi)^{2/3}$$
$$\widetilde{C}_1 r^{2a} + \widetilde{C}_2 + \widetilde{C}_3 = (3 \cdot 2^{-2/3} + 3^{2/3}) (2\pi)^{2/3}.$$

On the other hand, we compute

$$\rho = \sum_{1 \leq i \neq j \leq 3} \frac{1}{|\sin(\pi(i - j))/3|} = \frac{2}{\sqrt{3}} 6 = 4 \cdot 3^{1/2}$$
$$\sigma = \sum_{1 \leq i \neq j \leq 3} \left| \frac{\pi(i - j)}{3} \right|^2 = 6 \left| \frac{\pi}{3} \right|^2 = \frac{9}{2}$$
$$\widetilde{C} = \frac{13}{22} (2\pi)^{2/3} (4 \cdot 3^{1/2})^{2/3} \left(\frac{9}{2} \right)^{1/3} \cdot 3^{-1/3}$$
$$= \frac{1}{2} (2\pi)^{2/3} (3 \cdot 2^{-2/3} + 3^{2/3}) (2\pi)^{2/3}$$
$$= \widetilde{C}_1 r^{2a} + \widetilde{C}_2 + \widetilde{C}_3.$$
REFERENCES