Linear Groups Containing an Involution with Two Eigenvalues -1

W. C. Hurfman*
Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755

AND
D. B. Wales ${ }^{\dagger}$

Department of Mathematics, California Institute of Technology, Pasadena, California 91125

Communicated by Walter Feit
Received May 9, 1975

1. Introduction

The main theorem of this paper describes quasiprimitive linear groups \boldsymbol{G} which contain a matrix with two eigenvalues -1 and the remaining eigenvalues 1 . This is a special case of a linear group containing a unimodular matrix with a trivial eigenspace of codimension 2. If a linear group contains a unimodular matrix with trivial eigenspace of codimension 2 other than this, the group is known by [1], [12], or [8], as is described in [8]. In a later paper [9], we treat linear groups containing a matrix with any eigenspace of codimension 2 . Of course, there we refer to this work. Linear groups containing a matrix with eigenspace of codimension 1 were determined in [14] in 1914.

We prove the following theorem.
Main Theorem. Suppose G is a finite quasiprimitive linear group of degree $n \geqslant 8$ and X is the corresponding representation. Suppose further that G contains an involution τ for which $X(\tau)$ has trace $n-4$ (i.e., $X(\tau)$ has exactly 2 eigenvalues -1 and exactly $n-2$ eigenvalues 1). Then G mod the maximal solvable normal subgroup is known and G satisfies one of the following two conditions:

[^0](1) There is an element γ of G for which $X(\gamma)$ has one eigenvalue ω, one eigenvalue $\bar{\omega}$, and $n-2$ eigenvalues 1 . The group is known by [8]. Here $\omega=e^{2 \pi i / 3}$.
(2) The product of any two elements τ_{1}, τ_{2} with $X\left(\tau_{1}\right)$ and $X\left(\tau_{2}\right)$ similar to $X(\tau)$ has order $2,3,4$, or 5 . If $\tau_{1} \tau_{2}$ has order 4 , either $\left(\tau_{1} \tau_{2}\right)^{2}$ is in $O_{2}(G)$ or $X\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ is similar to $X(\tau)$. Here $G \bmod$ the maximal solvable subgroup is known by [15]. Also $O_{2}(G)$ is the maximal normal 2-group of G.

We note that in G the group generated by all conjugates in G of τ is a normal subgroup H. Either $X \mid H$ is irreducible or as in [9, Theorem 3], $X \mid H=2 \cdot X_{1}$ where X_{1} has degree $n / 2$ and $X_{1}(\tau)$ is a reflection. For this latter case, as in [9, Theorem 3], we use [10] to show $G / Z(G) \cong K \times A$ where K is generated by reflections and so is listed in [14], and $A \simeq A_{4}, S_{4}$, or A_{5}. Also $X(G)$ is a subgroup of $Y \otimes Z$ where Y is a projective representation of K of degree $n_{l} / 2$, and Z is a projective representation of A of degree 2.

The proof is organized as follows. We assume G does not satisfy either condition 1 or 2 and so has elements τ_{1} and τ_{2} for which $X\left(\tau_{1}\right)$ and $X\left(\tau_{2}\right)$ are similar to $X(\tau)$. Also $\tau_{1} \tau_{2}$ has order $2 m$ where $m \geqslant 2$ and if $m=2, X\left(\tau_{1} \tau_{2}\right)^{2}$ is not similar to $X(\tau)$ and is not in $O_{2}(G)$ where $O_{2}(G)$ is the largest normal 2-group of G. By considering various restrictions to subgroups containing τ_{1} and τ_{2} we show in Section 3 that m is 2 . In Section 4 we show that the product of any two distinct elements of $X(G)$ similar to $X(\tau)$ is of order $2,3,4$, or 5 . In Section 5 we find the possible subgroups generated by τ_{1}, τ_{2}, and another involution τ_{3} for which $X\left(\tau_{3}\right)$ is similar to $X(\tau) ; \tau_{1} \tau_{2}$ has order 4 , but $X\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ is not similar to $X(\tau)$. In Section 6 we show that this last case is impossible. This last section involves generators and relations for appropriate subgroups as well as actual matrices for appropriate subgroups.

The notation is as follows. The group G is a quasiprimitive linear group of degree n which does not satisfy the Main Theorem. We let X be the faithful representation of G acting on the n-dimensional vector space V. There is an element τ in G such that $X(\tau)$ has two eigenvalues -1 , and $n-2$ eigenvalues 1 . Denote by D the set of involutions σ of G such that $X(\sigma)$ is similar to $X(\tau)$. An element γ of G is called a special element if $X(\gamma)$ has eigenvalues $\epsilon, \bar{\epsilon}$, and $n-2$ eigenvalues 1 . If ϵ is a primitive r th root of unity, γ is called a special r-element. Note that elements of D are special 2-elements, Elements arising in case 1 of the Main Theorem are special 3-elements. The group G contains no special 3-elements as we assume condition 1 of the Main Theorem does not hold. Also G contains no special r-elements for $r \geqslant 4$ by $[1,8,12]$. A representation X of a group G is called quasiprimitive if X is irreducible, and for every $H \triangleleft G$, $X \mid H$ breaks into similar constituents. By [4, (9.11)] if X is not quasiprimitive it is induced from a proper subgroup. The term Blichfeldt refers to [1, p. 96]. If Y is a monomial representation of a group H we assume the matrices are in monomial form and speak of the associated permutation of the elements of H. This permutation naturally is the one obtained by replacing the unique nonzero
element in each row and column by 1 . For typographical convenience we let $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ denote the $n \times n$ diagonal matrix whose (i, i) entry is d_{i}.

The remaining notation is standard as in [6, pp. 4-6].

2. Properties of the Small Dimensional Quasiprimitive Groups

In this section we gather together some properties of the small-dimensional primitive linear groups. These groups are known to dimension 7 by $[1,3,11,16$, 17]. They are listed in [5, Sect. 8.5]. Since the properties we need can be found by inspection, we just sketch some of the details.

Lemma 2.1. Suppose H is a subgroup of G generated by special involutions and $X \mid H=Y \oplus \xi \oplus(n-r-1) 1_{H}, Y$ is primitive of degree r, ξ is linear, and 1_{H} is the trivial character of H. Assume r is 5,6 , or 7 . Then ξ is trivial and the product of any two special 2-elements in H has order $1,2,3,4,5$, or 6 . If it is 4 , the square is again special. If it is $6, r=5$, and $H \cong S_{5}$.

Proof. Note first that ξ is trivial; otherwise the matrix $Y(\tau), \tau$ in D, has one eigenvalue -1 , the rest are eigenvalue 1. These groups are described in [14] and all have a special 3-element in the commutator. This would be a special 3-element in G. As H is generated by special 2-elements, $Y(H)$ is unimodular and so H is listed in [5, Sect. 8.5]. We refer to this notation.

If $r=7$ we note the groups $A_{8}, S_{8}, S p_{6}(2)$ all have special 3-elements. The involutions in $I_{7}, P S L_{2}(13), P S L_{2}(8)$ are not special. In $G_{2}(2)$ (case VI) there are two classes of involutions. Those outside $U_{3}(3)$ are not special; those inside satisfy condition 2 of the main theorem. The same holds for $P S L_{2}(7)$ and $P G L_{2}$ (7).

If $r=6$ the groups II, XI, XII have no special 2-elements. The groups of I could not be generated by special 2-elements as such elements would be $Y(\tau)=A(a) \otimes B(b)$ where A, B have degree 3,2 , respectively, and $B(b)$ must be a scalar. The groups VI, XIII have special 3-elements. The groups V, VIII, XV, XVII have centers of order 6 which contradict Blichfeldt's theorem. Also, XVI has an element of order 6 with three eigenvalues $-\omega$, and three $-\bar{\omega}$; this contradicts Blichfeldt. The group $U_{3}(3)$ or its extension, XIV, is handled as in the case when $r=7$, as are the groups in IX. For case $\mathrm{X}, S L_{2}(7)$ has only onc involution which is not special. In $C L_{2}(7)$ there is one class of involutions not in $S L_{2}(7)$ represented by the matrix $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$. Each normalizes an element of order 7 and so is not special. The cases remaining are III, IV, VII.

To handle case III note that an element of order 5 is' conjugate to all its powers so that the character is 1 . The subgroup of index 2 must be \tilde{A}_{5} as the center cannot split by the quasiprimitivity. Note that A_{5} has no irreducible representation of degree 6 and that a sum of two identical ones of degree 3 has
the wrong trace. As $\tilde{A}_{5} \cong S L_{2}(5)$, there are no special involutions in this subgroup. The special involutions, then, all correspond in S_{5} to 2 -cycles. The product of two in S_{5} has order 2 or 3 and so in \tilde{S}_{5} the product can only be $2,4,3$, or 6 . If it is 4 or 6 , its square or cube would be central with six eigenvalues -1 . This is impossible for a product of special involutions.

Cases IV and VII remain. From inspection it can be seen that the involutions in \tilde{A}_{6} satisfy condition 2 of the theorem and in the extension of \tilde{A}_{6} in case IV there are no special involutions outside \tilde{A}_{6} which leaves only case VII to be considered. Note that the orders of products of special elements have the values 1, 2, 3, 4, 5, 6.

To handle case VII, suppose Y acts on the irreducible 6-dimensional space U. Let τ be an element of D such that $X(\tau)$ moves U. Now $X \mid\langle H, \tau\rangle=Y_{1} \oplus$ $\left.(n-8)\right|_{\langle H, \tau\rangle}$. Suppose Y_{1} is irreducible and primitive. By [13], $7^{2} \nmid|\langle H, \tau\rangle|$ and so $|\langle H, \tau\rangle|$ has 7 to the first power only. By Brauer, an element with six eigenvalues ω and two eigenvalues 1 cannot centralize an element of order 7 with trace 1 [2, II]. If Y_{1} permutes 2-dimensional subspaces, an element of order 7 is block diagonal and $Y_{1} \mid H$ cannot have an irreducible 6-dimensional constituent. If Y_{1} is monomial, an element of order 7 must be a 7 -cycle and cannot centralize an element with exactly six eigenvalues ω. This means $Y_{1}=$ $Y_{2} \oplus \xi$ where Y_{2} is irreducible of degree 7. If Y_{2} is primitive we contradict the above proof when $r=7$. If Y_{2} is monomial we get a contradiction as above.

To handle the case $r=5$ note that A_{6}, S_{6}, and $O_{5}(3)$ have a special 3element and the involutions in A_{5} and I_{5} satisfy condition 2. For $P S L_{2}(11)$ we must adjoin to H another special involution which moves the invariant subspace corresponding to Y. This group has a 6 - or a 7 -dimensionalirreducible constituent containing an element of order 11. By examining the groups in [5, Sect. 8.5] one sees that this is impossible. This leaves S_{5}. By consulting the character table of S_{5} one sees that there is a unique irreducible 5-dimensional representation in which involutions in $S_{5}-A_{5}$ are special 2-elements. The product of two involutions, one in A_{5}, the other in $S_{5}-A_{5}$, has order 6.

$$
\text { 3. }\left|\tau_{1} \tau_{2}\right|=2 k, k \geqslant 3
$$

In this section we assume that there are two special involutions whose product has order $2 k, k \geqslant 3$, and we reach a contradiction. We prove the following theorem.

Theorem 3.1. If τ_{1} and τ_{2} are distinct special involutions in $G,\left|\tau_{1} \tau_{2}\right|=2$, 4, or odd.

Before proving this theorem we require some preliminary notation and lemmas. The lemmas describe in certain situations how X, restricted to certain subgroups containing τ_{1} and τ_{2}, breaks into irreducible constituents.

Suppose τ_{1} and τ_{2} are special involutions. As $\left\langle\tau_{1}, \tau_{2}\right\rangle$ is dihedral and each $X\left(\tau_{i}\right)$ has an $n-2$-dimensional fixed space, $X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle=X_{1} \oplus X_{2} \oplus$ $(n-4) 1_{\left\langle\tau_{1}, \tau_{2}\right\rangle}$ where each X_{i} has degree 2 and may be reducible. If τ_{1} and τ_{2} do not commute, either X_{1} or X_{2} is irreducible. If X_{1} is irreducible and X_{2} reducible, $X_{2}\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)=I$. Now $\left(\tau_{1} \tau_{2}\right)^{2}$ is a special element. As G has only special r-elements for $r=2, X_{1}\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)=-I$, and so $\tau_{1} \tau_{2}$ has order 4. In general, if τ_{1} and τ_{2} do not commute, let K_{i} be the kernel of X_{i} and suppose τ is an element in K_{i}. As $X_{i}(\tau)=I, \tau$ is a special element and so τ has order 1 or 2 and $X_{j}(\tau)= \pm I$. This means $\left|K_{i}\right| \leqslant 2$ and K_{i} is in the center of $\left\langle\tau_{1}, \tau_{2}\right\rangle$. Assuming τ_{1} and τ_{2} do not commute, the center of $\left\langle\tau_{1}, \tau_{2}\right\rangle$ is cyclic and so at most one K_{i} is nontrivial. If X_{1} and X_{2} are both irreducible, one must be faithful; the other could have a kernel of order 1 or 2.

We say that two special involutions are bad of order m if $\left|\tau_{1} \tau_{2}\right|=m$ where $m=2 k, k \geqslant 3$. To prove Theorem 3.1 we must show there are no bad pairs of special involutions. Suppose then that τ_{1}, τ_{2} are a bad pair. Now $X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle=$ $X_{1} \oplus X_{2} \oplus(n-4) 1_{\left\langle\tau_{1}, \tau_{2}\right\rangle}$ where X_{i} are both irreducible. Assume X_{1} is faithful.

By examining the dihedral group $D_{4 k}$, we can if necessary replace τ_{1} and τ_{2} by special elements for which the order of $\tau_{1} \tau_{2}$ is 8 or $2 p$ with p an odd prime. We assume then that $k=4$ or p. Let X_{1} act on U_{1} and X_{2} act on U_{2}. We let $X_{i}\left(\tau_{1} \tau_{2}\right)$ have eigenvalues α_{i} and $\bar{\alpha}_{i}$. Note that α_{1} is a primitive $2 k$ th root of 1 , $\alpha_{1} \neq \alpha_{2}$ or $\bar{\alpha}_{2}$ or $X\left(\tau_{1} \tau_{2}\right)$ would contradict Blichfeldt and so U_{1} and U_{2} are unique. In a series of lemmas we show that some subgroups of G containing $\left\langle\tau_{1}, \tau_{2}\right\rangle$ are restricted.

Lemma 3.2. Let H be a subgroup of G containing $\left\langle\tau_{1}, \tau_{2}\right\rangle$ and generated by special involutions. Suppose $X \mid H=Y \oplus \xi \oplus(n-7) 1_{H}$ where Y is irreducible of degree 6 . Then one of the following holds.
(i) Y is monomial

$$
Y\left(\tau_{1}\right)=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad Y\left(\tau_{2}\right)=\left[\begin{array}{llllll}
0 & \alpha_{1} & 0 & 0 & 0 & 0 \\
\bar{\alpha}_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \alpha_{2} & 0 & 0 \\
0 & 0 & \bar{\alpha}_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

or

$$
Y\left(\tau_{2}\right)=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & d & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & d & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

where $d=\left(\alpha_{1}\right)^{2}$ and the permutation group contains no 3-cycles. The second form of $Y\left(\tau_{2}\right)$ occurs only if $k \leqslant 5$.
(ii) Y is not monomial

$$
Y\left(\tau_{1}\right)=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad Y\left(\tau_{2}\right)=\left[\begin{array}{llllll}
0 & 0 & \alpha_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \alpha_{2} & 0 & 0 \\
\bar{\alpha}_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & \bar{\alpha}_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Y permutes 2-dimensional subspaces, $\left|\tau_{1} \tau_{2}\right|=8$, and X_{1}, X_{2} are faithful on both U_{1} and U_{2}.

Proof. We first remark that except for the treatment of the nonmonomial case this proof also works when $\left|\tau_{1} \tau_{2}\right|=p, 9$, or 15 with $p \geqslant 7$. This will be dealt with in Lemma 4.2.

Note that if Y is primitive, Lemma 2.1 gives a contradiction. Otherwise, $Y(H)$ permutes 1 -, 2-, or 3 -dimensional subspaces. An involution interchanging two 3-dimensional subspaces has trace 0 and cannot be special. As H is generated by special involutions, $Y(H)$ cannot interchange two 3-dimensional subspaces. Suppose first that $Y(I I)$ is not monomial and so permutes 2-dimensional subspaces but not 1-dimensional subspaces. Let these spaces be V_{1}, V_{2}, and V_{3}. As H is generated by special involutions, there must be special involutions μ_{1} and μ_{2} such that $Y\left(\mu_{1}\right)$ interchanges V_{1} and V_{2} and $Y\left(\mu_{2}\right)$ interchanges V_{2} and V_{3}. By choosing an appropriate basis we can assume $Y\left(\mu_{1}\right)$ is the permutation matrix corresponding to $(1,3)(2,4)$ and $Y\left(\mu_{2}\right)$ is the permutation matrix corresponding to $(3,5)(4,6)$. Then $\mu_{3}=\left(\mu_{1}\right)^{\mu_{2}}$ will correspond to $(1,5)(2,6)$.

We examine the possible permutation actions of $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)$ on V_{1}, V_{2}, V_{3}. Suppose all are fixed. By reordering V_{1}, V_{2}, V_{3} and rechoosing the basis we can assume $Y\left(\mu_{i}\right)$, where $i=1,2,3$ are unchanged and

$$
Y\left(\tau_{1}\right)=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad Y\left(\tau_{2}\right)=\left[\begin{array}{cccccc}
0 & \alpha_{1} & 0 & 0 & 0 & 0 \\
\bar{\alpha}_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \alpha_{2} & 0 & 0 \\
0 & 0 & \bar{\alpha}_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Now $Y\left[\left(\tau_{1} \tau_{2}\right), \mu_{3}\right]=\operatorname{diag}\left(\alpha_{1}, \bar{\alpha}_{1}, 1,1, \bar{\alpha}_{1}, \alpha_{1}\right)$ contradicts Blichfeldt as α_{1} is a primitive $2 k$ th root of 1 . Suppose then $Y\left(\tau_{i}\right) i=1$ or 2 fixes all three V_{j}. By reordering and changing the basis we can assume

$$
Y\left(\tau_{1}\right)=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad Y\left(\tau_{2}\right)=\left[\begin{array}{lll}
A & 0 & 0 \\
0 & B & 0 \\
0 & 0 & I_{2}
\end{array}\right]
$$

where A, B are 2×2 matrices of order 2 and $A=\operatorname{diag}(\pm 1, \pm 1)$. If $A= \pm I_{2}$, $Y\left(\tau_{1} \tau_{2}\right)$ has order 4 , a contradiction, and we can assume $A=\operatorname{diag}(1,-1)$. Note $B \neq I_{2}$ as $\xi \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ is trivial. Replace μ_{1} by τ_{1} and change the basis of V_{3} so that $Y\left(\mu_{2}\right), Y\left(\mu_{3}\right)$ are the permutation matrices as above and we have

$$
Y\left(\tau_{2}^{u_{3}}\right)=\left[\begin{array}{ccc}
I_{2} & 0 & 0 \\
0 & B & 0 \\
0 & 0 & A
\end{array}\right], \quad Y\left(\tau_{2}^{L_{2}}\right)=\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & B
\end{array}\right],
$$

so

$$
Y\left(\tau_{2} \tau_{2}^{\mu_{3}} \tau_{2}^{\mu_{2}}\right)=\left[\begin{array}{cc}
I_{4} & 0 \\
0 & A B
\end{array}\right]
$$

This is a special r-element where $r \geqslant 3$ and hence impossible unless $A B= \pm I_{2}$. In each case B is determined and $\tau_{1} \tau_{2}$ has order 2 or 4 , a contradiction.

We have shown that both $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)$ interchange two of V_{1}, V_{2}, V_{3}. If they interchange different ones the product $\tau_{1} \tau_{2}$ has order 3 , contradicting our assumptions. We may assume

$$
Y\left(\tau_{1}\right)=\left[\begin{array}{ccc}
0 & I_{2} & 0 \\
I_{2} & 0 & 0 \\
0 & 0 & I_{2}
\end{array}\right] \quad Y\left(\tau_{2}\right)=\left[\begin{array}{ccc}
0 & A & 0 \\
A^{-1} & 0 & 0 \\
0 & 0 & I_{2}
\end{array}\right] .
$$

By rechoosing a basis for V_{1} and V_{2} and if necessary replacing α_{i} with $\bar{\alpha}_{i}$, we can assume $A=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}\right)$.

Let K be the normal subgroup of H such that $Y(K)$ fixes V_{1}, V_{2}, V_{3}. Clearly $H=K\left\langle\tau_{1}, \mu_{2}\right\rangle$ and $\left\langle\tau_{1}, \mu_{2}\right\rangle \cong S_{3}$. Let $Y \mid K=R_{1} \oplus R_{2} \oplus R_{3}$ where R_{i} acts irreducibly on V_{i}. As we are assuming Y is not monomial, R_{i} is not monomial. This follows as if R_{1} were induced from a subgroup K_{1} of K of index $2, Y$ would be induced from $\left\langle K_{1}, \mu_{2}\right\rangle$ of index 6 in H. Note $\tau_{1} \tau_{2} \in K$ and $R_{3}\left(\tau_{1} \tau_{2}\right)=I_{2}$. The groups $R_{i}(K) / Z\left(R_{i}(K)\right)$ are isomorphic as groups and must be A_{5}, S_{4}, or A_{4} by Blichfeldt [1].

Suppose the cyclic group $\operatorname{det}\left(R_{i}(K)\right)$ has order d. If L is $S L_{2}(5), G L_{2}(3)$, or $S L_{2}(3)$, then $R_{i}(K)$ is a subgroup of $L \circ D$ where D is cyclic of order $2 d$. Here $R_{i}(K) \mid Z\left(R_{i}(K)\right)$ covers $L \circ D \mid Z(L \circ D)$. The matrix $R_{1}\left(\tau_{1} \tau_{2}\right)=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}\right)$. As $\alpha_{1} \neq \alpha_{2}$ by Blichfeldt, $R_{1}\left(\tau_{1} \tau_{2}\right)$ is a noncentral element. As an element of $L \circ D, R_{1}\left(\tau_{1} \tau_{2}\right)=X Y$ where $X \in L, Y \in D$. As $R_{1}\left(\tau_{1} \tau_{2}\right)$ is noncentral, X is noncentral in L. The commutators of $R_{1}\left(\tau_{1} \tau_{2}\right)$ by elements of $R_{1}(K)$ generate a normal subgroup of $L \circ D$ containing at least the quaternion group Q_{8}.

It follows that in K^{\prime} is an element γ for which $R_{1}(\gamma)=-I_{2}, R_{2}(\gamma)= \pm I_{2}$, $R_{3}(\gamma)=I_{2}$. By conjugating with $\left\langle\tau_{1}, \mu_{2}\right\rangle$ we obtain an element r of K^{\prime} with $R_{1}(\tau)=R_{2}(\tau)=-I_{2}, R_{3}(\tau)=I_{2}$. Now if $k \neq 4$ and $\alpha_{1} \neq \pm \alpha_{2}$, there is an element of order k in $R_{1}(K) / Z\left(R_{1}(K)\right)$ and so k is 3 or 5 . If it is 5 , a high commutator contains an element with eigenvalues on V of $-\omega,-\bar{\omega}, 1,1,1,1$; $-\omega,-\bar{\omega},-\omega,-\bar{\omega}, 1,1$; or $-\omega,-\bar{\omega},-\omega,-\bar{\omega},-\omega,-\bar{\omega}$. This contradicts Blichfeldt. If $k=3, \tau\left(\tau_{1} \tau_{2}\right)^{2}$ contradicts Blichfeldt with eigenvalues on V of $-\omega,-\bar{\omega},-\omega,-\bar{\omega}, 1,1$. If $\alpha_{1}= \pm \alpha_{2}, \alpha_{1}=-\alpha_{2}$ by Blichfeldt, and $\tau\left(\tau_{1} \tau_{2}\right)^{2}$ has eigenvalues on V of $-\alpha_{1}{ }^{2},-\alpha_{1}{ }^{2},-\bar{\alpha}_{1}{ }^{2},-\bar{\alpha}_{1}{ }^{2}, 1,1$, contradicting Blichfeldt. Finally, if $k=4$ and α_{2} is not a primitive 8 th root of $1, R_{1}(K) / Z\left(R_{1}(K)\right)$ has an element of order 8 which is a contradiction. This means that X_{1} and X_{2} are faithful and gives case ii completing the nonmonomial case.

Assume now that Y is monomial. Suppose first that $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)$ as permutations are both pairs of disjoint transpositions moving the same set of four letters. We can assume by reordering and rescaling that $Y\left(\tau_{i}\right)$ have the same form as (i) in the lemma. Note that if $k>5$, the second form of $Y\left(\tau_{2}\right)$ cannot occur or $\left(\tau_{1} \tau_{2}\right)^{2}$ contradicts Blichfeldt. Suppose there is an element s of H for which $Y(s)$ acts as a 3-cycle. As H is generated by special involutions which cannot interchange two 3-dimensional subspaces, the permutation group $Y(H)$ must be transitive. This means it is A_{6} or S_{6}. If t is an element of H such that $Y(t)$ represents the 3 -cycle $(1,5,6), Y\left(\left[\left(\tau_{1} \tau_{2}\right)^{2}, t\right]\right)=\operatorname{diag}(\mu, 1,1,1, \bar{\mu}, 1)$ where μ is a primitive k th root of 1 . This is a special k-element contradicting our assumptions. The lemma is proved now if $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)$ act on the same four letters both as products of two disjoint transpositions.

Suppose $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)$ both act as products of two disjoint transpositions. If they are transitive on five letters, $Y\left(\tau_{1} \tau_{2}\right)$ has order 5 contrary to assumptions. If they are transitive on four letters and interchange the other two, $Y\left(\tau_{1} \tau_{2}\right)$ has order 4. If they move six letters and act like (12)(34), (15)(36), $\tau_{1} \tau_{2}$ has order 3. By reordering and rescaling and recalling that $Y \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ has no nontrivial linear constituent, we can now assume

$$
Y\left(\tau_{1}\right)=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad Y\left(\tau_{2}\right)=\left[\begin{array}{cccccc}
0 & \alpha_{1} & 0 & 0 & 0 & 0 \\
\bar{\alpha}_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

The product $\tau_{1} \tau_{2}$ must have order 6 and so we can assume $\alpha_{1}=-\omega$ where $\omega=e^{2 \pi i / 3}$. The permutation group is A_{6} or S_{6} as $Y\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ is a 3-cycle. As $Y\left(\left(\tau_{1} \tau_{2}\right)^{3}\right)=\operatorname{diag}(-1,-1,1,1,1,1)$ and $Y(H)$ as a permutation group is A_{6} or S_{6} we easily get $-I_{6}$ in $Y(H)$. Let S be a Sylow 3-group such that $Y(S)$ as a permutation group is $\langle(123)$, (456) \rangle. If S is nonabelian $Z(S) \cap S^{\prime}$ contains $\operatorname{diag}(\omega, \omega, \omega, \bar{\omega}, \bar{\omega}, \bar{\omega}), \operatorname{diag}(\omega, \omega, \omega, 1,1,1), \operatorname{diag}(1,1,1, \omega, \omega, \omega)$, or ωI_{6}. In the
first three cases, by conjugating with an element representing (34)(56) one gets a special 3 -element. In the last case $-\omega I_{6}$ is in $Y\left(H^{\prime}\right)$, an element contradicting Blichfeldt. If S is abelian an element s representing (123) must be scalar on $\{4,5,6\}$ or it would not commute with an element representing $(4,5,6)$. However, $Y\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ is not scalar on the points it fixes. This case is therefore impossible.
If $Y\left(\tau_{1}\right)$ is diagonal, $Y\left(\tau_{1} \tau_{2}\right)$ has order at most 4 . The only possibility not dealt with is that $Y\left(\tau_{i}\right)$ is a transposition for $i=1$ or 2 . As $X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ has two irreducible constituents of degree $2, Y \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ also has two irreducible constituents of degree 2 . The eigenvalues of $Y\left(\tau_{1} \tau_{2}\right)$ are $\alpha_{1}, \tilde{\alpha}_{1}, \alpha_{2}, \bar{\alpha}_{2}$ where α_{1} is a primitive $2 k$ th root of 1 and α_{2} is a primitive $2 k$ th or k th root of 1 . The only possibility for $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)$ after reordering and rescaling is now

$$
Y\left(\tau_{1}\right)=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad Y\left(\tau_{2}\right)=\left[\begin{array}{cccccc}
0 & \alpha_{1} & 0 & 0 & 0 & 0 \\
\bar{\alpha}_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],
$$

or

$$
Y\left(\tau_{2}\right)=\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],
$$

where α_{1} is a primitive 8 th root of 1 . If the permutation group contains a 3 -cycle, the permutation group is S_{6}, a conjugate σ of τ_{2} represents either (1,2) or $(2,3)$ and $\left(\sigma \tau_{2}\right)^{2}$ is a special 3 -element. This means the permutation group contains no 3 -cycles. In the first case of $Y\left(\tau_{2}\right)$, the 2 -cycles present so far are (1,2) and (3, 4). As the permutation group is transitive there must also be $(5,6)$. As there are no 3 -cycles these are the totality of transpositions in the permutation group. As the permutation group is generated by special 2 -elements and transitive on the sets $\{1,2\},\{3,4\}$, and $\{5,6\}$ there is a special two element τ interchanging the sets $\{3,4\}$ and $\{5,6\}$. This of course acts trivially on the first two coordinates and so

$$
Y\left(\tau_{2}{ }^{\tau}\right)=\left[\begin{array}{cccccc}
0 & \alpha_{1} & 0 & 0 & 0 & 0 \\
\bar{\alpha}_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \pm 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \pm 1
\end{array}\right]
$$

Now $\left(\tau_{1} \tau_{2}^{\top}\right)^{2}=\operatorname{diag}\left(\left(\bar{\alpha}_{1}\right)^{2},\left(\alpha_{1}\right)^{2}, 1,1,1,1\right)$ a special 4-element.

In the second case of $Y\left(\tau_{2}\right)$ the transpositions obtained so far are $(2,3)$ and $(1,4)$. Again $(5,6)$ must be in the group. Again there must be a special 2-element τ_{3} such that $Y\left(\tau_{3}\right)$ is the permutation matrix corresponding to (15)(46). Now $\left(\left(\tau_{2} \tau_{3}\right)^{2} \tau_{1}\right)^{2} \tau_{2}$ is a special 4-element.

Lemma 3.3. Let H be a subgroup of G containing $\left\langle\tau_{1}, \tau_{2}\right\rangle$ and generated by special involutions. Suppose $X \mid H=Y \oplus \xi \oplus(n-8) 1_{H}$ where Y is irreducible of degree 7. Then Y is monomial, the permutation group contains no 3-cycles, no 2-cycles, and has no element of order 5. In an appropriate basis
$Y\left(\tau_{1}\right)=\left[\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right], \quad Y\left(\tau_{2}\right)=\left[\begin{array}{ccccccc}0 & \alpha_{1} & 0 & 0 & 0 & 0 & 0 \\ \bar{\alpha}_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{2} & 0 & 0 & 0 \\ 0 & 0 & \bar{\alpha}_{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$,
or

$$
Y\left(\tau_{2}\right)=\left[\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & d & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { where } d=\left(\alpha_{1}\right)^{2}
$$

The second form of $Y\left(\tau_{2}\right)$ occurs only if $k \leqslant 5$.
Proof. This proof again works in the case $\left|\tau_{1} \tau_{2}\right|=p, 9$, or 15 with $p \geqslant 7$ which will be handled in Lemma 4.3.

By Lemma 2.1, Y cannot be primitive and so must be monomial. If $Y(H)$ contains a 3-cycle, the permutation group is A_{7} or S_{7} as these are the only transitive subgroups of S_{7} containing 3-cycles. It follows as in Lemma 3.2 that, $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)$ are both products of disjoint 2-cycles moving the same four points. The form for $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)$ after reordering and rescaling is as specified. As in Lemma 3.2 the permutation group contains no 3-cycles and so no 2-cycles. It has no elements of order 5 as a transitive subgroup of S_{7} containing an element of order 5 is A_{7} or S_{7}.

Lemma 3.4. There can be no subgroup H of G such that H contains $\left\langle\tau_{1}, \tau_{2}\right\rangle$ and $X \mid H=Y \oplus \xi \oplus(n-6) 1_{H}$ where Y is irreducible of degree 5 .

Proof. This proof again works in the case $\left|\tau_{1} \tau_{2}\right|=p, 9$, or 15 with $p \geqslant 7$ to be dealt with in Lemma 4.4.

Replace H by the normal subgroup generated by all conjugates of τ_{1} and τ_{2}. There is still an irreducible constituent of degree 5 as otherwise, by Clifford's theorem [6, Theorem 3.4.1], τ_{1} and τ_{2} would commute. As $X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ has only trivial linear constituents, $\xi\left(\tau_{1}\right)=\xi\left(\tau_{2}\right)=1$ and so ξ is now trivial.

As X is irreducible there must be a special 2-element τ in G such that $X(\tau)$ does not fix the 5 -dimensional space U on which Y acts. As $X(\tau)$ has an $n-2$ dimensional fixed space and $X(H)$ has an n - 5 -dimensional fixed space, $X(\langle H, \tau\rangle)$ has an $n-7$-dimensional fixed space and satisfies the hypothesis of either Lemma 3.2 or 3.3. The groups in Lemma 3.3 have no subgroup which has an irreducible constituent of degree 5 as any elements of order 5 would be in the diagonal abelian subgroup.

This means $X \mid\langle H, \tau\rangle$ has an irreducible imprimitive constituent of degree 6. Again replace $\langle H, \tau\rangle$ with the normal subgroup K generated by H and all conjugates in $\langle H, \tau\rangle$ of τ_{1} and τ_{2}. This contains H and again by Clifford's theorem this group has an irreducible constituent of degree of at least 5 and so has an irreducible constituent of degree 6 . Now $X \mid K=Y \oplus(n-6) 1_{K}$. For some special 2-element σ in $K, X(\sigma)$ must move U and $X \mid\langle H, \sigma\rangle=Y_{1} \oplus$ $(n-6) 1_{\langle H, \sigma\rangle}$ where Y_{1} acts irreducibly on U_{1} of dimension 6 . As X is irreducible there is a special 2-element σ_{1} for which $X\left(\sigma_{1}\right)$ moves U_{1}. Either $X\left(\sigma_{1}\right)$ or $X\left(\sigma_{1}{ }^{\sigma}\right)$ moves U as well. Assume $X\left(\sigma_{1}\right)$ does. As above, we may replace $X\left(\sigma_{1}\right)$ by a special 2-element $X\left(\sigma_{2}\right)$ moving U and U_{1}, such that $X \mid\left\langle H, \sigma_{2}\right\rangle=Y_{2} \oplus$ $(n-6) 1_{\left\langle H, \sigma_{2}\right\rangle}$, where Y_{2} acts on U_{2}. As $U_{1} \neq U_{2}, X \mid\left\langle H, \sigma, \sigma_{2}\right\rangle$ satisfies the hypothesis of Lemma 3.3 a contradiction as no such group has a subgroup with an irreducible constituent of degree 5 . This completes the proof of the lemma.

Lemma 3.5. There is no subgroup K of G generated by 3 special 2-elements τ_{1}, τ_{2}, τ with the following special form. $X \mid\left\langle\tau_{1}, \tau_{2}, \tau\right\rangle=T_{1} \oplus T_{2} \oplus(n-5) 1_{K}$

$$
\begin{array}{cc}
T_{1}\left(\tau_{1}\right)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & T_{1}\left(\tau_{2}\right)=\left[\begin{array}{cc}
0 & -\omega \\
-\bar{\omega} & 0
\end{array}\right],
\end{array} T_{1}(\tau)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left\{\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad T_{2}\left(\tau_{2}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad T_{2}(\tau)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] . . ~ \$
$$

Here $\omega=e^{2 \pi i / 3}$.
Proof. Let T_{1} act on V_{1}, T_{2} on V_{2}, and let σ be a special 2 -element for which $X(\sigma)$ moves V_{1}. Let $H=\left\langle\tau_{1}, \tau_{2}, \tau, \sigma\right\rangle$. Note that T_{1} and T_{2} are irreducible.

Note first that $X \mid H$ has an $n-7$-dimensional fixed space. If there is an irreducible 6- or 7 -dimensional constituent Y, apply Lemma 3.2 or 3.3. Since $\left|\tau_{1} \tau_{2}\right|=6$ the group is monomial and $Y\left(\tau_{1}\right)$ acts as the permutation (12) (34). Now $Y(\tau)$ must permute the letters $1,2,3,4$ among themselves as τ and τ_{1}
commute. However, now $Y \mid\left\langle\tau_{1}, \tau_{2}, \tau\right\rangle$ has two irreducible constituents of degree 2, while the rest are linear. This conflicts with T_{1} and T_{2} being irreducible. Consequently $X \mid H$ has constituents of degree at most 5 . If there is a constituent Y of degree 5 the remaining constituents are linear as Y must act on $V_{1}+V_{2}$ as $X(\sigma)$ moves V_{1} and $X(\sigma)$ is special. This means H must satisfy the hypothesis of Lemma 3.4 and so this is impossible. We conclude the constituents have degree at most 4.

Suppose $X \mid H=S_{1} \oplus S_{2} \oplus(n-7) 1_{H}$ where S_{1} acts irreducibly on $V_{1}{ }^{*}$ and $V_{1} \subseteq V_{1}{ }^{*}$. There are three cases to consider:
(i) S_{1} has degree 4 for some σ.
(ii) S_{1} has degree 3 and S_{2} is irreducible of degree 4 for some σ.
(iii) S_{1} has degree 3 and S_{2} has a linear constituent for all σ.

These are the only possibilities as S_{1} cannot have degree 2 since $X(\sigma)$ moves V_{1} and T_{2} has degree 3.
In case (i) above S_{1} must be imprimitive, by Blichfeldt. Suppose S_{1} permutes 2-dimensional subspaces. As $S_{1}\left(\tau_{i}\right)$ are reflections, we have

$$
\begin{gathered}
S_{1}\left(\tau_{1}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad S_{1}\left(\tau_{2}\right)=\left[\begin{array}{cccc}
0 & -\omega & 0 & 0 \\
-\bar{\omega} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
S_{1}(\sigma)=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

Now $S_{2}(\sigma)$ is trivial and $\left(S_{1} \oplus S_{2}\right)\left[\tau_{1} \tau_{2}, \sigma\right]=\operatorname{diag}(-\omega,-\bar{\omega},-\bar{\omega},-\omega, 1,1,1)$ contradicting Blichfeldt. If S_{1} is monomial we obtain the same forms as $S_{1}(\tau)$ is trivial and so $S_{1}\left(\left\langle\tau_{1}, \tau_{2}, \sigma\right\rangle\right)$ must be transitive.

In case (ii), S_{1} is again imprimitive by Blichfeldt and so must be monomial. We can assume

$$
S_{1}\left(\tau_{1}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad S_{1}\left(\tau_{2}\right)=\left[\begin{array}{ccc}
0 & -\omega & 0 \\
-\bar{\omega} & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad S_{1}(\sigma)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

and so $S_{1}(H)=D S$ where D are diagonal matrices and $S \cong S_{3}$. A Sylow 3-group of D has order 3^{2}. If $3^{2}+\left|S_{2}(H)\right|$, there is a special 3-element in ker S_{2}. Suppose S_{2} is primitive. The groups $S_{2}(H)$ are listed in [14] or [5, Sect. 8.5]. All have elementary abelian Sylow 3-groups of order at most 9. Note that $\dot{O}_{5}(3)$ is not generated by reflections. Consider the group $H_{1}=\left\langle\tau_{1}, \tau_{2}, \sigma\right\rangle$.

As $S_{1}\left(H_{1}\right)$ contains a full Sylow 3-group of $S_{1}(H), S_{2}\left(H_{1}\right)$ must also contain a full Sylow 3-group of $S_{2}(H)$, or H_{1} would contain a special 3-element. Now $S_{2}\left(H_{1}\right)$ is generated by three reflections and so $S_{2} \mid H_{1}$ has a 1-dimensional fixed space. A Sylow 3-group of $S_{2}\left(H_{1}\right)$ being elementary abelian must now contain an element with eigenvalues $\omega, \omega, \omega, 1$. This is impossible according to [14] or inspection of the groups in [5, Sect. 8.5]. If S_{2} permutes 2-dimensional subspaces, then $S_{2}\left(\tau_{i}\right)$ are block diagonal. As $\left[\tau_{1}, \tau\right]=1, S_{2}(\tau)$ is block diagonal and so T_{2} is reducible. Finally, S_{2} must be monomial. We may assume

$$
S_{2}\left(\tau_{1}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad S_{2}\left(\tau_{2}\right)=\left[\begin{array}{llll}
0 & \omega & 0 & 0 \\
-\bar{\omega} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

or

$$
S_{2}\left(\tau_{2}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

As $\left[\tau_{1}, \tau\right]=1, S_{2}(\tau)$ permutes the first two coordinates. As T_{2} is irreducible $S_{2}\left(\tau_{2}\right)$ must be the permutation matrix. Now $S_{2}(H)=D_{1} S^{*}$ where D_{1} are diagonal matrices and $S^{*} \cong S_{4}$. As $3^{2}| | S_{2}(H)|, 3|\left|D_{1}\right|$. Now $S_{1}\left(H^{\prime \prime}\right)$ is diagonal and $S_{2}\left(H^{\prime \prime}\right)$ is a diagonal group with $V=\langle(12)(34)$, (14) (23) \rangle acting. As $3\left|\left|D_{1}\right|\right.$, there is an element γ in $H^{\prime \prime}$ with $S_{2}(\gamma)=\operatorname{diag}(\omega, \omega, \omega, 1)$. Now conjugating by an element γ_{1} of $H^{\prime \prime}$, for which $S_{2}\left(\gamma_{1}\right)$ acts as (12) (34), gives a special 3-element.

In the final case $S_{2}=R \oplus \xi$ where R is irreducible of degree 3 and ξ is linear. Let R act on $V_{2}{ }^{*}$. Here $V_{2}{ }^{*}$ must be the irreducible 3-dimensional space T_{2} acts on. Again by Blichfeldt, S_{1} is monomial. If $R(\sigma)$ is trivial $\left(\tau_{1} \sigma\right)^{2}$ must be a special 3-element. It follows that ξ is trivial. This shows that if $X(\sigma)$ moves V_{1}, $X(\sigma)$ fixes $V_{2}{ }^{*}$, acts nontrivially on $V_{2}{ }^{*}$, and $V_{1}{ }^{*}=\left\langle V_{1}, X(\sigma) V_{1}\right\rangle$ is an invariant subspace of dimension 3. Relabel $V_{1}{ }^{*}$ as $W_{3}, \sigma=\sigma_{3}, H_{3}=\left\langle\tau_{1}, \tau_{2}, \tau, \sigma_{3}\right\rangle$. Note $W_{3}=\left\langle W_{2}, X\left(\sigma_{3}\right) W_{2}\right\rangle$, where $W_{2}=V_{1}$. Suppose $\sigma_{3}, \ldots, \sigma_{i}$ special 2-elements have been chosen so that $H_{i}=\left\langle\tau_{1}, \tau_{2}, \tau, \sigma_{3}, \ldots, \sigma_{i}\right\rangle=\left\langle H_{i-1}, \sigma_{i}\right\rangle$, $W_{i}=\left\langle W_{i-1}, X\left(\sigma_{i}\right) W_{i-1}\right\rangle, X\left(\sigma_{i}\right)\left(V_{2}^{*}\right)=V_{2}^{*}, X\left(\sigma_{i}\right) \mid V_{2}^{*}$ is not trivial, and $X\left(H_{i}\right) \mid W_{i}$ is irreducible. Choose σ such that $X(\sigma) W_{i} \neq W_{i}$. There is some conjugate σ_{i+1} of σ by an element τ^{\prime} of I_{i} such that $X\left(\sigma_{i+1}\right)$ moves V_{1}. Then $W_{i+1}=\left\langle X\left(\sigma_{i+1}\right) W_{i}, W_{i}\right\rangle$ is an irreducible subspace for $H_{i+1}=\left\langle H_{i}, \sigma_{i+1}\right\rangle$ of dimension $i+1$ and $X\left(\sigma_{i+1}\right)\left(V_{2}{ }^{*}\right)=V_{2}{ }^{*}$. Continuing until $i=n-2$ we obtain a contradiction.

We now turn to two lemmas which demonstrate how an arbitrary special 2-element τ_{3} interacts with τ_{1} and τ_{2}. In particular we show that, except for very special situations, $\tau_{1} \tau_{3}$ and $\tau_{2} \tau_{3}$ have order 3.

Lemma 3.6. Suppose τ_{3} is a special 2-element such that $X\left(\tau_{3}\right)$ moves both $U_{1} \oplus U_{2}$ and U_{1}. Then $\left|\tau_{1} \tau_{3}\right|$ is 3 or 4 and if $4, X\left(\tau_{1} \tau_{3}\right)$ has eigenvalues i, $-i$, $-1,-1$, the rest being 1. Also, if $\left|\tau_{1} \tau_{3}\right|=4, \quad X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle=$ $Y \oplus(n-6) 1_{\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle}$ where Y satisfies the hypothesis of Lemma 3.2(i) with $Y\left(\tau_{2}\right)$ representing $(1,3)(2,4)$ and $Y\left(\tau_{3}\right)$, the permutation matrix $(1,5)(2,6)$, $\left|\tau_{1} \tau_{2}\right|=8$, and X_{2} is faithful.

Proof. We divide the proof into cases according to how $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle$ breaks into irreducible constituents. As $\tau_{1}, \tau_{2}, \tau_{3}$ are special 2-elements there will always be an $n-6$ dimensional fixed space. Let $H=\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle$.

Case A. $X \mid H=Y_{1} \oplus Y_{\mathbf{2}} \oplus(n-6) 1_{H}$ where Y_{1} is irreducible of degree 3 and $Y_{1} \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ contains X_{1} as a constituent.

As $Y_{1} \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ contains X_{1} as a constituent and $X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle=X_{1} \oplus X_{2} \oplus$ $(n-4) 1_{\left\langle\tau_{1}, \tau_{2}\right\rangle}, Y_{1} \mid\left\langle\tau_{1}, \tau_{2}\right\rangle=X_{1} \oplus 1_{\left\langle\tau_{1}, \tau_{2}\right\rangle}$. Now Y_{1} must be imprimitive as otherwise $Y_{1}\left(\tau_{1} \tau_{2}\right)$ contradicts Blichfeldt. We may assume

$$
Y_{1}\left(\tau_{1}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad Y_{1}\left(\tau_{2}\right)=\left[\begin{array}{ccc}
0 & \alpha_{1} & 0 \\
\bar{\alpha}_{1} & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad Y_{1}\left(\tau_{3}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

This implies $Y_{1}\left(\tau_{1} \tau_{3}\right)$ has order 3 and so if $\left|\tau_{1} \tau_{3}\right| \neq 3,\left|\tau_{1} \tau_{3}\right|=6$. In this case $Y_{2}\left(\tau_{1} \tau_{3}\right)$ must have order 6.

If Y_{2} is irreducible it is again monomial by Blichfeldt. In order that $Y_{2}\left(\tau_{1} \tau_{3}\right)$ have order 6 we must have

$$
Y_{2}\left(\tau_{1}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad Y_{2}\left(\tau_{3}\right)=\left[\begin{array}{ccc}
0 & -\omega & 0 \\
-\bar{\omega} & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad Y_{2}\left(\tau_{2}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

But now $\tau_{1}, \tau_{2},\left(\tau_{1} \tau_{3}\right)^{3}$ satisfy the hypothesis of Lemma 3.5 and this is impossible.

Suppose Y_{2} is reducible. If it is monomial, $Y_{2}\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ and $Y_{2}\left(\left(\tau_{1} \tau_{3}\right)^{2}\right)$ are diagonal. Let $\left[\left(\tau_{1} \tau_{2}\right)^{2},\left(\tau_{1} \tau_{3}\right)^{2}\right]$ be x. Now $Y_{1}\left[x, \tau_{1}\right]=\operatorname{diag}\left(\bar{\alpha}_{1}{ }^{6}, \alpha_{1}{ }^{6}, 1\right), Y_{2}\left[x, \tau_{1}\right]$ is trivial and this is a special element not allowed unless $k=3$. If $k=3$, $Y_{2}\left(\left(\tau_{1} \tau_{3}\right)^{3}\right)=-I_{2} \oplus 1$ and $\tau_{1} \tau_{2}\left(\tau_{1} \tau_{3}\right)^{3}$ contradicts Blichfeldt. This means $Y_{2}(H) / Z\left(Y_{2}(H)\right) \cong A_{4}, S_{4}$, or A_{5}. It cannot be A_{5} as then $H^{\prime \prime}$ contains a Blichfeldt element. It follows that $\tau_{1} \tau_{2}$ must have order 6 and the Sylow 3-group of $Y_{2}(H)$ is of order 3. As the Sylow 3-group S of $Y_{1}(H)$ is nonabelian, class 3, of order 27, there is a special 3-element in S in the kernel of Y_{2}. This contradiction eliminates case A.

Case B. $\quad X \mid H=Y_{1} \oplus Y_{2} \oplus(n-6) 1_{H}$ where Y_{1} is irreducible of degree 4 and $Y_{1} \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ contains X_{1} as a constituent.

As $U_{1} \oplus U_{2}$ is not fixed by $X\left(\tau_{3}\right), Y_{1} \mid\left\langle\tau_{1}, \tau_{2}\right\rangle=X_{1} \oplus 2 \cdot 1_{\left\langle\tau_{1}, \tau_{2}\right\rangle}$, and $Y_{2} \mid\left\langle\tau_{1}, \tau_{2}\right\rangle=X_{2}$. Now Y_{1} is imprimitive as otherwise $Y_{1}\left(\tau_{1} \tau_{2}\right)$ contradicts Blichfeldt. If Y_{1} permutes 2-dimensional subspaces or is monomial the basis can be chosen as follows.

$$
\begin{gathered}
Y_{1}\left(\tau_{1}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad Y_{1}\left(\tau_{2}\right)=\left[\begin{array}{cccc}
0 & \alpha_{1} & 0 & 0 \\
\bar{\alpha}_{1} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
Y_{2}\left(\tau_{3}\right)=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

Note $Y_{2}\left(\tau_{3}\right)=I$. Now [$\left.\tau_{1} \tau_{2}, \tau_{3}\right]$ contradicts Blichfeldt.
Case C. $X \mid H=Y_{1} \oplus \xi \oplus(n-6) 1_{H}$ where Y_{1} is irreducible of degree 5. This case is impossible by Lemma 3.4.

Case D. $X \mid H=Y \oplus(n-6) 1_{H}$ where Y is irreducible of degree 6.
By Lemma 3.2, if Y is not monomial and so permutes 2-dimensional subspaces, $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)$ interchange the same subspaces. Now to make Y irreducible, $Y\left(\tau_{3}\right)$ must permute one of these to the third and $Y\left(\tau_{1} \tau_{3}\right)$ would have order 3. We can assume then that Y is monomial and has the form specified by Lemma 3.2. In order that the permutation group be transitive on 6 letters, $Y\left(\tau_{2}\right)$ must have the second form. If $Y\left(\tau_{1} \tau_{3}\right)$ as a permutation has cycle type $(3,3)$, its cube must be trivial as such a matrix has the wrong eigenvalue structure to be of order 6 . After reordering we may now assume that $Y\left(\tau_{3}\right)$ as a permutation is $(1,5)(2,6)$ as other inequivalent choices give $Y\left(\tau_{1} \tau_{3}\right)$ of type $(3,3)$. Now $Y\left(\left[\left(\tau_{1} \tau_{2}\right)^{2},\left(\tau_{1} \tau_{3}\right)^{2}\right]\right)=\operatorname{diag}\left(\vec{d}^{2}, d^{2}, 1,1,1,1\right)$ which is a special element. This means $d^{2}=-1$ and α_{1} is an 8th root of 1 . Now $\left|\tau_{1} \tau_{2}\right|=8$, the eigenvalues of $Y\left(\tau_{1} \tau_{3}\right)$ are as specified, and X_{1} and X_{2} are both faithful.

Lemma 3.7. There is no special 2-element τ_{3} such that $X\left(\tau_{3}\right)$ moves $U_{1} \oplus U_{2}$ but fixes U_{1}.

Proof. Again let $H=\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle$. As $X\left(\tau_{3}\right)$ leaves U_{1} invariant $X \mid H=$ $R_{1} \oplus R_{2} \oplus(n-6) 1_{H}$ where R_{1} acts on U_{1}. Here either R_{2} is irreducible or $R_{2}=S \oplus \xi$ where ξ is linear and S is irreducible. We consider first the latter case.

Suppose that R_{1} is monomial. If S is primitive and $S(H)$ is not solvable there is a special 3-element in H^{∞}. This means $S(H)$ is primitive and solvable and so is one of the groups listed under [5 , Sect. 8.5].

Note that as the Sylow 3-group of $R_{1}(H)$ is unimodular, it is cyclic. As the

Sylow 3-group of $S(H)$ is nonabelian of order at least 27 there is a special 3-element in ker R_{1}. This means S is monomial. We may assume

$$
S\left(\tau_{1}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad S\left(\tau_{2}\right)=\left[\begin{array}{ccc}
0 & \alpha_{2} & 0 \\
\bar{\alpha}_{2} & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \text { or } \quad\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

In the first case, τ_{3} must represent the permutation $(2,3)$. If $R_{1}\left(\tau_{3}\right)$ is diagonal, [$\tau_{1} \tau_{2}, \tau_{3}$] or its square is a special k-element. Consequently, $R_{1}\left(\tau_{1} \tau_{3}\right)$ is diagonal and $S\left(\tau_{1} \tau_{3}\right)$ is a 3-cycle. Now let $\sigma=\left[\tau_{1} \tau_{2}, \tau_{1} \tau_{3}\right]$. We see $R_{1}(\sigma)=I_{2}, \xi(\sigma)=1$ and $S(\sigma)=\operatorname{diag}\left(\left(\alpha_{2}\right)^{2}, \bar{\alpha}_{2}, \bar{\alpha}_{2}\right)$. Now [σ, τ_{1}] gives an element γ for which R_{1} and ξ are trivial and $S(\gamma)=\operatorname{diag}\left(\bar{\alpha}_{2}{ }^{3}, \alpha_{2}{ }^{3}, 1\right)$. This is special unless α_{2} is a cube or a sixth root in which case $k=3$. Now the Sylow 3-group of $R_{1}(H)$ is cyclic, the Sylow 3 group of $S(H)$ is nonabelian of order 27, and there is a special 3-element in ker R_{1}.

In the second case for $S\left(\tau_{2}\right), S\left(\tau_{1} \tau_{2}\right)$ has order 3 and so $\left|\tau_{1} \tau_{2}\right|=6$. Let D be the normal subgroup consisting of elements γ for which $S(\gamma)$ is diagonal. If there is a nonscalar element of order 3, a Sylow 3-group of $S(H)$ must contain the nonbelian exponent 3 -group of order 27 and there is a special 3 -element in ker R_{1}. Otherwise let A be a subgroup of D for which $S(A)$ is elementary abelian for some prime $p \neq 3$ and $\left[S(A), S\left(\tau_{1} \tau_{2}\right)\right]=S(A)$. This is possible by [6, Theorem 5.2.3] as $S(D)$ is not scalar or S would be reducible. As $R_{1}\left(\tau_{1} \tau_{2}\right)$ is diagonal by taking commutators of A with $\tau_{1} \tau_{2}$ sufficiently often one obtains a subgroup A_{1} for which $R_{1}\left(A_{1}\right)$ and $\xi\left(A_{1}\right)$ are trivial and $\left[S\left(A_{1}\right), S\left(\tau_{1} \tau_{2}\right)\right]=S\left(A_{1}\right)$. Now if $p=2, A$ is $Z_{2} \times Z_{2}$, and τ_{1}, τ_{2}, together with an element of A_{1} contradict Lemma 3.5. If $p \neq 2$, there is either a special p-element in A, or conjugating by τ_{1} gives one. We conclude R_{1} is not monomial.

We note this implies ξ is trivial. Let τ_{4} be a special 2-element for which $X\left(\tau_{4}\right)$ moves U_{1} and let $K=\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle=\left\langle H, \tau_{4}\right\rangle$. As in Lemma 3.6 we divide the argument according to how $X \mid K$ breaks into irreducible constituents.

Case $A . \quad X \mid K=T_{1} \oplus T_{2} \oplus(n-7) 1_{K}$ where T_{1} is irreducible of degree 3 and T_{1} acts on a subspace containing U_{1}.

By Blichfeldt, T_{1} is monomial. We may assume

$$
T_{1}\left(\tau_{1}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad T_{1}\left(\tau_{2}\right)=\left[\begin{array}{ccc}
0 & \alpha_{1} & 0 \\
\bar{\alpha}_{1} & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

As the 2-dimensional space U_{1} is unique $U_{1}=\left\langle v_{1}, v_{2}\right\rangle$ where here v_{i} is the i th coordinate vector. As $X\left(\tau_{3}\right)$ leaves U_{1} invariant it follows that $T_{1}(H)$ is monomial contrary to the above.

Case B. $X \mid K=T_{1} \oplus T_{2} \oplus(n-7) 1_{K}$ where T_{1} is irreducible of degree 4 and acts on a subspace containing U_{1}.

Again T_{1} is imprimitive by Blichfeldr. We see

$$
T_{1}\left(\tau_{1}\right)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad T_{1}\left(\tau_{2}\right)=\left[\begin{array}{cccc}
0 & \alpha_{1} & 0 & 0 \\
\bar{\alpha}_{1} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

As $T_{1}\left(\tau_{3}\right)$ must act nontrivially on U_{1},

$$
T_{1}\left(\tau_{3}\right)=\left[\begin{array}{c|c}
* & 0 \\
\hline 0 & I_{2}
\end{array}\right]
$$

This means

$$
T_{1}\left(\tau_{4}\right)=\left[\begin{array}{cc}
0 & I_{2} \\
I_{2} & 0
\end{array}\right]
$$

Now $\left[\tau_{1} \tau_{2}, \tau_{4}\right]$ has eigenvalues contradicting Blichfeldt.
Case C. $X \mid K=T \oplus \xi \oplus(n-6) 1_{K}$ where T is irreducible of degree 5. This contradicts Lemma 3.4.

Case D. $X \mid K=T \oplus \xi \oplus(n-7) 1_{K}$ where T is irreducible of degree 6 .
Note that Lemma 3.2 applies. As $X \mid H$ has irreducible constituents of degree 3 and 2 and only trivial linear constituents, T cannot permute 2 -dimensional subspaces. This means that T is monomial and $T\left(\tau_{1}\right)$ and $T\left(\tau_{2}\right)$ have the form described in Lemma 3.2. If $T\left(\tau_{1}\right)$ and $T\left(\tau_{2}\right)$ both act as $(1,2)(3,4)$, the first two coordinates span U_{1}. As $X\left(\tau_{3}\right)$ leaves U_{1} fixed, R_{1} is monomial. In the remaining case $T\left(\tau_{1}\right)$ and $T\left(\tau_{2}\right)$ act as $(1,2)(3,4)$ and $(1,3)(2,4)$. As there are no 3-cycles in the permutation group, and $X \mid H$ has the irreducible constituents R_{1} and S, $T\left(\tau_{1}\right), T\left(\tau_{2}\right), T\left(\tau_{3}\right)$ must be transitive on six letters. Now the diagonal subgroup of $T\left(\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle\right)$ has six nontrivial linear characters which is impossible in this case since $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle=R_{1} \oplus S \oplus(n-5) 1_{\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle}$.

Case E. $X \mid K=T \oplus(n-7) 1_{K}$ where T is irreducible of degree 7 .
In this case Lemma 3.3 applies and can be handled as in Case D. This final contradiction shows that R_{2} must be irreducible of degree 4. As $R_{2}\left(\tau_{3}\right)$ extends U_{2} to an irreducible 4-dimensional subspace, say $V_{2}, R_{2}\left(\tau_{3}\right) \mid V_{2}$ cannot be a reflection. This means that $R_{1}\left(\tau_{3}\right)$ is trivial and $R_{1}(H)=R_{1}\left(\left\langle\tau_{1}, \tau_{2}\right\rangle\right)$ which is dihedral. If R_{2} is primitive the groups are listed by [14] or [5, Sect. 8.5]. Note that $R_{2}\left(\tau_{1}\right)$ is a reflection. All of these groups in our situation contain either special 3-elements or elements contradicting Blichfeldt. This checking is facilitated by noting that if $R_{2}(H)$ is nonsolvable, $R_{1}\left(H^{\infty}\right)$ is trivial; there is a special 3-element
in $R_{2}\left(H^{\infty}\right)$, and so H contains a special 3-element. The remaining possibilities for $R_{2}(H)$ all have Sylow 3-groups S of order 9 and centers of order 2. These groups are generated by $(\omega, \bar{\omega}, 1,1)$ and $\operatorname{diag}(1,1, \omega, \bar{\omega})$. Now S contains s for which $R_{2}(s)=(\omega, \bar{\omega}, \omega, \bar{\omega})$ and H contains z for which $R_{2}(z)=-I, R_{1}(z)=I$. Also $R_{1}(s)=\operatorname{diag}(\omega, \bar{\omega})$ or $I_{2}, R_{1}\left(\tau_{1} \tau_{2}\right)^{3}=-I_{2}$, and $R_{2}\left(\left(\tau_{1} \tau_{2}\right)^{3}\right)=I_{4}$. Now $\left(\tau_{1} \tau_{2}\right)^{3} s z$ or $s z$ contradicts Blichfeldt.

This means R_{2} is imprimitive. Suppose R_{2} permutes 2-dimensional subspaces. Then

$$
\begin{gathered}
R_{1}\left(\tau_{1}\right)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad R_{1}\left(\tau_{2}\right)=\left[\begin{array}{cc}
0 & \alpha_{1} \\
\alpha_{1} & 0
\end{array}\right], \quad R_{1}\left(\tau_{3}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] . \\
R_{2}\left(\tau_{1}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad R_{2}\left(\tau_{2}\right)=\left[\begin{array}{cccc}
0 & \alpha_{2} & 0 & 0 \\
\bar{\alpha}_{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
R_{2}\left(\tau_{3}\right)=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

Then $R_{1} \oplus R_{2}\left(\left[\left[\tau_{1} \tau_{2}, \tau_{3}\right], \tau_{2}\right]\right)=\operatorname{diag}\left(1,1, \bar{\alpha}_{2}{ }^{2}, \alpha_{2}{ }^{2}, 1,1\right)$ which is a special k element unless $k=4$. In this case $R_{1} \oplus R_{2}\left(\left(\tau_{1} \tau_{2}\right)^{2}\left[\left[\tau_{1} \tau_{2}, \tau_{3}\right], \tau_{2}\right]\right)=$ $\operatorname{diag}\left(\left(\bar{\alpha}_{1}\right)^{2},\left(\alpha_{1}\right)^{2}, 1,1,1,1\right)$ a special 4-element. This means that R_{2} is monomial and the representations for $R_{2}\left(\tau_{1}\right), R_{2}\left(\tau_{2}\right), R_{2}\left(\tau_{3}\right)$ do not have the form above. The only possibilities are that R_{1} is as above and

$$
\begin{gathered}
R_{2}\left(\tau_{1}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad R_{2}\left(\tau_{2}\right)=\left[\begin{array}{cccc}
\pm 1 & 0 & 0 & 0 \\
0 & \mp 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
R_{2}\left(\tau_{2}\right)=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right],
\end{gathered}
$$

or

$$
R_{2}\left(\tau_{1}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad R_{2}\left(\tau_{2}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

In the first case, $k=4$ and $\left(\tau_{1}\left(\tau_{2}\right)^{\tau_{s}}\right)^{2}$ is a special 4-element. In the final case we have $k=3$. If $R_{2}\left(\tau_{3}\right)$ is a 2 -cycle it can by conjugation be assumed to be $(3,4)$
and now $\left(\tau_{2} \tau_{3}\right)^{2}$ is a special 3-element. This means that $R_{2}\left(\tau_{3}\right)$ is a product of disjoint 2 -cycles. After conjugating if necessary by $\tau_{1} \tau_{2}$ and rescaling we can assume

$$
R_{2}\left(\tau_{3}\right)=\left[\begin{array}{cccc}
0 & \beta & 0 & 0 \\
\beta & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

As R_{2} is irreducible, $\beta \neq 1$. Now $\left(\tau_{1} \tau_{3}\right)^{2}$ is a special m-element $m \geqslant 3$ unless $\beta=-1$ or $\pm i$. If $\beta= \pm i, \tau_{1}, \tau_{2},\left(\tau_{1} \tau_{3}\right)^{2}$ contradict Lemma 3.5. This means $\beta=-1$. However, if v_{i} is the i th coordinate vector, $\left\langle v_{1}+v_{2}+v_{3}-v_{4}\right\rangle$ is invariant and R_{2} is reducible. This case is therefore impossible and Lemma 3.7 is proven.

Proof of Theorem 3.1. We now proceed directly to the proof. Suppose first that $k \geqslant 7$. We have chosen τ_{1} and τ_{2} to be bad with $\left|\tau_{1} \tau_{2}\right|=2 k$. Suppose τ_{3} is any other special involution for which $\left|\tau_{1} \tau_{3}\right|-2 k$. Further assume that under the isomorphism sending $\tau_{1} \rightarrow \tau_{1}$ and $\tau_{2} \rightarrow \tau_{3}, X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ is similar to $X \mid\left\langle\tau_{1}, \tau_{3}\right\rangle$. By Lemmas 3.6 and 3.7 as $\left|\tau_{1} \tau_{3}\right| \neq 3$ or $4, X\left(\tau_{3}\right)$ must fix $U_{1} \oplus U_{2}$. Since $X \mid\left\langle\tau_{1}, \tau_{i}\right\rangle$ for $i=2,3$ has only trivial linear constituents $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle=Z \oplus(n-4) 1_{\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle}$. Suppose Z is irreducible. Let τ_{4} be a special involution for which $X\left(\tau_{4}\right)$ moves $U_{1} \oplus U_{2}$. Then by Lemmas 3.2 and 3.4 , and as $\left|\tau_{1} \tau_{2}\right| \neq 8, X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle=R \oplus(n-6) 1_{\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle} \cdot$ Here R is irreducible and monomial and $R\left(\tau_{1}\right), R\left(\tau_{2}\right)$ have one of the forms described in Lemma 3.2. As $k \geqslant 7, R\left(\tau_{2}\right)$ represents the permutation $(1,2)(3,4)$. As $X\left(\tau_{1} \tau_{3}\right)$ has order $2 k$ with eigenvalues the same as $X\left(\tau_{1} \tau_{2}\right)$ as a permutation it must also act as $(1,2)(3,4)$ or a contradiction arises. We see that $X\left(\tau_{3}\right)$ acts on U_{1} and U_{2}, and in particular Z is reducible.

Let $Z=Z_{1} \oplus Z_{2}$ with Z_{i} acting on U_{i}. As the eigenvalues of $Z_{i}\left(\tau_{1} \tau_{2}\right)$ and $Z_{i}\left(\tau_{1} \tau_{3}\right)$ are primitive k th or $2 k$ th roots of 1 , each Z_{i} is monomial. Now $Z_{i}\left(\left(\tau_{1} \tau_{j}\right)^{2}\right)$ for $i=1,2 ; j=1,2$ are diagonal and unimodular. This means $\left\langle\left(\tau_{1} \tau_{2}\right)^{2},\left(\tau_{1} \tau_{3}\right)^{2}\right\rangle$ is abelian of order k or k^{2}. In the latter case one obtains a special k-element a contradiction. This means $\left\langle\left(\tau_{1} \tau_{2}\right)^{2}\right\rangle=\left\langle\left(\tau_{1} \tau_{3}\right)^{2}\right\rangle$.

We now define $\gamma\left(\tau_{1}\right)-\left\langle\left(\tau_{1} \tau_{2}\right)^{2}\right\rangle$. This is an important definition for our subsequent work. The lemmas we have proved so far have been designed to determine properties of $\gamma\left(\tau_{1}\right)$. Note that the argument of the above paragraph shows that if one replaces τ_{2} in the definition by any τ_{3} for which $X \mid\left\langle\tau_{1}, \tau_{3}\right\rangle$ is similar to $X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ under the isomorphism sending $\tau_{1} \rightarrow \tau_{1}$ and $\tau_{2} \rightarrow \tau_{3}$, $\gamma\left(\tau_{1}\right)$ is the same group of order k. The definition is thus independent of the choice of τ_{2}.

Suppose now that σ_{1} is any special involution for which there is a special involution σ_{2} for which $\left|\sigma_{1} \sigma_{2}\right|=2 k$ and under the isomorphism sending $\tau_{1} \rightarrow \sigma_{1}, \tau_{2} \rightarrow \sigma_{2}, X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ is similar to $X \mid\left\langle\sigma_{1}, \sigma_{2}\right\rangle$. Define $\gamma\left(\sigma_{1}\right)=$
$\left\langle\left(\sigma_{1} \sigma_{2}\right)^{2}\right\rangle$. Note that τ_{2} is such an involution using $\left\langle\tau_{2}, \tau_{1}\right\rangle$ and $\gamma\left(\tau_{1}\right)=\gamma\left(\tau_{2}\right)$. Note also that any conjugate of τ_{1} is such an involution and $\left(\gamma\left(\tau_{1}\right)^{g}=\right.$ $\left\langle\left(\tau_{1} \tau_{2}\right)^{2}\right\rangle^{g}=\left\langle\left(\tau_{1}{ }^{g} \tau_{2}{ }^{g}\right)^{2}\right\rangle=\gamma\left(\tau_{1}^{g}\right)$.

Let $\tau_{3}=\tau_{1}{ }^{g}, \tau_{4}=\tau_{2}{ }^{g}$ be conjugates of τ_{1} and τ_{2} by the same group element g. Our goal is to show that $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ commute. Once this has been done, the group generated by all conjugates of $\gamma\left(\tau_{1}\right)$ forms a noncentral normal abelian subgroup contrary to the supposed quasiprimitivity of X.

To this end suppose $\left|\tau_{1} \tau_{3}\right|=\left|\tau_{1} \tau_{4}\right|=3$. As $\left|\tau_{1} \tau_{3}\right|=3,\left(\tau_{1}\right)^{\tau_{3}}=\left(\tau_{3}\right)^{\tau_{1}}$. Now $\left(\gamma\left(\tau_{3}\right)\right)^{\tau_{1}}=\gamma\left(\left(\tau_{3}\right)^{\tau_{1}}\right)=\gamma\left(\left(\tau_{1}\right)^{\tau_{3}}\right)=\left(\gamma\left(\tau_{1}\right)\right)^{\tau_{3}}$. Similarly $\left(\gamma\left(\tau_{1}\right)\right)^{\tau_{4}}=\left(\gamma\left(\tau_{4}\right)\right)^{\tau_{1}}=$ $\left(\gamma\left(\tau_{3}\right)\right)^{\tau_{1}}$ as $\gamma\left(\tau_{4}\right)=\gamma\left(\tau_{3}\right)$. Now $\left(\gamma\left(\tau_{1}\right)\right)^{\tau_{3} \tau_{4}}=\gamma\left(\tau_{1}\right)$ and so $\tau_{3} \tau_{4} \in N\left(\gamma\left(\tau_{1}\right)\right)$ and $\gamma\left(\tau_{3}\right) \in N\left(\gamma\left(\tau_{1}\right)\right)$. As $\left|\gamma\left(\tau_{1}\right)\right|=k$, a prime, this implies that $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ commute.

Suppose now that $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ do not commute. By the above argument one of $\left|\tau_{1} \tau_{3}\right|,\left|\tau_{1} \tau_{4}\right|$ is not 3 as is the case with $\left|\tau_{2} \tau_{3}\right|,\left|\tau_{2} \tau_{4}\right| ;\left|\tau_{1} \tau_{3}\right|,\left|\tau_{2} \tau_{3}\right|$; and $\left|\tau_{1} \tau_{4}\right|,\left|\tau_{2} \tau_{4}\right|$. Now $X \mid\left\langle\tau_{3}, \tau_{4}\right\rangle$ acts nontrivially on $V_{1}=X\left(g^{-1}\right) U_{1}$ and $V_{2}=X\left(g^{-1}\right) U_{2}$, and $X\left(\tau_{1}\right)$ and $X\left(\tau_{2}\right)$ fix $V_{1} \oplus V_{2}$ by Lemmas 3.6 and 3.7. Also $X\left(\tau_{3}\right)$ and $X\left(\tau_{4}\right)$ fix $U_{1} \oplus U_{2}$. Now $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle=Y \oplus Y_{1} \oplus$ $(n-8) 1_{\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle}$ where Y acts on $U_{1} \oplus U_{2}$. If Y_{1} acts on $V_{1} \oplus V_{2}$, then $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ commute since all the action is on complementary subspaces. If Y_{1} has only two linear constituents, all $U_{1}, U_{2}, V_{1}, V_{2}$ are fixed. As 2-dimensional primitive groups have no noncentral elements of order $k, \gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ are diagonal and so commute. This means Y_{1} is trivial. If Y is reducible again $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ are diagonal on U_{1} and U_{2} and so commute. If Y is irreducible adjoin a special involution τ_{5} for which $X\left(\tau_{5}\right)$ moves $U_{1} \oplus U_{2}$. Then by Lemmas 3.2 and 3.4, $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}\right\rangle$ has a 6 -dimensional irreducible monomial constituent R. Again $R\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ and $R\left(\left(\tau_{3} \tau_{4}\right)^{2}\right)$ are diagonal and we have $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ commuting.

It now follows that the group generated by all conjugates of $\gamma\left(\tau_{1}\right)$ is an abelian normal noncentral subgroup. This contradicts the quasiprimitivity of X. We have shown $k=3$, 4 , or 5 .

Suppose first $k=3$ or 5 . Again let τ_{3} be a special 2 -element for which $\left|\tau_{1} \tau_{3}\right|=2 k$ and under the isomorphism $\tau_{1} \rightarrow \tau_{1}, \tau_{2} \rightarrow \tau_{3}, X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ is similar to $X \mid\left\langle\tau_{1}, \tau_{3}\right\rangle$. We want to show $\left\langle\left(\tau_{1} \tau_{2}\right)^{2}\right\rangle=\left\langle\left(\tau_{1} \tau_{3}\right)^{2}\right\rangle$. Again as $\left|\tau_{1} \tau_{3}\right|-6$ or $10, X\left(\tau_{3}\right)$ leaves $U_{1} \oplus U_{2}$ invariant and so $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle=$ $Z \oplus(n-4) 1_{\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle}$. If Z is irreducible, let τ_{4} be a special 2-element for which $X\left(\tau_{4}\right)$ moves $U_{1} \oplus U_{2}$. Again by Lemmas 3.2 and 3.4 , and as $\left|\tau_{1} \tau_{2}\right| \neq 8$, $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle=R \oplus(n-6) 1_{\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle}$ where R is irreducible and monomial. As $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle$ has an irreducible 4-dimensional constituent one of $X\left(\tau_{2}\right), X\left(\tau_{3}\right)$ must act as the permutation $(1,3)(2,4)$ or $(1,4)(2,3)$. Now $Z\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ or $Z\left(\left(\tau_{1} \tau_{3}\right)^{2}\right)$ has nontrivial eigenvalues d, d, d, d and so both $Z\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ and $Z\left(\left(\tau_{1} \tau_{3}\right)^{2}\right)$ have these eigenvalues. Consequently. $X \mid\left\langle\left(\tau_{1} \tau_{2}\right)^{2},\left(\tau_{1} \tau_{3}\right)^{2}\right\rangle$ has at most 2-dimensional constituents. This is of course true also if Z is reducible.

Now let $A=\left\langle\left(\tau_{1} \tau_{2}\right)^{2},\left(\tau_{1} \tau_{3}\right)^{2}\right\rangle$ and $X \mid A=T_{1} \oplus T_{2} \oplus(n-4) 1_{A}$ where
T_{1} and T_{2} have degree 2 . If A is abelian and $\left\langle\left(\tau_{1} \tau_{2}\right)^{2}\right\rangle \neq\left\langle\left(\tau_{1} \tau_{3}\right)^{2}\right\rangle, A$ contains a special k-element. If A is nonabelian assume T_{1} is irreducible. As it is generated by elements of order k it is primitive. If $k=5, T_{1}(A) / Z\left(T_{1}(A)\right) \cong A_{5}$ and in a high commutator of A are elements contradicting Blichfeldt. This means $k=3$ and to avoid elements contradicting Blichfeldt, $T_{1}(A) / Z\left(T_{1}(A)\right) \cong A_{4}$. If T_{2} is reducible there is a special 4-element in A^{\prime}. If T_{2} is irreducible, $T_{2}(A) / Z\left(T_{2}(A)\right) \cong A_{4}$ and again there is an element v for which $X(v)$ has eigenvalues $(-1,-1,-1,-1,1, \ldots, 1)$. Now $X\left(v\left(\tau_{1} \tau_{2}\right)^{2}\right)$ contradicts Blichfeldt.

We have shown $\left\langle\left(\tau_{1} \tau_{2}\right)^{2}\right\rangle=\left\langle\left(\tau_{1} \tau_{3}\right)^{2}\right\rangle$. Again let $\gamma\left(\tau_{1}\right)=\left\langle\left(\tau_{1} \tau_{2}\right)^{2}\right\rangle$. This definition is independent of the particular choice of τ_{2} and we have the properties of γ obtained above. Again extend the definition to all special involutions σ_{1} for which there is a σ_{2} for which $\left|\sigma_{1} \sigma_{2}\right|=2 k$ and under the map $\sigma_{1} \rightarrow \tau_{1}, \sigma_{2} \rightarrow \tau_{2}$, $X \mid\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ is similar to $X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$.

As above, we again let $\tau_{3}=\tau_{1}{ }^{g}, \tau_{4}=\tau_{2}{ }^{g}$ for some $g \in G$. Suppose $k=5$ and $\gamma\left(\tau_{1}\right)$ does not commute with $\gamma\left(\tau_{3}\right)$. The argument above provides a contradiction unless $X \mid\left\langle\gamma\left(\tau_{1}\right), \gamma\left(\tau_{3}\right)\right\rangle$ has some two-dimensional constituents projectively representing A_{5}. Unless there are four such constituents, a high commutator contains an element contradicting Blichfeldt. If there are four, $U_{1} \oplus U_{2}$ and $V_{1} \oplus V_{2}$ are complementary. Here $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ act nontrivially on complementary subspaces and so commute.

Consider now $k=3$. We assume that $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ do not commute. As above, the pair $\left\{\left|\tau_{1} \tau_{3}\right|,\left|\tau_{1} \tau_{4}\right|\right\}$ cannot both be 3 nor can $\left\{\left|\tau_{2} \tau_{3}\right|,\left|\tau_{2} \tau_{4}\right|\right\}$, $\left\{\left|\tau_{1} \tau_{3}\right|,\left|\tau_{2} \tau_{3}\right|\right\}$, or $\left\{\left|\tau_{1} \tau_{4}\right|,\left|\tau_{2} \tau_{4}\right|\right\}$. It follows from Lemmas 3.6 and 3.7 that $X\left(\tau_{3}\right)$ and $X\left(\tau_{4}\right)$ both fix $U_{1} \oplus U_{2}$ and $X\left(\tau_{1}\right)$ and $X\left(\tau_{2}\right)$ both fix $X\left(g^{-1}\right)\left(U_{1} \oplus U_{2}\right)=V_{1} \oplus V_{2}$. If $U_{1} \oplus U_{2}$ and $V_{1} \oplus V_{2}$ are complementary, $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ commute. If $U_{1} \oplus U_{2}=V_{1} \oplus V_{2}$, let τ_{5} be a special 2-element for which $X\left(\tau_{5}\right)$ moves $U_{1} \oplus U_{2}$. If $X\left(\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle\right) \mid U_{1} \oplus U_{2}$ is irreducible, Lemmas 3.2 and 3.4 show $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ commute. If it is reducible, $X \mid\left\langle\gamma\left(\tau_{1}\right), \gamma\left(\tau_{3}\right)\right\rangle=Y_{1} \oplus Y_{2} \oplus(n-4) 1_{\left\langle\gamma\left(\tau_{1}\right), \gamma\left(\tau_{3}\right)\right\rangle}$. As $\left[\gamma\left(\tau_{1}\right), \gamma\left(\tau_{3}\right)\right] \neq 1$, we may assume Y_{1} is irreducible and hence primitive. If Y_{2} is reducible $\left\langle\gamma\left(\tau_{1}\right), \gamma\left(\tau_{3}\right)\right\rangle^{\prime}$ contains a special 4 -element. In any other case there is an element z with $Y_{1} \oplus Y_{2}(z)=\operatorname{diag}(-1,-1,-1,-1)$ and $z\left(\tau_{1} \tau_{2}\right)^{2}$ contradicts Blichfeldt. In the remaining case $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle$ is a sum of three 2 -dimensional constituents. Now $X \mid\left\langle\gamma\left(\tau_{1}\right), \gamma\left(\tau_{3}\right)\right\rangle$ has one 2 -dimensional constituent, the rest being linear. A commutator contains a special 4-element. This shows $k \neq 3$.

The final case remaining is $k=4$. This time we define $\gamma\left(\tau_{1}\right)=\left(\tau_{1} \tau_{2}\right)^{4}$. Again, we wish γ to be independent of our choice of τ_{2} and so we let τ_{3} be a special 2-element such that $X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ is similar to $X \mid\left\langle\tau_{1}, \tau_{3}\right\rangle$ under the usual isomorphism. By Lemmas 3.6 and $3.7 X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle=Y \oplus(n-4)_{\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle}$. If X_{1} and X_{2} are both faithful then $X\left(\left(\tau_{1} \tau_{2}\right)^{4}\right)=X\left(\left(\tau_{1} \tau_{3}\right)^{4}\right)=\operatorname{diag}(-1,-1,-1$, $-1,1,1, \ldots, 1)$. Suppose X_{2} is not faithful. If Y is irreducible let τ_{4} be a special 2-element such that $X\left(\tau_{4}\right)$ moves $U_{1} \oplus U_{2}$. Now by Lemma $3.4 X \mid\left\langle\tau_{1}\right.$, $\left.\tau_{2}, \tau_{3}, \tau_{4}\right\rangle$ satisfies the hypothesis of Lemma 3.2 with a monomial irreducible
constituent of degree 6 as X_{2} is not faithful. However, again as X_{2} is unfaithful, each of $\tau_{1}, \tau_{2}, \tau_{3}$ represent the same permutations and Y is reducible. This means $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle=Y_{1} \oplus Y_{2}$ where Y_{i} acts on U_{i} for $i=1,2$. If $X\left(\left(\tau_{1} \tau_{2}\right)^{4}\right) \neq X\left(\left(\tau_{1} \tau_{3}\right)^{4}\right),\left(\tau_{1} \tau_{2}\right)^{2}\left(\tau_{1} \tau_{3}\right)^{4}=\operatorname{diag}(i,-i, 1,1,1, \ldots, 1)$, a special 4-element. It follows then that $\left(\tau_{1} \tau_{2}\right)^{4}=\left(\tau_{1} \tau_{3}\right)^{4}=\gamma\left(\tau_{1}\right)$ and γ is independent of the choice of τ_{2}. Again extend γ to other possible special involutions.

Again let $\tau_{3}=\tau_{1}{ }^{g}, \tau_{4}=\tau_{2}{ }^{g}$ be conjugates of τ_{1}, τ_{2} and assume $\gamma\left(\tau_{1}\right)$ does not commute with $\gamma\left(\tau_{3}\right)$. Suppose first X_{2} is not faithful. Again the various pairs of orders cannot both be 3 and we see that $X\left(\tau_{3}\right)$ and $X\left(\tau_{4}\right)$ leave $U_{1} \oplus U_{2}$ invariant and $X\left(\tau_{1}\right)$ and $X\left(\tau_{2}\right)$ leave $X\left(g^{-1}\right)\left(U_{1} \oplus U_{2}\right)=V_{1} \oplus V_{2}$ invariant. Again if $V_{1} \oplus V_{2}$ and $U_{1} \oplus U_{2}$ are complementary, $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ commute. If $V_{1} \oplus V_{2} \neq U_{1} \oplus U_{2}, X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle$ acts nontrivially on $U_{1}, U_{2}, V_{1}, V_{2}$ and as $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ are scalar on each they must commute. This leaves $V_{1} \oplus V_{2}-U_{1} \oplus U_{2}$. Now $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle=Y \oplus(n-4) 1_{\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle}$. If Y is reducible $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ commute as each is scalar on U_{i}. If Y is irreducible let τ_{5} be a special 2-element for which $X\left(\tau_{5}\right)$ moves $U_{1} \oplus U_{2}$. The usual contradiction follows from Lemma 3.2 as here the irreducible constituent is monomial.

We are left with the case in which X_{2} is faithful. If $X\left(\tau_{3}\right), X\left(\tau_{4}\right)$ leave $U_{1} \oplus U_{2}$ invariant, and $X\left(\tau_{1}\right), X\left(\tau_{2}\right)$ leave $V_{1} \oplus V_{2}$ invariant, the argument above applies and provides a contradiction. This follows as the unfaithfulness of X_{2} was only used when $U_{1} \oplus U_{2}=V_{1} \oplus V_{2}$ and if X_{2} is faithful, $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ are both scalar on $U_{1} \oplus U_{2}$ and trivial elsewhere. We can assume then that $X\left(\tau_{3}\right)$ moves $U_{1} \oplus U_{2}$ and that $\tau_{1}, \tau_{2}, \tau_{3}$ satisfy the hypothesis of Lemma 3.6 where $\left|\tau_{1} \tau_{3}\right|=4$. From Lemma 3.6 we see

$$
\begin{gathered}
Y\left(\tau_{1}\right)=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad Y\left(\tau_{2}\right)=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & d & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & d & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \\
Y\left(\tau_{3}\right)=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

Let $\tau=\left(\tau_{1} \tau_{3}\right)^{2}$. Then $Y(\tau)$ is the permutation matrix corresponding to (1,2) $(5,6)$ and $Y\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)=\operatorname{diag}(d, \bar{d}, \bar{d}, d, 1,1)$. Now let $\tilde{\tau}=\left[\left(\tau_{1} \tau_{2}\right)^{2}, \tau\right], \tau^{*}=(\tilde{\tau})^{\tau_{2}}$. Computing we see $Y(\tilde{\tau})=\operatorname{diag}(-1,-1,1,1,1,1), Y\left(\tau^{*}\right)=\operatorname{diag}(1,1,-1,-1$,
$1,1)$ and $\left\langle\tilde{\tau} \tau^{*}\right\rangle=\gamma\left(\tau_{1}\right)$. Note that τ^{*} and τ_{3} commute and $\left|\tilde{\tau} \tau_{3}\right|=4$ with eigenvalues $i, i,-i,-i, 1,1$. It follows that $X\left(\tau^{*}\right)$ and $X(\tilde{\tau})$ do not move $V_{1} \oplus V_{2}$ and so $\tau^{*} \tilde{\tau}$ commutes with $\gamma\left(\tau_{3}\right)$; therefore, $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ commute. This final contradiction shows $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ commute and the proof of Theorem 3.1 is finished.

$$
\text { 4. }\left|\tau_{1} \tau_{2}\right|=2,3,4, \text { or } 5
$$

In this section we show that the product of two distinct special involutions must have order $2,3,4$, or 5 . This uses and considerably improves upon Theorem 3.1.

Theorem 4.1. If τ_{1} and τ_{2} are distinct special involutions in $G,\left|\tau_{1} \tau_{2}\right|=2,3$, 4 , or 5.

The proof of this theorem is the same in spirit as the proof of Theorem 3.1 and in fact could have been included in its proof. However, we felt Theorem 3.1 was complicated enough as it stands and included in this section the extra details needed to prove this stronger version.

Suppose that τ_{1} and τ_{2} are special involutions not satisfying the hypothesis of Theorem 4.1. This means $\left|\tau_{1} \tau_{2}\right|$ is odd. Replace τ_{1} and τ_{2} by special involutions for which $\left|\tau_{1} \tau_{2}\right|=p, 9,15$, or 25 where $p \geqslant 7$. This can be done by rechoosing special elements from $\left\langle\tau_{1}, \tau_{2}\right\rangle$. If $\left|\tau_{1} \tau_{2}\right|=25$, some power contains an element contradicting Blichfeldt or [12, Theorem 2] and so $\left|\tau_{1} \tau_{2}\right|=p, 9$, or 15 . Note that $X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle=X_{1} \oplus X_{2} \oplus(n-4) 1_{\left\langle\tau_{1}, \tau_{2}\right\rangle}$ where X_{i} acts on $U_{i}, i=1,2$. To avoid special elements X_{1} and X_{2} must be faithful and X_{1} not similar to X_{2}. This means U_{1} and U_{2} are unique. We prove analogs of Lemmas 3.2, 3.3, 3.4, and 3.6.

Lemma 4.2. Let H be a subgroup of G containing $\left\langle\tau_{1}, \tau_{2}\right\rangle$ and generated by special involutions. Suppose $X \mid H=Y \oplus \xi \oplus(n-7) 1_{H}$ where Y is irreducible of degree 6. Then Y is monomial and in an appropriate basis

$$
Y\left(\tau_{1}\right)=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad Y\left(\tau_{2}\right)=\left[\begin{array}{cccccc}
0 & \alpha_{1} & 0 & 0 & 0 & 0 \\
\alpha_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \alpha_{2} & 0 & 0 \\
0 & 0 & \bar{\alpha}_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

where $X_{i}\left(\tau_{1} \tau_{2}\right)=\operatorname{diag}\left(\alpha_{i}, \bar{\alpha}_{i}\right)$ and $i=1$, 2. The permutation group $Y(H)$ contains no 3-cycles.

Proof. The proof is identical to the proof of Lemma 3.2 except in the treatment of the nonmonomial case. Note that the second form of $Y\left(\tau_{2}\right)$ in Lemma 3.2 cannot occur since otherwise $\tau_{1} \tau_{2}$ has even order. Assume that Y permutes 2-dimensional subspaces. As in Lemma 3.2, it can be shown

$$
Y\left(\tau_{1}\right)=\left[\begin{array}{ccc}
0 & I_{2} & 0 \\
I_{2} & 0 & 0 \\
0 & 0 & I_{2}
\end{array}\right], \quad Y\left(\tau_{2}\right)=\left[\begin{array}{ccc}
0 & A & 0 \\
A^{-1} & 0 & 0 \\
0 & 0 & I_{2}
\end{array}\right]
$$

where $A=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}\right)$. Again let K be the normal subgroup which fixes each of the three 2-dimensional subspaces V_{1}, V_{2}, V_{3}, and $Y \mid K=R_{1} \oplus R_{2} \oplus R_{3}$. Again $R_{i}(H) / Z\left(R_{i}(H)\right)$ is projectively A_{4}, A_{5}, or S_{4}, and R_{i} is primitive. As $\alpha_{2} \neq \alpha_{1}$ and R_{i} is primitive, $\left|\alpha_{1}\right| \neq p$ where $p \geqslant 7$. However, $\left|\alpha_{1}\right|$ could be 9 or 15 with $\alpha_{1} \bar{\alpha}_{2}$ a cube or fifth root of 1 . If $R_{i}(H)$ represents A_{5}, a high commutator contains an element contradicting Blichfeldt. There must be an element z in K^{\prime} for which $R_{i}(z)=\operatorname{diag}(-1,-1)$. Conjugating and taking products we obtain either $\operatorname{diag}(-1,-1,-1,-1,1,1)$ or $\operatorname{diag}(-1,-1,-1,-1,-1,-1)$. If $h=\left(\tau_{1} \tau_{2}\right)^{5}$ or $h=\left(\tau_{1} \tau_{2}\right)^{3}, \quad Y(h)=\operatorname{diag}(\omega, \bar{\omega}, \bar{\omega}, \omega, 1,1)$. If we have $\operatorname{diag}(-1,-1,-1,-1,1,1)$, multiplying by $Y(h)$ contradicts Blichfeldt. Otherwise, if μ_{2} is as in Lemma 3.2, $Y\left(\left[h, \mu_{2}\right]\right) \operatorname{diag}(-1,-1,-1,-1,-1,-1)$ has all eigenvalues $-\omega$ or $-\bar{\omega}$ contradicting Blichfeldt.

Lemma 4.3. Let H be a subgroup of G containing $\left\langle\tau_{1}, \tau_{2}\right\rangle$ and generated by special involutions. Suppose $X \mid H=Y \oplus \xi \oplus(n-8) 1_{H}$ where Y is irreducible of degree 7. Then Y is monomial and in an appropriate basis

$$
Y\left(\tau_{1}\right)=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
Y\left(\tau_{2}\right)=\left[\begin{array}{ccccccc}
0 & \alpha_{1} & 0 & 0 & 0 & 0 & 0 \\
\bar{\alpha}_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \alpha_{2} & 0 & 0 & 0 \\
0 & 0 & \bar{\alpha}_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Also $Y(H)$ contains no 3-cycles.

Proof. This is the same as Lemma 3.3. The second form for $Y\left(\tau_{2}\right)$ does not occur as $\left|\tau_{1} \tau_{2}\right|$ is odd.

Lemma 4.4. There can be no subgroup H of G such that H contains $\left\langle\tau_{1}, \tau_{2}\right\rangle$ and $X \mid H=Y \oplus \xi \oplus(n-6) 1_{H}$ where Y is irreducible of degree 5 .

Proof. This is the same as Lemma 3.4.
We now proceed to a lemma analogous to Lemma 3.6.
Lemma 4.5. Suppose τ_{3} is a special 2-element such that $X\left(\tau_{3}\right)$ moves both $U_{1} \oplus U_{2}$ and U_{1}. Then $\left|\tau_{1} \tau_{3}\right|=3$.

Proof. We again divide the proof into cases according to how $Y \mid H$ breaks into irreducible constituents where $H=\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle$.

Case A. $X \mid H=Y_{1} \oplus Y_{2} \oplus(n-6) 1_{H}$ where Y_{1} is irreducible of degree 3 and acts on a space containing U_{1}.

In this case Y_{1} is monomial as $Y_{1}\left(\tau_{1} \tau_{2}\right)$ is a Blichfeldt element. As $\left|X\left(\tau_{1} \tau_{2}\right)\right|=\left|\tau_{1} \tau_{2}\right| \neq 3$ we can assume

$$
Y_{1}\left(\tau_{1}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad Y_{1}\left(\tau_{2}\right)=\left[\begin{array}{ccc}
0 & \alpha_{1} & 0 \\
\bar{\alpha}_{1} & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad Y_{1}\left(\tau_{3}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

and so $\left|Y_{1}\left(\tau_{1} \tau_{3}\right)\right|=3$. To avoid special elements using Theorem 3.1 we see $\left|Y_{2}\left(\tau_{1} \tau_{3}\right)\right|=3$ and $\left|\tau_{1} \tau_{3}\right|=3$.

Case B. $X \mid H=Y_{1} \oplus Y_{2} \oplus(n-6) 1_{H}$ where Y_{1} is irreducible of degree 4 acting on a space containing U_{1}.

Again Y_{1} is imprimitive and we see

$$
\begin{gathered}
Y_{1}\left(\tau_{1}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad Y_{1}\left(\tau_{2}\right)=\left[\begin{array}{cccc}
0 & \alpha_{1} & 0 & 0 \\
\bar{\alpha}_{1} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
Y_{1}\left(\tau_{3}\right)=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

Now [$\tau_{1} \tau_{2}, \tau_{3}$] contradicts Blichfeldt.
Case C. $X \mid H=Y \oplus \xi \oplus(n-6) 1_{H}$ where Y is irreducible of degree 5 . This case is impossible by Lemma 4.4.

Case D. $X \mid H=Y \oplus(n-6) I_{H}$ where Y is irreducible of degree 6 . By

Lemma 4.2, Y is monomial with $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)$ representing the same permutation $(1,2)(3,4)$. But now adjoining the permutation $Y\left(\tau_{3}\right)$ cannot make the permutation group transitive on six letters and Y must be reducible. 'This proves the lemma.

As in the proof of Theorem 3.1 we now wish to define $\gamma\left(\tau_{1}\right)$. We do this differently for the different values of $\left|\tau_{1} \tau_{2}\right|$. If $\left|\tau_{1} \tau_{2}\right|=p$, a prime, define $\gamma\left(\tau_{1}\right)=\left\langle\tau_{1} \tau_{2}\right\rangle$. If $\left|\tau_{1} \tau_{2}\right|=15$, define $\gamma\left(\tau_{1}\right)=\left\langle\left(\tau_{1} \tau_{2}\right)^{5}\right\rangle$, and if $\left|\tau_{1} \tau_{2}\right|=9$, define $\gamma\left(\tau_{1}\right)=\left\langle\left(\tau_{1} \tau_{2}\right)^{3}\right\rangle$. We again wish to show that this definition does not depend on the choice of τ_{2}. Let τ_{3} be any other special involution such that $X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ is similar to $X \mid\left\langle\tau_{1}, \tau_{3}\right\rangle$ under the isomorphism sending $\tau_{1} \rightarrow \tau_{1}$ and $\tau_{2} \rightarrow \tau_{3}$. By Lemma 4.5, as $\left|\tau_{1} \tau_{3}\right| \neq 3, X\left(\tau_{3}\right)$ fixes one of $U_{1} \oplus U_{2}$ or U_{1}. Since $X_{i} \mid\left\langle\tau_{1}, \tau_{2}\right\rangle$ is faithful on U_{i}, Lemma 4.5 holds when U_{1} is replaced by U_{2}, and so $X\left(\tau_{3}\right)$ fixes one of $U_{1} \oplus U_{2}$ or U_{2}. In any case $X\left(\tau_{3}\right)$ now fixes $U_{1} \oplus U_{2}$. So $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle=Y \oplus(n-4) 1_{\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle}$ If Y is irreducible let τ_{4} be a special involution such that $X\left(\tau_{4}\right)$ moves $U_{1} \oplus U_{2}$. By Lemmas 4.2 and 4.4, $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle$ has an irreducible monomial 6-dimensional constituent R. Now using the form for $R\left(\tau_{i}\right)$ for $i=-1,2,3$ we see Y is reducible. This means $Y=Y_{1} \oplus Y_{2}$ where Y_{i} acts on U_{i} for $i=1$, 2. As $Y_{i}\left(\tau_{1} \tau_{2}\right)=$ $\operatorname{diag}\left(\alpha_{i}, \bar{\alpha}_{i}\right), Y_{i}$ is imprimitive and so $\tau_{1} \tau_{2}$ and $\tau_{1} \tau_{3}$ commute. If $\left\langle\tau_{1} \tau_{2}\right\rangle \neq\left\langle\tau_{1} \tau_{3}\right\rangle$ there is a special element. We see $\gamma\left(\tau_{1}\right)$ does not depend on the choice of τ_{2} and the properties of γ needed will apply. As in Section 3, extend the definition of γ to all appropriate special involutions.

Now let $\tau_{3}=\tau_{1}{ }^{g}$ and $\tau_{4}=\tau_{2}{ }^{g}$. We will obtain a proof of Theorem 4.1 by showing $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ commute. If $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ do not commute we again find that $\left|\tau_{1} \tau_{3}\right|$ and $\left|\tau_{2} \tau_{3}\right|$ are not both 3 and so $X\left(\tau_{3}\right)$ fixes $U_{1} \oplus U_{2}$. Here we use the fact that if $\left|\tau_{1} \tau_{2}\right|=9$ we have chosen $\gamma\left(\tau_{1}\right)=\left\langle\left(\tau_{1} \tau_{2}\right)^{3}\right\rangle$ rather than $\left\langle\tau_{1} \tau_{2}\right\rangle$. Similarly $X\left(\tau_{i}\right)$ for $i=1,2,3,4$ fix $U_{1} \oplus U_{2}$ and $X\left(g^{-1}\right)\left(U_{1} \oplus U_{2}\right)=$ $V_{1} \oplus V_{2}$. If $U_{1} \oplus U_{2}$ and $V_{1} \oplus V_{2}$ are complementary, $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ act nontrivially on complementary spaces and so commute. If $U_{1} \oplus U_{2} \neq V_{1} \oplus V_{2}$, all $X\left(\tau_{i}\right)$ leave $U_{1}, U_{2}, V_{1}, V_{2}$ invariant and on each such subspace the representation is imprimitive. Consequently $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ commute. If $U_{1} \oplus U_{2}=$ $V_{1} \oplus V_{2}$ and U_{1}, U_{2} are left invariant, $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ must commute as above. If $U_{1} \oplus U_{2}=V_{1} \oplus V_{2}$ and U_{1} is not fixed by $X\left(\left\langle\tau_{3}, \tau_{4}\right\rangle\right)$ let τ_{5} be a special involution for which $X\left(\tau_{5}\right)$ moves $U_{1} \oplus U_{2}$. Applying Lemma 4.2 we see $\gamma\left(\tau_{1}\right)$ and $\gamma\left(\tau_{3}\right)$ are diagonal and so commute. This completes the proof of Theorem 4.1.

5. Bad Involutions Whose Product Has Order 4

In this section we reduce the main theorem to one final case that is completed in Section 6. We call two special involutions bad of order 4 if their product has order 4 and their square is not special. In a counterexample to the main theorem, in view of Theorems 3.1 and 4.1, there must be some bad pair of order 4 whose
square is not in $O_{2}(G)$. We prove some preliminary results and then describe the subgroups generated by three special involutions $\tau_{1}, \tau_{2}, \tau_{3}$ where τ_{1}, τ_{2} are bad of order 4. The object is to show that if τ_{1}, τ_{2} are bad of order 4 and τ_{3}, τ_{4} are bad of order 4 , then $\left\langle\left(\tau_{1} \tau_{2}\right)^{2},\left(\tau_{3} \tau_{4}\right)^{2}\right\rangle$ is a 2 -group, which by Baer's theorem [6, Theorem 3.8.2] will complete the proof of the main theorem. Theorem 5.4 reduces the problem to the final case done in Section 6.

Lemma 5.1. Let H be a subgroup generated by special 2-elements such that $X \mid H=X_{1} \oplus \xi \oplus(n-8) \mathrm{l}_{H}$ where X_{1} is irreducible and monomial acting on a basis v_{1}, \ldots, v_{7}, and ξ is linear. Then $X_{1}(H)$ acts as the permutation group $P_{S L} L_{2}(7)$ on $\left\langle v_{1}\right\rangle, \ldots,\left\langle v_{7}\right\rangle$.

Proof. Special 2-elements acting on $\left\langle v_{1}\right\rangle, \ldots,\left\langle v_{7}\right\rangle$ either fix each subspace, or act as a 2 -cycle, or as a product of disjoint 2 -cycles. As X_{1} is irreducible, $X_{1}(H)$ is transitive on $\left\langle v_{1}\right\rangle, \ldots,\left\langle v_{7}\right\rangle$.

We first show that a transitive permutation group on seven letters generated by elements of the form (a, b) or $(a, b)(c, d)$ is $P S L_{2}(7), A_{7}$, or S_{7}. Let L be such a group. If $(a, b) \in L, L \cong S_{7}$ as is well known. We may assume the generators of L have the form $(a, b)(c, d)$. So $L \subseteq A_{7}$. Assume L is solvable. Let L_{1} be a minimal normal elementary abelian subgroup of L. A 7 -cycle does not normalize a subgroup with a fixed point and so L_{1} is not a 2 -group, 3 -group, or 5 -group. As $(a b)(c d)$ does not normalize a 7 -cycle, L_{1} could not exist. If $L \neq A_{7}$, then L contains $A_{5}, P S L_{2}(7)$, or $P S L_{2}(8)$ as a composition factor. The latter is impossible as A_{7} has no subgroup of index 5 . The first is impossible as $\left|A_{5}\right|||L|$ and $7\left||L|\right.$ implies $\left.2^{2} \cdot 3 \cdot 5 \cdot 7\right||L|$ but A_{7} has no subgroup of index 6,3 , or 2 . As $P S L_{2}(7)$ has index 15 in A_{7}, it is maximal, and so $L \cong P S L_{2}(7)$.

We now assume $X_{1}(H)$ acts as the permutation group A_{7} or S_{7}. Let H_{1} be a Sylow 3-subgroup of the diagonal group of $\left(X_{1} \oplus \xi\right)(H)$. Let $K=\Omega_{1}\left(H_{1}\right)$. Assume K is nontrivial. Then as $\xi \mid K=1_{K}, X_{1}(K)$ has no nontrivial scalar matrices. Let $g \in H$ be a 7 -element with $X_{1}(g)$ a 7 -cycle. Then $g \in N_{H}(K)$ and $\langle g, K\rangle$ has order $3^{a} 7^{b}$ where $|K|=3^{a}$. As $[g, K] \neq 1$ because $X_{1}(K)$ is not all scalars, $\langle g, K\rangle$ has morc than one Sylow 7-group. So for some $c \leqslant a$ and $c \geqslant 1,3^{c} \equiv 1 \bmod 7$. Hence, $a \geqslant 6$ and we have a special 3 -element in K, a contradiction. So H_{1} is trivial, and in particular the Sylow 3-group of H is $Z_{3} \times Z_{3}$. Such a group is $\langle g, h\rangle$ and must be

$$
X_{1}(g)=\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \omega & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \omega & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \omega & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad X_{1}(h)=\left[\begin{array}{ccccccc}
\omega & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \omega & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \omega & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\text { where } \omega=e^{2 \pi i / 3} \text {. }
$$

As H is generated by special 2-elements, there is a special 2-element $\tau \in H$ with

$$
X_{1}(\tau)=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

So $g^{-1} g^{\tau}$ is a special 3-element, a contradiction.
Lemma 5.2. Let $\tau_{1}, \tau_{2}, \tau_{3}$ be special involutions such that $X\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ has eigenvalues $-1,-1,-1,-1,1,1, \ldots$. Then $\left|\tau_{1} \tau_{3}\right| \neq 5$.

Proof. Assume $\left|\tau_{1} \tau_{3}\right|=5$. Then $X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle=X_{1} \oplus X_{2} \oplus(n-4) 1_{\left\langle\tau_{1}, \tau_{2}\right\rangle}$ and $X \mid\left\langle\tau_{1}, \tau_{3}\right\rangle=Y_{1} \oplus Y_{2} \oplus(n-4) 1_{\left\langle\tau_{1}, \tau_{3}\right\rangle}$ where X_{i}, Y_{i} are faithful and irreducible of degree 2. Let X_{i} act on U_{i}. Assume first that τ_{3} fixes $U_{1} \oplus U_{2}$. Then $X \mid\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle=Y \oplus(n-4) 1_{\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle}$ and $Y\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)=\operatorname{diag}(-1,-1$, $-1,-1)$. So $\tau=\tau_{3}\left(\tau_{1} \tau_{2}\right)^{2}$ is a special involution and $\tau_{1} \tau$ has order 10 , a contradiction to Theorem 3.1. Without loss of generality we may assume $X\left(\tau_{3}\right) U_{1} \nsubseteq$ $U_{1} \oplus U_{2}$. Let $H=\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle$. We examine four cases.

Case A. $\quad X \mid H=T_{1} \oplus T_{2} \oplus(n-6) 1_{H}$ where T_{1} is irreducible of degree 3 acting on a subspace containing U_{1}. If T_{1} is monomial, $T_{1}\left(\left\langle\tau_{1}, \tau_{2}\right\rangle\right)$ must fix one of the basis vectors. As T_{1} is irreducible, $T_{1}\left(\tau_{3}\right)$ must move that vector; hence $T_{1}\left(\tau_{1} \tau_{3}\right)$ is a 2 -cycle or 3 -cycle contradicting $\left|T_{1}\left(\tau_{1} \tau_{3}\right)\right|=5$. So T_{1} is primitive. As $5 \| T_{1}(H) \mid, T_{1}(H)$ is projectively A_{5} or \mathscr{A}_{6}. In the first case $T_{1}(H) \cong Z_{2} \times A_{5}$, which has no elements of order 4, a contradiction. In the second case $T_{1}\left(H^{\prime}\right)$ must be the nonsplitting central extension of Z_{3} by A_{6}. As T_{1} is nonunimodular, $Z\left(T_{1}(H)\right)>Z\left(T_{1}\left(H^{\prime}\right)\right)$ and so $\left|Z\left(T_{1}(H)\right)\right|=6$. By [7, Theorem 5.5.1] as G has no special 3-elements, T_{2} is irreducible with $T_{1}(H) \cong T_{2}(H)$ with ker $T_{i} \subseteq Z(H)$. In any case we get an element with eigenvalues $-\omega,-\omega,-\omega,-\omega,-\omega,-\omega, 1,1, \ldots$, or $-\omega,-\omega,-\omega,-\bar{\omega},-\bar{\omega},-\bar{\omega}, 1,1, \ldots$, contradicting Blichfeldt.

Case B. $X \mid H=T_{1} \oplus T_{2} \oplus(n-6) 1_{H}$ where T_{1} is irreducible of degree 4 acting on a subspace containing U_{1}. By assumption $T_{2}\left(\left\langle\tau_{1}, \tau_{2}\right\rangle\right)$ is irreducible. But then $T_{2}\left(\tau_{3}\right)$ must be trivial as $T_{1}\left(\tau_{i}\right)$ cannot all have exactly one eigenvalue -1 in order for T_{1} to be irreducible. So $T_{2}\left(\left\langle\tau_{1}, \tau_{3}\right\rangle\right)$ has a nontrivial linear constituent, a contradiction.

Case C. $X \mid H=T \oplus \xi \oplus(n-6) 1_{H}$ where T is irreducible of degree 5 . As $\left\langle\tau_{1}, \tau_{2}\right\rangle,\left\langle\tau_{1}, \tau_{3}\right\rangle$ have no nontrivial linear constituents, $\xi=1_{H}$. Let τ be a special involution moving the subspace V_{0} on which T acts. Let $K=\langle H, \tau\rangle$. Then $X \mid K=R \oplus(n-7) 1_{K}$.

Suppose R is irreducible. So R is monomial by Lemma 2.1 in some basis v_{1}, \ldots, v_{7}. As a permutation group of $\left\langle v_{1}\right\rangle, \ldots,\left\langle v_{7}\right\rangle, R(K)$ is $P S L_{2}(7)$ by Lemma 5.1. We may assume τ_{1} acts as the permutation $(1,2)(3,4)$ or is diagonal. In the latter case $\left|\tau_{1} \tau_{3}\right| \neq 5$. As τ_{1}, τ_{2} are bad of order 4, the only possibility is for $R\left(\tau_{2}\right)$ to fix $\left\langle v_{5}\right\rangle,\left\langle v_{6}\right\rangle$, and $\left\langle v_{7}\right\rangle$. As T is irreducible τ_{3} must move one of $\left\langle v_{5}\right\rangle$, $\left\langle v_{6}\right\rangle$, and $\left\langle v_{7}\right\rangle$, making $\tau_{1} \tau_{3}$ a 5-cycle. As $P S L_{2}(7)$ has no 5-elements, we have a contradiction.

So $R=R_{1} \oplus \xi$ where R_{1} is irreducible of degree 6 . If H^{τ} acts invariantly on $V_{0}, H \tau V_{0}=\tau V_{0}$ and so $\tau V_{0}=V_{0}$, a contradiction. So $R_{1} \mid\left\langle H, H^{r}\right\rangle$ is irreducible and $\xi \mid\left\langle H, H^{\tau}\right\rangle$ is trivial. Let $\tilde{\tau}$ be a special involution which moves the subspace on which R_{1} acts. If $\tilde{\tau}$ fixes V_{0}, then $\tilde{\tau}^{g}$ does not for some $g \in\left\langle H, H^{\tau}\right\rangle$. Replace $\tilde{\tau}$ by $\tilde{\boldsymbol{\tau}}^{g}$. If $X \mid\langle H, \tilde{\tau}\rangle$ has an irreducible constituent of degree 7 , we argue as in the preceding paragraph. If not, the $n-6$ dimensional subspaces on which $(n-6) 1_{\left\langle H, H^{\tau}\right\rangle}$ and $(n-6) 1_{\left\langle H, H^{*}\right\rangle}$ act intersect in a subspace of dimension $n-7$. Hence $X \mid\left\langle H, H^{\tau}, H^{\tau}\right\rangle=S \oplus(n-7) 1_{\left\langle H, H^{\tau}, H^{7}\right\rangle}$ where S is irreducible. We obtain a contradiction as in the preceding paragraph.

Case D. $X \mid H=T \oplus(n-6) 1_{H}$ where T is irreducible of degree 6. By Lemma 2.1 T is imprimitive. Suppose T permutes 2-dimensional spaces. As T is irreducible, at most one $T\left(\tau_{i}\right)$ is block diagonal. As $\left|T\left(\tau_{1} \tau_{3}\right)\right|=5$, we may assume

$$
T\left(\tau_{1}\right)=\left[\begin{array}{ccc}
0 & A & 0 \\
B & 0 & 0 \\
0 & 0 & I_{2}
\end{array}\right], \quad T\left(\tau_{3}\right)=\left[\begin{array}{ccc}
0 & C & 0 \\
D & 0 & 0 \\
0 & 0 & I_{2}
\end{array}\right]
$$

But then T is irreducible implies

$$
T\left(\tau_{2}\right)=\left[\begin{array}{ccc}
I_{2} & 0 & 0 \\
0 & 0 & E \\
0 & F & 0
\end{array}\right] \quad \text { or } \quad T\left(\tau_{2}\right)=\left[\begin{array}{ccc}
0 & 0 & E \\
0 & I_{2} & 0 \\
F & 0 & 0
\end{array}\right] .
$$

Now $3\left|\left|\tau_{1} \tau_{2}\right|\right.$, a contradiction.
This means that T is monomial in some basis v_{1}, \ldots, v_{6}. If both $T\left(\tau_{1}\right)$ and $T\left(\tau_{3}\right)$ are not products of two disjoint 2-cycles, then either T is reducible or $\left|\tau_{1} \tau_{3}\right| \neq 5$ a contradiction. As τ_{1}, τ_{2} are bad of order $4, T_{\left(\tau_{1}\right)}$ and $T_{\left(\tau_{2}\right)}$ both fix 5 and 6. Since T is irreducible, $T\left(\tau_{3}\right)$ is $(a, 5)(b, 6)$ contradicting $\left|\tau_{1} \tau_{3}\right|=5$.

Theorem 5.3. Let $\tau_{1}, \tau_{2}, \tau_{3}$ be special involutions such that $X \mid\left\langle\tau_{1}, \tau_{2}\right\rangle=$ $X_{1} \oplus X_{2} \oplus(n-4) 1_{\left\langle\tau_{1}, \tau_{2}\right\rangle}$ where the X_{i} are irreducible of degree 2 with $X\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ having eigenvalues $-1,-1,-1,-1,1,1,1, \ldots$. Let $H=\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle$. Then, by ordering τ_{1}, τ_{2} correctly, one of the following occurs.
I. $X \mid H=Y \oplus \xi \oplus(n-5) 1_{H}$ where Y has degree 4 and ξ is linear.
II. $X \mid H=Y_{1} \oplus Y_{2} \oplus \xi_{1} \oplus \xi_{2} \oplus(n-6) 1_{H}$ where Y_{1}, Y_{2} are irreducible of degree 2 and ξ_{1}, ξ_{2} are nontrivial; $H \cong\left\langle\tau_{1}, \tau_{2}\right\rangle \times\left\langle\tau_{3}\right\rangle \cong D_{8} \times Z_{2}$.
III. $X \mid H=Y_{1} \oplus Y_{2} \oplus(n-6) 1_{H}$ where Y_{1}, Y_{2} are irreducible of degree 3 with

$$
\left(Y_{1} \oplus Y_{2}\right)\left(\tau_{1}\right)=\left[\begin{array}{lll|l}
0 & 1 & 0 & \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & \\
\hline & & \left.\begin{array}{llll}
1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left(Y_{1} \oplus Y_{2}\right)\left(\tau_{3}\right)=\left[\begin{array}{lll|l}
1 & 0 & 0 & \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & \\
\hline & & 1 & 0
\end{array}\right] \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 &
\end{array}\right] .
$$

The following possibilities hold for τ_{2} :
A. $\left(Y_{1} \oplus Y_{2}\right)\left(\tau_{2}\right)=\left[\begin{array}{ccc|ccc}0 & \mp i & 0 \\ \pm i & 0 & 0 & & 0 & \\ 0 & 0 & 1 & & & \\ \hline & & & \begin{array}{ccc}0 & \mp i & 0 \\ \pm i & 0 & 0 \\ & 0 & 0\end{array} & 1\end{array}\right] ;$

$$
H \cong\left(Z_{4} \times Z_{4}\right) * S_{3}
$$

B. $\left(Y_{1} \oplus Y_{2}\right)\left(\tau_{2}\right)=\operatorname{diag}(-1,1,1,-1,1,1) ; \quad H \cong Z_{2} \times S_{4}$.
C. $\left(Y_{1} \oplus Y_{2}\right)\left(\tau_{2}\right)=\operatorname{diag}(-1,1,1,1,-1,1)$;

$$
H \cong\left(Z_{2} \times Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}\right) * S_{3}
$$

IV. $X \mid H=Y_{1} \oplus Y_{2} \oplus(n-6) 1_{H}$ where Y_{1} is irreducible of degree 4 and Y_{2} is irreducible of degree 2 such that

$$
\begin{aligned}
& \left(Y_{1} \oplus Y_{2}\right)\left(\tau_{1}\right)=\left[\begin{array}{llll|l}
0 & 1 & 0 & 0 & \\
1 & 0 & 0 & 0 & \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & \\
\hline & & & & \\
& 0 & 0 & 1 \\
& & 1 & 0
\end{array}\right], \\
& \left(Y_{1} \oplus Y_{2}\right)\left(\tau_{2}\right)=\operatorname{diag}(-1,1,1,1,-1,1), \\
& \left(Y_{1} \oplus Y_{2}\right)\left(\tau_{3}\right)=\left[\begin{array}{llll|l}
0 & 0 & 1 & 0 & \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & \\
0 & 1 & 0 & 0 & \\
\hline & 0 & 1 & 0 & 0
\end{array}\right], H \cong\left(Z_{2} \times Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}\right) * D_{8} .
\end{aligned}
$$

Here $A * B$ is a semidirect product of A by B.

Proof. Let $X_{1} \oplus X_{2}$ act on U. If τ_{3} fixes U, then clearly I or II are the only possibilities. So we assume τ_{3} does not fix U. We obtain the following cases.

Case A. $X \mid H=Y_{1} \oplus Y_{2} \oplus(n-6) 1_{H}$ where Y_{1} is irreducible of degree 3. Then either Y_{2} is irreducible or $Y_{2}=Y_{3} \oplus \xi$ where Y_{3} is irreducible of degree 2.

Assume first that Y_{1} is primitive. By [1] or [5, Sect. 8.5] we note that $Y_{1}(H)$ is not a subgroup of an extra special group extended by $S L_{2}(3)$ as none of these groups are generated by involutions. $Y_{1}(H)$ is not projectively A_{5} since then $Y_{1}(H) \cong A_{5} \times Z_{2}$ which has no elements of order 4. If $Y_{1}(H)$ is projectively $P S L_{2}(7)$ or \tilde{A}_{6}, in order to avoid special 3-elements, Y_{2} is irreducible. If $Y_{1}(H)$ is projectively $A_{6}, \quad Y_{1}(H) \cong \tilde{A}_{6} \times Z_{2}$; avoiding special 3-elements implies $Y_{2}(H) \cong \widetilde{A_{6}} \times Z_{2}$. Then H contains an element with eigenvalues $-\omega,-\omega,-\omega$, $-\omega,-\omega,-\omega, 1,1, \ldots$, or $-\bar{\omega},-\bar{\omega},-\bar{\omega},-\omega,-\omega,-\omega, 1,1, \ldots$, contradicting Blichfeldt. So $Y_{1}(H) \cong P S L_{2}(7) \times Z_{2}$. In order to avoid special 3-elements, $Y_{2}(H) \cong P S L_{2}(7) \times Z_{2}$. Choose a special involution τ_{4} which moves the subspace on which $Y_{1} \oplus Y_{2}$ acts. Let $K=\left\langle H, \tau_{4}\right\rangle$. Then $X \mid K=T \oplus(n-8) 1_{K}$. The following could happen:
(i) $T=T_{1} \oplus T_{2}$ where T_{1} is irreducible of degree 4. As $P S L_{2}(7)$ is simple, T_{1} is primitive. By [3, II, p. 426] and [1] or [5, Sect. 8.5], elements centralizing a 7-element are scalars, contradicting the forms of H.
(ii) $T=T_{1} \oplus T_{2}$ where T_{1} is irreducible of degree 5 or 6 . As $P S L_{2}(7)$ is simple, T_{1} is primitive, contradicting Lemma 2.1.
(iii) $T=T_{1} \oplus \xi$ where T_{1} is irreducible of degree 7.

If T_{1} is monomial, the 7 -element is a 7 -cycle which could not be centralized by a nonscalar element, a contradiction. So T_{1} is primitive, a contradiction to Lemma 2.1.
(iv) T is irreducible. As in (iii) T is not monomial. As $P S L_{2}(7)$ is simple, T cannot permute 2 -dimensional subspaces. So T is primitive and by [13], $7^{2}+|K|$. By [2], the centralizer of a 7-element never has an element with eigenvalues $-1,-1,-1,-1,-1,-1,1,1$, a contradiction.

So Y_{1} is monomial. By ordering τ_{1}, τ_{2} correctly, we may assume

$$
Y_{1}\left(\tau_{1}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad Y_{1}\left(\tau_{3}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

and

$$
Y_{1}\left(\tau_{2}\right)=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \text { or } \quad\left[\begin{array}{ccc}
0 & \pm i & 0 \\
\mp i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Suppose $Y_{2}=Y_{3} \oplus \xi$ where Y_{3} is irreducible of degree 2. As $\left|Y_{1}\left(\tau_{1} \tau_{3}\right)\right|=3$, $\left|\tau_{1} \tau_{3}\right|=3$. Then if $\tau=\left(\tau_{1} \tau_{2}\right)^{2}$ and $z=\tau^{\tau_{3}} \tau_{3} \tau_{1} \tau,\left(Y_{1} \oplus Y_{3}\right)(z)=\operatorname{diag}(1,1,1$, $-1,-1)$. But $\tau_{3} z$ is a special involution and $\left|\tau_{1}\left(\tau_{3} z\right)\right|=6$, a contradition to Theorem 3.1.

So Y_{2} is irreducible and hence also monomial. In order to avoid special 3-elements,

$$
Y_{2}\left(\tau_{1}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad Y_{2}\left(\tau_{3}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

The possibilities for $Y_{1} \oplus Y_{2}\left(\tau_{2}\right)$ are

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
\pm 1 & 0 & 0 \\
0 & \mp 1 & 0 & & & \\
0 & 0 & 1 & & \\
\hline & & & 0 & \pm i & 0 \\
& 0 & & \mp i & 0 & 0 \\
& & & 0 & 0 & 1
\end{array}\right],} \\
& \operatorname{diag}(-1,1,1,-1,1,1),
\end{aligned}
$$

$\operatorname{diag}(1,-1,1,1,-1,1), \operatorname{diag}(-1,1,1,1,-1,1)$, and $\operatorname{diag}(1,-1,1,-1,1,1)$.

In the second and third cases, $\left(\tau_{2} \tau_{3}\right)^{4}$ is a special 3 -element. Replacing τ_{2} by $\tau_{2}^{\tau_{1}}$, cases 4 and 6 are equivalent to 5 and 7 , respectively.

Case B. $\quad X \mid H=Y_{1} \oplus Y_{2} \oplus(n-6) 1_{H}$ where Y_{1} is irreducible of degree 4 and Y_{2} is irreducible of degree 2. Then $Y_{2}\left(\tau_{3}\right)$ is trivial and $Y_{2}(H)$ is dihedral of order 8. Assume Y_{1} is primitive. Then in order to avoid special 3-elements there is an element $z \in H^{\prime \prime}$ with $Y_{1}(z)=\operatorname{diag}(-1,-1,-1,-1)$. Suppose there are special involutions $\tau, \tilde{\tau} \in H$ such that $|\tau \tilde{\tau}|=3$ or 5 . Then $\tilde{\tau} z$ is a special involution and $|\tau(\widetilde{\tau} z)|=6$ or 10 , a contradiction. So by [6, Theorem 3.8.2], H is a 2-group contradicting the primitivity of Y_{1}. If Y_{1} permutes 2 dimensional spaces, $Y_{1}\left(\tau_{i}\right)$ for $i=1,2$ are block diagonal and $Y_{1}\left(\tau_{3}\right)$ permutes the blocks, implying Y_{1} is monomial.

So
$\left(Y_{\mathbf{1}} \oplus Y_{2}\right)\left(\tau_{1}\right)=\left[\begin{array}{lll|l}A & & 0 & \\ 0 & 1 & 0 & 0 \\ & 0 & 1 & - \\ \hline & 0 & & A\end{array}\right], \quad\left(Y_{\mathbf{1}} \oplus Y_{2}\right)\left(\tau_{3}\right)=\left[\begin{array}{llll|l}0 & 0 & 1 & 0 & \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \\ \hline & & & 1 & \\ & 0 & & 1 & 1\end{array}\right]$,
and

$$
\left(Y_{1} \oplus Y_{2}\right)\left(\tau_{2}\right)=\left[\begin{array}{lll|l}
B & & 0 & \\
0 & 1 & 0 & 0 \\
& 0 & 1 & - \\
\hline & 0 & & B
\end{array}\right]
$$

By a change of basis, we get conclusion IV.
Case C. $X \mid H=Y \oplus \xi \oplus(n-6) 1_{H}$ where Y is irreducible of degree 5 . By Lemma 2.1, Y is monomial. $Y(H)$ can have no 2-cycles as $Y(H)$ would be an abelian diagonal group acted upon by S_{5} and would contain a special 3-element. By ordering τ_{1}, τ_{2} correctly,

$$
\left.\begin{array}{rl}
Y\left(\tau_{1}\right)=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \quad Y\left(\tau_{2}\right)=\left[\begin{array}{cccc}
\pm 1 & 0 & 0 & 0 \\
0 & \pm 1 & 0 & 0 \\
0 \\
0 & 0 & \pm 1 & 0 \\
0 & 0 & 0 & \pm 1
\end{array} 0\right. \\
0 & 0 \\
0 & 0
\end{array}\right],
$$

$Y\left(\tau_{3}\right)$ must act like a permutation $(a, b)(c, 5)$. The permutation group must contain a dihedral subgroup of order 10 containing τ_{1}. In this subgroup there is a conjugate τ of τ_{1} such that $\left|\tau \tau_{1}\right|=5$, contradicting Lemma 5.2.

Case D. $X \mid H=Y \oplus(n-6) 1_{H}$ where Y is irreducible of degree 6. Y is not primitive by Lemma 2.1. Suppose Y permutes two-dimensional spaces.

As Y is irreducible, by ordering τ_{1}, τ_{2} correctly and in an appropriate basis,

If

$$
Y\left(\tau_{2}\right)=\left[\begin{array}{c|c|c}
0 & A & 0 \\
\hline B & 0 & 0 \\
\hline 0 & & 1 \\
\hline 0 & 0 & 0 \\
\hline
\end{array}\right], \quad B=A^{-1}
$$

and we can change basis without changing the form of $Y\left(\tau_{1}\right), Y\left(\tau_{2}\right)$, so that A is diagonal. If

$$
Y\left(\tau_{2}\right)=\left[\begin{array}{c|c|c}
A & 0 & 0 \\
\hline 0 & B & 0 \\
\hline 0 & 0 & 1
\end{array}\right],
$$

we may assume A is diagonal. If

$$
A= \pm\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad B=\mp\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] . \quad \text { If } \quad A=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

then

$$
Y\left(\tau_{2} \tau_{2}^{7_{2} \tau_{1} \tau_{3} \tau_{3} \tau_{2}^{3}}\right)=\left[\begin{array}{cc|c|c}
1 & 0 & 0 & 0 \\
0 & 1 & & \\
\hline 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 1 & \\
\hline 0 & 0 & A B
\end{array}\right]
$$

and in order to avoid special elements, $A B= \pm\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. So $B= \pm A$ and in all cases Y is really monomial.

Assume Y is monomial in the basis v_{1}, \ldots, v_{6}. By the irreducibility of Y, not both $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)$ represent transpositions. By ordering τ_{1}, τ_{2} correctly and by scaling and ordering v_{1}, \ldots, v_{6} correctly, we may assume

$$
Y\left(\tau_{1}\right)=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

As Y is irreducible $Y\left(\tau_{2}\right)$ is not diagonal and cannot represent the permutations $(1,2),(3,4)$, or $(1,2)(3,4)$. If it is a 2 -cycle, we may assume by correctly scaling and ordering the basis,

$$
Y\left(\tau_{2}\right)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

But then $\left|\tau_{1} \tau_{2}\right|=8$, a contradiction. So $Y\left(\tau_{2}\right)$ is a product of disjoint 2-cycles and as $\left|\tau_{1} \tau_{2}\right|=4$, we may scale and order the basis correctly so that

$$
Y\left(\tau_{2}\right)=\left[\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$Y\left(\tau_{3}\right)$ must represent the permutation $(a, 5)(b, 6)$ and we may assume $a<b$. By conjugating by τ_{1}, τ_{2} or $\tau_{1} \tau_{2}$ we may assume $Y\left(\tau_{3}\right)$ to represent $(1,5)(2,6)$, $(1,5)(3,6)$, or $(1,5)(4,6)$. Interchanging τ_{1}, τ_{2} and v_{2}, v_{3} and rescaling, we may assume it is $(1,5)(2,6)$ or $(1,5)(4,6)$. So by scaling v_{5}, v_{6} correctly,

$$
Y\left(\tau_{3}\right)=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

In the first case $\left\langle v_{1}+v_{2}, v_{3}-v_{4}, v_{5}+v_{6}\right\rangle$ is invariant, and in the second case $\left\langle v_{1}+i v_{4}, v_{2}+i v_{3}, v_{5}+i v_{6}\right\rangle$ is invariant. This proves the theorem.

Theorem 5.4. Let τ_{1}, τ_{2} be bad of order 4, and let τ_{3}, τ_{4} also be bad of order 4 . Let $H=\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle$ and $X \mid H=Y \oplus(n-7) 1_{H}$. Then $\left\langle\left(\tau_{1} \tau_{2}\right)^{2},\left(\tau_{3} \tau_{4}\right)^{2}\right\rangle$ is a 2 -group.

Proof. First assume that Y is monomial in some basis v_{1}, \ldots, v_{7}. As τ_{1}, τ_{2} are bad of order 4 , by ordering v_{1}, \ldots, v_{7} correctly, $Y\left(\tau_{1}\right)$ and $Y\left(\tau_{2}\right)$ are trivial on v_{5}, v_{6}, and v_{7}. As $Y\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ has trace -1 , then $Y\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ is diagonal. Similarly, $Y\left(\left(\tau_{3} \tau_{4}\right)^{2}\right)$ is diagonal and the result holds.

Now assume Y permutes three two-dimensional spaces and acts linearly on a one-dimensional space. Then as τ_{1}, τ_{2} are bad of order $4, Y\left(\left\langle\tau_{1}, \tau_{2}\right\rangle\right)$ acts trivially on one of the two-dimensional spaces and the one-dimensional space. So $Y\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ acts as a scalar on each of the spaces. A similar result holds for $T\left(\left(\tau_{3} \tau_{4}\right)^{2}\right)$ and so the theorem holds.

We now examine several cases:
Case A. $\quad Y$ is irreducible or $Y=Y_{1} \oplus \xi$ where Y_{1} is irreducible of degree 6. By the preceding arguments Y is primitive in the first case and Y_{1} is primitive in the second, contradicting Lemma 2.1.

Case B. $\quad Y=Y_{1} \oplus Y_{2}$ where Y_{1} is irreducible of degree 5. If Y_{1} is primitive it contains no special 4-elements by [8], and so Y_{2} is trivial, which contradicts Lemma 2.1. This means Y_{1} is monomial. As Y_{1} is irreducible, one of $Y_{2}\left(\left\langle\tau_{1}, \tau_{2}\right\rangle\right)$ or $Y_{2}\left(\left\langle\tau_{3}, \tau_{4}\right\rangle\right)$ is trivial. This means Y_{2} is monomial and so Y is monomial, and the result holds.

Case C. $\quad Y=Y_{1} \oplus Y_{2}$ where Y_{1} is irreducible of degree 4.
If $Y_{2}\left(\left\langle\tau_{1}, \tau_{2}\right\rangle\right)$ is trivial, then $Y_{1}\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$ is scalar and $\left[\left(\tau_{1} \tau_{2}\right)^{2},\left(\tau_{3} \tau_{4}\right)^{2}\right]=1$. Using the same argument with $Y_{2}\left(\left\langle\tau_{3}, \tau_{4}\right\rangle\right)$ we may assume $Y_{1}\left(\tau_{j}\right)$ has eigenvalues $1,1,1,-1$ for each j. If $Y_{i}\left(\left(\tau_{1} \tau_{2}\right)^{2}\right) \in O_{2}\left(Y_{i}(H)\right)$ for both $i=1$ and 2, the result holds as $O_{2}(H)=O_{2}\left(Y_{1}(H)\right) \cap O_{2}\left(Y_{2}(H)\right)$. If $Y_{1}\left(\left(\tau_{1} \tau_{2}\right)^{2}\right) \in O_{2}\left(Y_{1}(H)\right)$ but $Y_{2}\left(\left(\tau_{1} \tau_{2}\right)^{2}\right) \notin O_{2}\left(Y_{2}(H)\right)$, there must be an element $k \in\left\langle\left\{\left(\tau_{1} \tau_{2}\right)^{2}\right\}^{H}\right\rangle$ of order 3 such that $Y_{2}(k)$ is not scalar. As $Y_{1}(k)$ is trivial, k is a special 3-element.

So we may assume $Y_{1}\left(\left(\tau_{1} \tau_{2}\right)^{2}\right) \notin O_{2}\left(Y_{1}(H)\right)$. By the irreducibility of Y_{1}, Y_{1} is primitive. By examining [1, 14], the group $Y_{1}(H) / Z\left(Y_{1}(H)\right)$ has the following orders and is one of the groups listed in parentheses from Blichfeldt's list [1, pp. 139-173]: $2^{3} \cdot 3 \cdot 5(H, G) ; 2^{5} \cdot 3^{2}\left(2^{\circ}, 3^{\circ}, 10^{\circ}\right) ; 2^{6} \cdot 3^{2}\left(5^{\circ}, 8^{\circ}, 9^{\circ}\right) ; 2^{7} \cdot 3^{2}\left(12^{\circ}\right)$; $2^{7} \cdot 3 \cdot 5\left(18^{\circ}, 19^{\circ}\right) ; 2^{8} \cdot 3^{2} \cdot 5\left(21^{\circ}\right) ; 2^{5} \cdot 3^{2} \cdot 5^{2}\left(11^{\circ}\right)$. As an element with eigenvalues $1,1,1,-1$ is not the tensor product of two 2×2 matrices, $2^{\circ}, 3^{\circ}, 5^{\circ}$ are impossible as they are subgroups of tensor products of two dimensional groups; as $8^{\circ}-12^{\circ}$ are extensions of index 2 of groups which are subgroups of tensor products, $Y_{1}\left(\tau_{1}\right), Y_{1}\left(\tau_{2}\right)$ are not in the tensor product and hence $Y_{1}\left(\tau_{1} \tau_{2}\right)$ is. If we have cases $8^{\circ}, 9^{\circ}, 10^{\circ}$, or 12°, the tensor product involved is projectively a
subgroup of $S_{4} \times S_{4}$. In $S_{4} \times S_{4}$ squares of 2-elements lie in $O_{2}\left(S_{4} \times S_{4}\right)$ and so $Y_{1}\left(\left(\tau_{1} \tau_{2}\right)^{2}\right) \in O_{2}\left(Y_{1}(H)\right)$, a contradiction. In case 11°, the tensor product involved is projectively $A_{5} \times A_{5}$, and so $Y_{1}\left(\left(\tau_{1} \tau_{2}\right)^{2}\right) \in Z\left(Y_{1}(H)\right)$, a contradiction. The remaining groups of order $2^{3} \cdot 3 \cdot 5,2^{7} \cdot 3 \cdot 5$, and $2^{8} \cdot 3^{2} \cdot 5$ are projectively S_{5}, an extension of an extra special group by S_{5}, and an extension of an extra special group by S_{6}, respectively. None of the 2 - or 3-dimensional groups have S_{5} or S_{6} as a section. Thus, by the subdirect product theorem [7, Theorem 5.5.1], the kernel of $Y_{2}(H)$ contains at least either A_{5} or $S L_{2}(5)$ in the first case or an extra special group of order 32 extended by A_{5} in the latter two cases. The first case gives a special 3-element, and the latter cases give either a special 3-element or an element with eigenvalues $-\omega,-\bar{\omega},-\omega,-\bar{\omega}$, $1,1, \ldots$, a contradiction.

Case D. $\quad Y=Y_{1} \oplus Y_{2}$ where Y_{1} is irreducible of degree 3 and Y_{2} has a constituent of degree at most 3. If Y_{2} has an irreducible constituent of degree 3, $Y_{2}=Y_{3} \oplus 1_{H}$ and as in the previous theorem, Y_{1} and Y_{3} are monomial (i.e., Y is monomial). So $Y_{2}=Y_{3} \oplus Y_{4}$ where Y_{3}, Y_{4} are of degree 2. If Y_{1} is primitive, $Y_{1}(H)$ is $P S L_{2}(7) \times Z_{2}$ or $\tilde{A}_{6} \times Z_{2}$, and we obtain a special 3-element in kernel Y_{2} as $Y_{2}(H)$ and $Y_{1}(H)$ cannot have common nontrivial homomorphic images. So Y_{1} is monomial and $Y_{1}\left(\left(\tau_{1} \tau_{2}\right)^{2}\right), Y_{1}\left(\left(\tau_{3} \tau_{4}\right)^{2}\right)$ are diagonal. As $Y_{j}\left(\left(\tau_{1} \tau_{2}\right)^{2}\right)$, $Y_{j}\left(\left(\tau_{3} \tau_{4}\right)^{2}\right)$ are scalar for $j=3,4,\left[Y\left(\left(\tau_{1} \tau_{2}\right)^{2}\right), Y\left(\left(\tau_{3} \tau_{4}\right)^{2}\right)\right]=1$.

6. Final Case

We now introduce notation describing the three generator groups. Suppose $\tau_{1}, \tau_{2}, \tau_{3}$ are special involutions such that τ_{1}, τ_{2} are bad of order 4 . The special involutions in $\left\langle\tau_{1}, \tau_{2}\right\rangle$ are $\tau_{1}, \tau_{2}, \tau_{1} \tau_{2} \tau_{1}$, and $\tau_{2} \tau_{1} \tau_{2}$. The notation $\tau \cdot r$. $\tilde{\tau}$ will mean $\tau, \tilde{\tau}$ are special involutions whose product has order r. If r is $4 g$ or $4 b, \tau$ and $\tilde{\tau}$ have product of order 4 and in the first case $(\tau \tilde{\tau})^{2}$ is special and in the second $X\left((\tau \tilde{\tau})^{2}\right)$ has eigenvalues $-1,-1,-1,-1,1,1, \ldots$ We now examine cases II-IV of Theorem 5.3 and describe certain of the 3 generator groups by the orders between some of the special 2-elements. We obtain

Suppose that H is a group generated by special involutions such that $X \mid H=Y \oplus(n-8) 1_{H}$ where Y contains no trivial linear characters. Then if $\tau_{1}, \tau_{2}, \tau_{3}$ are special involutions such that τ_{1}, τ_{2} are bad of order 4 , and if $H=\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle$ for some special involution τ_{4}, then $\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle$ is one of the groups in cases II-IV of Theorem 5.3, because case I could not occur as Y has no trivial linear characters. We notice that if we have the order of τ_{3} with any two generators of $\left\langle\tau_{1}, \tau_{2}\right\rangle$ we have the case determined. We now extend the previous theorem using a computer program for coset enumeration. ${ }^{1}$

Theorem 6.1. Let $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}$ be special involutions such that τ_{1}, τ_{2} and τ_{3}, τ_{4} are bad of order 4. Let $H=\left\langle\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\rangle$. If $X \mid H=Y \oplus(n-8) 1_{H}$ where Y contains no trivial linear constituents, then $\left\langle\left(\tau_{1} \tau_{2}\right)^{2},\left(\tau_{3} \tau_{4}\right)^{2}\right\rangle$ is a 2-group.

Proof. We work with several cases and rename $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}$ by A, B, C, D respectively to simplify notation.

Case A. Suppose all subgroups of the form $\langle A, B, F\rangle$ where $F \in\{C, D\}$ are case II or III B of Theorem 5.3. If we have

then $H \cong D_{8} \times D_{8}$, and the result holds. By ordering C, D correctly and replacing A, B by other generators of $\langle A, B\rangle$, we may assume

$$
A \cdot \frac{3}{C} \cdot \frac{2}{C} \cdot B
$$

We now have 5 possibilities.
(i) $A \cdot \underset{D}{2} \cdot \frac{2}{2} B \Rightarrow C \cdot \xrightarrow[A B A]{\mathbf{4 b}^{2}} \cdot D, \quad$ a contradiction.
(ii) $A \cdot \xrightarrow[D]{3} \cdot \overbrace{A B A}^{2} \cdot B \Rightarrow \xrightarrow{4 b} \cdot \frac{4 b}{4} \quad$ a contradiction.

[^1](iii) $A \cdot \frac{3}{D} \cdot \frac{4 b}{A B A} \cdot B \Rightarrow \cdot \frac{4 b}{2} \cdot D, \quad$ a contradiction.

$$
C \cdot \frac{4 b}{A B A} \cdot \frac{3}{} \cdot D
$$

Using the program for coset enumeration with generators and relations derived from the above diagrams, we obtain a faithful permutation group on 24 letters in which $\left\langle(A B)^{2},(C D)^{2}\right\rangle$ is a 2 -group.
(v) $A \cdot \xrightarrow[D]{{ }^{4 b}} \cdot{ }^{3} \cdot B$.

Let $\quad C_{1}=C^{B}, \quad D_{1}=D^{B}$. Then $\langle A, B, C, D\rangle=\left\langle A, B, C_{1}, D_{1}\right\rangle \quad$ and $\left\{(A B)^{2},\left(C_{1} D_{1}\right)^{2}\right\}=\left\{(A B)^{2},(C D)^{2}\right\}^{B} \quad$ implying $\quad\left\langle(A B)^{2},(C D)^{2}\right\rangle \cong\left\langle(A B)^{2}\right.$, $\left.\left(C_{1} D_{1}\right)^{2}\right\rangle$ and $(A B)^{2}(C D)^{2}$ is a 2-element if and only if $(A B)^{2}\left(C_{1} D_{1}\right)^{2}$ is a 2-element. We have

$$
A \cdot \xrightarrow[C_{1}]{\mathbf{3}^{2}} \cdot B, A \cdot \xrightarrow[D_{1}]{2} \cdot \frac{3}{-2}, B
$$

which gives (iv).
Case B. Suppose all subgroups of the form $\langle A, B, F\rangle$ where $F \in\{C, D\}$ satisfy case II, III A, or III B of Theorem 5.3. By case A, we may assume

$$
A \cdot \frac{3}{C} \cdot B
$$

We now have six possibilities:
(i) $A \cdot \frac{2}{D} \cdot \frac{2}{A} \cdot B \Rightarrow C \cdot \frac{2}{3} D$,

$$
C \cdot \overbrace{B}^{3} \cdot \frac{2}{2} \cdot A \cdot \frac{4 b}{C D C} \cdot \frac{4 b}{} \cdot B, \quad \text { a contradiction. }
$$

(ii) $A \cdot \overbrace{D}^{2} \cdot \frac{3}{A} \cdot B \Rightarrow C \cdot \frac{3}{B} \cdot D, C \cdot \underbrace{3}_{B} \cdot D$,

$$
C \cdot \frac{3}{B A B} \cdot \frac{4 b}{C D} \cdot D \Rightarrow A \cdot \frac{4 b}{C D C} \cdot B
$$

Using the program for coset enumeration on the subgroup $\langle A, B, C\rangle$ and generators A, B, C, D with relations from the above diagrams, we obtain a faithful permutation group on 80 letters in which the result holds.
(iii) $A \cdot \xrightarrow[D]{4 b} \cdot B$. Let $C_{1}=C^{B}, D_{1}=D^{B}$. As in case A(v).
$\left\langle(A B)^{2},(C D)^{2}\right\rangle \cong\left\langle(A B)^{2},\left(C_{1} D_{1}\right)^{2}\right\rangle$ and we have

which is the group in (ii).
(iv) $A \cdot \xrightarrow[D]{\mathbf{n}^{2}} \cdot B$. Interchanging A and B gives ii.

$$
\text { As }(A B)^{2}=(B A)^{2} \text { and }(B A)^{2}(C D)^{2} \text { is a 2-element, so is }(A B)^{2}(C D)^{2}
$$

(v) $A \cdot \frac{3}{D} \cdot B$. Interchanging A and B gives iii and the arguement is as in iv.
(vi)

where $F \in\{A, B, A B A, B A B\}$.
Also using the relations given we get $\left(B^{C A} C\right)^{2}=(B A B A)^{C A} \Rightarrow B^{C A}$ and C are bad of order 4. As $\left\langle B^{C A}, C, D, A\right\rangle=\langle A, B, C, D\rangle$, and as

$$
D \cdot \stackrel{4 b}{\square} C \text { we get } B^{C A} \cdot \frac{3}{D} \cdot C .
$$

Using the program for coset enumeration on the subgroup $\langle A, B, C\rangle$ where relations between generators A, B, C, and D come from the above diagrams, we obtain a faithful representation on 864 letters in which the result holds.

Case C. Suppose all subgroups of the form $\langle A, B, F\rangle$ where $F \in\{C, D\}$ satisfy cases II or III of Theorem 5.3. By the preceding cases, we may assume

$$
A \cdot \xrightarrow[C]{3} \cdot B .
$$

We have $X \mid\langle A, B, C\rangle=T \oplus(n-6) 1_{\langle A, B, C\rangle}$ where

$$
\left.\begin{array}{rl}
T(A) & =\left[\begin{array}{lll|ll}
0 & 1 & 0 & & \\
1 & 0 & 0 & & 0 \\
0 & 0 & 1 & & \\
\hline & & & 0 & 1
\end{array}\right. \\
\hline & 0
\end{array}\right)
$$

Now $(A B)^{2}=\left(A\left(B^{C} B^{C A} B^{A}\right)\right)^{2}$ and if $B^{*}=B^{C} B^{C A} B^{A}, A \cdot{ }^{3} \cdot B^{*}$. C
If $Y\left(\left\langle A, B^{*}, C, D\right\rangle\right)$ has a trivial linear character, Theorem 5.4 gives the result. So assume our hypothesis holds if B^{*} replaces B. By case A, we may assume $\left\langle A, B^{*}, D\right\rangle$ has form III A, III C, or IV of Theorem 5.3. If it has form III A, we may interchange C and D to get case B iv. We now have three possibilities:
(i) $A \cdot \xrightarrow[D]{3} \cdot \frac{4 q}{} \cdot B^{*} \Rightarrow C \cdot \frac{2}{B^{*}} \cdot \frac{4 \sigma}{4 \sigma} \cdot D, \quad$ a contradiction.
(ii) $A \cdot \frac{40}{D} \cdot \xrightarrow{3} B^{*} \Rightarrow C \cdot \xrightarrow[A]{\frac{3}{40}} D$.

Replace D by D^{*} as earlier so that $C \cdot D^{*}$. We may assume $Y\left(\left\langle A, B^{*}, C, D^{*}\right\rangle\right)$ has no nontrivial linear constituents. We have $A \cdot \frac{2}{D^{*}} \cdot \frac{?}{4} B^{*}$ and so $D^{*},{ }^{2} \cdot B^{*}$ or $D^{*} \xrightarrow{3} B^{*}$ which is covered in case A.
(iii) $A \cdot \underset{D}{4 g} \cdot B^{*} \Rightarrow C \cdot \xrightarrow[B^{*}]{4 g} \cdot D, \quad$ a contradiction.

Case D. We may now assume by interchanging C, D if necessary that $A \cdot \xrightarrow[C]{4 g} \cdot B$. We have eight possibilities:
(i) $A \cdot \underbrace{2}_{D} \cdot \stackrel{?}{A} B \Rightarrow C \cdot \frac{4 g}{\cdot 2} \cdot D, \quad$ a contradiction.
(ii) $A \cdot \underbrace{3}_{D} \cdot \frac{2}{B} \cdot B \Rightarrow C \cdot \frac{4 g}{B} \cdot \frac{2}{2} \cdot D, \quad$ a contradiction.
(iii) $A \cdot \xrightarrow[D]{3} \cdot \frac{4 b}{A B A} \cdot B \Rightarrow \frac{4 g}{A} \cdot \frac{2}{2}, \quad$ a contradiction.
(iv) $A \cdot \frac{4 b}{D} \cdot \frac{3}{B A B} \cdot B \Rightarrow C \cdot \frac{4 g}{B} \cdot \frac{2}{2} \quad$ a contradiction.
 change A with D and B with C, we get case C.
(vi) $A \cdot{ }_{D}^{3} \cdot \frac{4 g}{4 g}$. As in case C , choose B^{*} such that $(A B)^{2}=$ $\left(A B^{*}\right)^{2}$ where

$$
A \cdot \frac{3}{D} \cdot B^{*}
$$

We may assume $Y\left(\left\langle A, B^{*}, C, D\right\rangle\right)$ has no trivial linear constituents. So examining all possibilities for $A \cdots B^{*}$, we get cases $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D ii with B^{*} replacing B.
(vii) $A \cdot \xrightarrow[D]{\mathbf{4 a}^{3}} \cdot B$. Interchange A and B to get vi.
 and $A \cdot \frac{4 g}{F} \cdot \frac{4 q}{4 g} \quad B \quad$ where $F \in\{C D C, D C D\}$.

This is the only remaining case. We need the following lemma to complete the proof of the theorem.

Lemma 6.2. Let A, B, C, D be special involutions satisfying the diagram

$$
A \cdot \frac{4 g}{C} \cdot \frac{4 g}{C} \cdot B, \quad A \cdot \frac{4 g}{D} \cdot \frac{4 g}{4 g} \cdot B, \quad \text { and } \quad C \cdot \frac{4 g}{B} \cdot \frac{4 g}{B} \cdot D .
$$

Then either $\left[(A B)^{2},(C D)^{2}\right]=1$ or if $F=A C A C$, then $X \mid\langle F, B, C, D\rangle=$ $R \oplus(n-7) 1_{\langle F, B, C, D\rangle}$ where

$$
\begin{aligned}
R(F)= & {\left[\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad R(B)=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], } \\
& R(C)=\operatorname{diag}(1,-1,1,-1,1,1,1)
\end{aligned}
$$

and

$$
R(D)=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Proof. From Theorem 5.3, $X \mid\langle A, B, C\rangle=Y_{1} \oplus Y_{2} \oplus(n-6) 1_{\langle A, B, C\rangle}$ where
and

$$
\begin{aligned}
& \left(Y_{\mathbf{1}} \oplus Y_{2}\right)(A)=\left[\begin{array}{llll|l}
0 & 1 & 0 & 0 & \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & \\
\hline & & & & 0 \\
& 0 & & 1 \\
1 & 0
\end{array}\right], \\
& \left(Y_{1} \oplus Y_{2}\right)(B)=\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 0 & \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & \\
\hline & 0 & & -1 & 0 \\
\hline & 0 & & 0 & 1
\end{array}\right],
\end{aligned}
$$

$$
\left(Y_{\mathbf{1}} \oplus Y_{2}\right)(C)=\left[\begin{array}{llll|l}
0 & 0 & 1 & 0 & \\
0 & 0 & 0 & 1 & \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \\
\hline & & & & 1 \\
& 0 & 0 \\
& & & 0 & 1
\end{array}\right]
$$

and Y_{1} acts on the 4-dimensional space V_{1}. Then $X \mid\langle F, B, C\rangle=T \oplus \xi \oplus$ $(n-5) 1_{\langle F, B, C\rangle}$ where T acts irreducibly on V_{1}. So $X \mid\langle F, B, C, D\rangle=$ $R \oplus(n-7) 1_{\langle F, B, C, D\rangle}$. We examine the possible cases.

Case A. $R=R_{1} \oplus R_{2}$ where R_{1} is irreducible of degree 4. Then R_{1} acts on V_{1} and $R_{1}\left((C D)^{2}\right)=\operatorname{diag}(-1,1,-1,-1)$ as C, D are bad of order 4. As $X(A)$ and $X(B)$ act on this subspace, $\left[(A B)^{2},(C D)^{2}\right]=1$.

Case B. $\quad R=R_{1} \oplus R_{2}$ where R_{1} is irreducible of degree 5. As $R_{2}(C)$ is trivial, so is $R_{2}(D)$ because C, D are bad of order 4. But $R_{2}(F)$ is trivial and hence R_{2} is reducible, contradicting $C \cdot \frac{4 g}{4 g} \cdot D$ and Theorem 5.3 IV.

Case $\mathrm{C} . \quad R=R_{1} \oplus \xi$ where R_{1} is irreducible of degree 6. As $B B^{F}$ is special and $B B^{F}, C$ are bad of order $4, R_{1}$ is not primitive. Suppose R_{1} permutes two dimensional spaces. As $B B^{F}, C$ are bad, we may assume $R_{1}\left(\left\langle B B^{F}, C\right\rangle\right)$ looks like

$$
\left[\begin{array}{c|c}
* & 0 \\
\hline & \\
\hline 0 & 1
\end{array}\right)
$$

where [*] is 4 dimensional and acts on V_{1}. As $R_{1}(D)$ moves V_{1}, we may assume

$$
R_{1}(D)=\left[\begin{array}{cc|c|c}
1 & 0 & 0 & 0 \\
0 & 1 & & \\
\hline 0 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 0
\end{array}\right]
$$

As C, D are a bad pair, $R_{1}(C)=\operatorname{diag}(1,1,-1,-1,1,1)$. But for all possibilities of $R_{1}(B)$, we have either $B \cdot \xrightarrow{2} C$ or $B \cdot \xrightarrow[4 b]{4} C$, a contradiction.

So R_{1} is monomial in some basis v_{1}, \ldots, v_{6}. We may assume $R_{1}\left(\left\langle B B^{F}, C\right\rangle\right)$ acts trivially on v_{5}, v_{6} and so $V_{1}=\left\langle v_{1}, \ldots, v_{4}\right\rangle$. So we may assume

$$
R_{1}(C)=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],
$$

or

$$
\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

As $R_{1}(D)$ moves V_{1}, it moves one of v_{5}, v_{6}; as C, D are bad of order $4, R_{1}(C)$ is not the first choice. Assume $R_{1}(C)$ is diagonal. Because $B \cdot \xrightarrow{40} C$

$$
R_{1}(B)=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \pm 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \mp 1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

As $[F, C]=1, R_{1}(F)$ is diagonal,

$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & \pm 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \mp 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \text {, or }\left[\begin{array}{cccccc}
\pm 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & \mp 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Since T is irreducible, $R_{1}(F)$ is the second case. As C, D are bad, then by ordering v_{5}, v_{6} correctly, $R_{1}(D)$ must represent the permutations $(1,2)(4,5),(2,3)(4,5)$, $(1,4)(2,5),(2,5)(3,4)$, or $(2,5)(4,6)$. As C, D are bad and $5 \nmid|F D|$ by Lemma $5.2, R_{1}(D)$ must represent $(2,5)(4,6)$. However in that case $3||B D|$ or $5\left||B D|\right.$, a contradiction. So $R_{1}(C)$ is the third choice.

$$
\begin{gathered}
\text { As } B \cdot \stackrel{4 g}{4 g} \cdot C, R_{1}(B)=\left[\begin{array}{cccc|c}
0 & i & 0 & 0 & \\
-i & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & - \\
\hline & 0 & & - \\
*
\end{array}\right], \\
{\left[\begin{array}{llll|l}
1 & 0 & 0 & 0 & \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & - \\
\hline & 0 & & *
\end{array}\right], \quad \text { or }\left[\begin{array}{cccc|c}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & \\
\hline & 0 & 1 & 0 \\
& & 0 & & 1
\end{array}\right] .}
\end{gathered}
$$

Since $[F, C]=1, R_{1}(F)$ maps $\left\langle v_{1}, v_{2}\right\rangle$ into itself and $\left\langle v_{3}, v_{4}\right\rangle$ into itself. This implies T is reducible, a contradiction.

Case D. R is irreducible. By Lemmas 2.1 and $5.1 R$ is monomial and has no 2-cycles. Arguing as in case C and because there are no 2 -cycles,

$$
\begin{gathered}
R(C)=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad R(B)=\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \\
\\
R(F)=\left[\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],
\end{gathered}
$$

where V_{1} is the span of the first four vectors. $R(D)$ must move v_{7}. Since C, D is bad, $R(D)$ represents $(2,7)(4, \mathrm{c})$ where $c \in\{1,3,5,6\}$, or $(2, d)(4,7)$ where $d \in\{1,3,5,6\}$. As $3 \nmid|B D|$ and $R \mid\langle B, C, D\rangle$ has irreducible constituents of degree 4,2 , and 1 , the first is out. By Lemma $5.2,5 \nmid$ FD \mid which implies $d \neq 1$ or 3. Interchanging v_{5}, v_{6} if necessary, we may assume $d=5$. The lemma is proved.

With this lemma we can now construct the group $Y(\langle A, B, C, D\rangle)$. We assume $\left\langle(A B)^{2},(C D)^{2}\right\rangle$ is not a 2 -group. Let Y act on V_{1}.
We have $Y \mid\langle A C A C, B, C, D\rangle=R \oplus 1_{\langle A C A C, B, C, D\rangle}$ where R is monomial in some basis such that

$$
\begin{align*}
& R(A C A C)=\left[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad R(B)=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \\
& R(C)=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \text {, and } R(D)=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] . \tag{1}
\end{align*}
$$

We notice that by Lemma 5.1, as R is irreducible $\langle A C A C, B, D\rangle \cong P S L_{2}(7)$ and $R \mid\langle A C A C, B, D\rangle=S \oplus 1_{\langle A C A C, B, D\rangle}$. Let R act on the space U. The vector in U, generating the space on which $1_{\langle A C A C, B, D\rangle}$ acts, is $v_{7}=(1,1,1,1,1$, $1,1)^{T}$ where T denotes the transpose. Let $\left\langle v_{7}, v_{8}\right\rangle \subseteq V_{1}$ be the space on which $2 \cdot 1_{\langle A C A C, B, D\rangle}$ acts. Then if $e_{1}=(1,-1,0,0,0,0,0)^{r}, e_{2}=(1,0,-1,0$, $0,0,0)^{T}, e_{3}=(1,0,0,-1,0,0,0)^{T}, e_{4}=(1,0,0,0,-1,0,0)^{T}, e_{5}=(1,0,0$, $0,0,-1,0)^{T}, e_{6}=(1,0,0,0,0,0,-1)^{T}, S$ acts on $\left\langle e_{1}, \ldots, e_{6}\right\rangle$. In the basis $v_{8}, v_{7}, e_{1}, e_{2}, \ldots, e_{6}$ we get by calculating $Y(g) v$ where v is a basis element and $g \in\{A C A C, B, C, D\}:$

$$
\begin{aligned}
Y(A C A C) & =\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 & -1 & -1 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \\
Y(B) & =\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(2)

$$
Y(C)=\left[\begin{array}{cccccccc}
a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
b & \frac{3}{7} & \frac{2}{7} & 0 & \frac{2}{7} & 0 & 0 & 0 \\
c & \frac{10}{7} & \frac{-5}{7} & 0 & \frac{2}{7} & 0 & 0 & 0 \\
d \frac{-4}{7} & \frac{2}{7} & 1 & \frac{2}{7} & 0 & 0 & 0 \\
e \frac{10}{7} & \frac{2}{7} & 0 & \frac{-5}{7} & 0 & 0 & 0 \\
f \frac{-4}{7} & \frac{2}{7} & 0 & \frac{2}{7} & 1 & 0 & 0 \\
g-\frac{2}{-} & \frac{2}{7} & 0 & \frac{2}{7} & 0 & 1 & 0
\end{array}\right], Y(D)=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] .
$$

Now interchange A with C and B with D in the preceding Lemma. So $Y \mid\langle C A C A, D, A, B\rangle=R_{1} \oplus 1_{\langle C A C A, D, A, B\rangle}$ where in some basis of the space on which R_{1} acts, we have $R_{1}(C A C A), R_{1}(D), R_{1}(A), R_{1}(B)$ look like the matrices $R(A C A C), R(B), R(C), R(D)$ in Eq. (1), respectively. As $\langle A, C\rangle$ is dihedral of order $8, A C A C=C A C A$. Let R_{1} act on the subspace U_{1}. Then $R_{1} \mid\langle A C A C, B, D\rangle=S \oplus 1_{\langle A C A C, B, D\rangle}$; the vector in U_{1} generating the space on which $1_{\langle A C A C, B, D\rangle}$ acts is $v_{7}{ }^{*}=(1,1,1,1,1,1,1)^{T}$. Let $\left\langle v_{7}{ }^{*}, v_{8}^{*}\right\rangle \subseteq V_{1}$ be the space on which $2 \cdot 1_{\langle A C A C, B, D\rangle}$ acts (i.e., $\left\langle v_{7}{ }^{*}, v_{8}^{*}\right\rangle=\left\langle v_{7}, v_{8}\right\rangle \cdot$) Let $e_{1}^{*}=(1,-1,0,0,0,0,0)^{T}, e_{2}^{*}=(1,0,-1,0,0,0,0)^{T}, e_{3}{ }^{*}=(1,0,0,-1,0$, $0,0)^{T}, e_{4}^{*}=(1,0,0,0,-1,0,0)^{T}, e_{5}^{*}=(1,0,0,0,0,-1,0)^{T}$, and $e_{6}^{*}=$ $(1,0,0,0,0,0,-1)^{T}$. In the basis $v_{8}{ }^{*}, v_{7}{ }^{*}, e_{1}{ }^{*}, \ldots, e_{6}^{*}, Y(A C A C), Y(D), Y(A)$, $Y(B)$ looks like the matrices $Y(A C A C), Y(B), Y(C), Y(D)$ of (2), respectively (where $Y(A)$ may have different unknowns that $Y(C)$, of course).

We have $\left\langle e_{1}, \ldots, e_{6}\right\rangle=\left\langle e_{1}^{*}, \ldots, e_{6}{ }^{*}\right\rangle ;$ as Y is irreducible $\left\langle v_{7}\right\rangle \neq\left\langle v_{7}{ }^{*}\right\rangle$. So we may choose $v_{8}=v_{7}{ }^{*}$ and $v_{8}^{*}=v_{7}$. We want to find $Y(A)$ in the basis $v_{8}, v_{7}, e_{1}, \ldots, e_{6}$. So we need to find a linear transformation S with $S v_{8}=v_{8}^{*}$, $S v_{7}=v_{\eta}{ }^{*}, S e_{i}=e_{i}^{*}$. If T is a linear transformation of V_{1}, and $m_{1}(T)$ and $m_{2}(T)$ are the matrices of T in the basis $v_{8}, v_{7}, e_{1}, \ldots, e_{6}$ and $v_{8}{ }^{*}, v_{7}{ }^{*}, e_{1}{ }^{*}, \ldots, e_{6}{ }^{*}$, respectively, then we have $m_{1}(S)^{-1} m_{1}(T) m_{1}(S)=m_{2}(T)$. We need to find a linear transformation S such that $m_{1}(T) m_{1}(S)=m_{1}(S) m_{2}(T)$ where T ranges over $Y(A C A C), Y(B), Y(D)$. But we know $m_{1}(Y(A C A C))=m_{2}(Y(A C A C))$, $m_{1}(Y(B))=m_{2}(Y(D))$, and $m_{1}(Y(D))=m_{2}(Y(B))$. These results plus $v_{8}^{*}=v_{7}$, $v_{7}^{*}=v_{8}$, give

$$
m_{1}(S)=\left[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & s & s & 0 & 0 & s & s \\
0 & 0 & 0 & -s & -s & 0 & 0 & -s \\
0 & 0 & -s & -s & 0 & -s & 0 & 0 \\
0 & 0 & -s & 0 & -s & 0 & -s & 0 \\
0 & 0 & 0 & 0 & 0 & -s & -s & -s \\
0 & 0 & s & 0 & s & s & 0 & s
\end{array}\right]
$$

where $s \neq 0$.

Also

$$
m_{1}(S)^{-1}-\left[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & t & t & 0 & 0 & t & t \\
0 & 0 & 0 & -t & -t & 0 & 0 & -t \\
0 & 0 & -t & -t & 0 & -t & 0 & 0 \\
0 & 0 & -t & 0 & -t & 0 & -t & 0 \\
0 & 0 & 0 & 0 & 0 & -t & -t & -t \\
0 & 0 & t & 0 & t & t & 0 & t
\end{array}\right]
$$

where $t=\frac{1}{2 s}$.

Hence

$$
m_{1}(Y(A))=\left[\begin{array}{cccccccc}
\frac{3}{7} & b^{*} & 0 & 0 & 0 & \frac{-2}{7} t & \frac{2}{7} t & \frac{2}{7} t \\
0 & a^{*} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{-2 s}{7} & c^{*} & 0 & -1 & 0 & \frac{-4}{7} & \frac{-3}{7} & \frac{-3}{7} \\
\frac{-2 s}{7} & d^{*} & -1 & 0 & 0 & \frac{-4}{7} & \frac{-3}{7} & \frac{-3}{7} \\
\frac{-2 s}{7} & e^{*} & 1 & 1 & 1 & \frac{3}{7} & \frac{4}{7} & \frac{4}{7} \\
\frac{-16 s}{7} & f^{*} & 0 & 0 & 0 & \frac{3}{7} & \frac{4}{7} & \frac{4}{7} \\
\frac{12 s}{7} & g^{*} & 0 & 0 & 0 & \frac{3}{7} & \frac{4}{7} & \frac{-3}{7} \\
\frac{12 s}{7} & h^{*} & 0 & 0 & 0 & \frac{3}{7} & \frac{-3}{7} & \frac{4}{7}
\end{array}\right]
$$

Replacing v_{8} by $t v_{8}$, we may assume $s=\frac{1}{2}$ and $t=1$ in the above. As $Y(A)$, $Y(C)$ have trace $4, a=a^{*}=1$. Also $Y(A), Y(C)$ each have eigenvectors in $\left\langle v_{8}, v_{7}\right\rangle$ corresponding to the eigenvalue 1. If these eigenvectors are ($\alpha, \beta, 0, \ldots, 0)^{T}$ and $(\gamma, \delta, 0, \ldots, 0)$, respectively, by the forms obtained so far, $m_{1}\left(Y_{1}(A)\right)(1,0, \ldots, 0)^{T} \neq(1,0, \ldots, 0)^{T}$ and $m_{1}(Y(C))(0,1,0, \ldots, 0)^{T} \neq(0,1$, $0, \ldots, 0)^{T}$. We may assume $\beta=1$ and $\gamma=1$.

Calculating $m_{1}(Y(A))(\alpha, 1,0, \ldots, 0)^{T}$ and $m_{1}(Y(C))(1, \delta, 0, \ldots, 0)^{T}$ gives $b^{*}=\frac{4}{7} \alpha, c^{*}=d^{*}=e^{*}=\frac{1}{7} \alpha, f^{*}=\frac{8}{7} \alpha, g^{*}=h^{*}=\frac{-6}{7} \alpha, \quad b=\frac{4}{7} \delta, \quad c=e=$ $-\frac{10}{7} \delta$, and $d=f=g=h=\frac{4}{7} \delta$. The (2,8)-entry of $m_{1}(Y(A C A C))$ is 0 from above. Calculating the (2,8)-entry of $\left(m_{1}(Y(A)) m_{1}(Y(C))\right)^{2}$ gives $\delta=-\frac{1}{4}$. Calculating the (1,2) entry of $\left(m_{1}(Y(C)) m_{1}(Y(A))\right)^{2}=m_{1}(Y(C A C A))=$ $m_{1}(Y(A C A C))$ which also is 0 gives $\alpha=-\frac{1}{2}$. Thus $Y(\langle A, B, C, D\rangle)$ is now determined. Inside this group we verify that $(A B)^{2}(C D)^{2}$ has order 4 contradicting our assumption that $\left\langle(A B)^{2},(C D)^{2}\right\rangle$ was not a 2 -group.

This completes the proof of the main theorem by Baer's theorem [6, Theorem 3.8.2] as it shows $\left(\tau_{1} \tau_{2}\right)^{2}$ is in $O_{2}(G)$ for any bad pair of order 4.

Appendix

It seems of interest to determine explicitly the group $\langle A, B, C, D\rangle=G$ found at the end of Section 6. The matrices $Y(B)$ and $Y(D)$ are given in (2), Section 6.

$$
\begin{aligned}
& Y(A)=\frac{1}{14}\left[\begin{array}{cccccccc}
6 & -4 & 0 & 0 & 0 & -4 & 4 & 4 \\
0 & 14 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & -1 & 0 & -14 & 0 & -8 & -6 & -6 \\
-2 & -1 & -14 & 0 & 0 & -8 & -6 & -6 \\
-2 & -1 & 14 & 14 & 14 & 6 & 8 & 8 \\
-16 & -8 & 0 & 0 & 0 & 6 & 8 & 8 \\
12 & 6 & 0 & 0 & 0 & 6 & 8 & -6 \\
12 & 6 & 0 & 0 & 0 & 6 & -6 & 8
\end{array}\right] \\
& Y(C)=\frac{1}{14}\left[\begin{array}{cccccccc}
14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 6 & 4 & 0 & 4 & 0 & 0 & 0 \\
5 & 20 & -10 & 0 & 4 & 0 & 0 & 0 \\
-2 & -8 & 4 & 14 & 4 & 0 & 0 & 0 \\
5 & 20 & 4 & 0 & -10 & 0 & 0 & 0 \\
-2 & -8 & 4 & 0 & 4 & 14 & 0 & 0 \\
-2 & -8 & 4 & 0 & 4 & 0 & 14 & 0 \\
-2 & -8 & 4 & 0 & 4 & 0 & 0 & 14
\end{array}\right]
\end{aligned}
$$

It has been found that G is an extension of an extra special group H of order 128 by $\left(O^{+}(6,2)\right) \cong L_{4}(2) \cong A_{8}$. This was determined by explicitly showing that the conjugates of $(A B)^{2}(C D)^{2}$ generate H. As H admits automorphisms from $K=\langle A C A C, C, B, D\rangle, H \cong D_{8} \circ D_{8} \circ D_{8}, Y(H)$ is irreducible, and $G / H \cong$ subgroup of $\operatorname{Out}(H)$. It was found A fused some orbits in $H / Z(H)$ which K did not. From inspection, $G / H \cong A_{8}$. It is found that $(A B)^{2}$ and $(C D)^{2}$ are in H and G satisfies part 2 of the main theorem.

References

1. H. F. Blichfeldt, "Finite Collineation Groups," University of Chicago Press, Chicago, 1917.
2. R. Brauer, On groups whose order contains a prime to the first power, 1, II, Amer. J. Math. 64 (1942), 401-420, 421-440.
3. R. Brauer, Uber endliche lineare Gruppen von Primzahlgrad, Math. Annalen 169 (1967), 73-96.
4. W. Feit, "Characters of Finite Groups," Benjamin, New York, 1967.
5. W. Feit, The current situation in the theory of finite simple groups, Actes, Congr. Int. Math. 1 (1970), 55-93.
6. D. Gorenstetn, "Finite Groups," Harper and Row, New York, 1968.
7. M. Hall, "The Theory of Groups," Macmillan, New York, 1959.
8. W. C. Huffman, Linear groups containing an element with an eigenspace of codimension two, J. Algebra 34 (1975), 260-287.
9. W. C. Huffman and D. B. Wales, Linear groups of degree n containing an element with exactly $n-2$ equal eigenvalues, Linear and Multilinear Algebra 3 (1975), 53-59.
10. B. Huppert, Lineare aufösbare Gruppen, Math. Z. 67 (1937), 479-518.
11. J. H. Lindsey, Finite linear groups of degree six, Canad. J. Math. 23 (1971), 771-790.
12. J. H. Lindsey, Complex linear groups of degree $p+1$, J. Algebra 20 (1972), 24-37.
13. J. H. Lindsey, Projective groups of degree less than $4 p / 3$ where centralizers have normal Sylow p-subgroups, Trans. of Amer. Math. Soc. 175 (1973), 233-247.
14. H. H. Mitchell, Determination of all primitive collineation groups in more than four variables which contain homologies, Amer. J. Math. 36 (1914), 1-12.
15. Timmesfeldt, On Characteristic -2 groups, to appear.
16. D. B. Wales, Finite linear groups of degree seven, I, Canad. J. Math. 21 (1969), 1042-1056.
17. D. B. Wales, Finite linear groups of degrec seven, II, Pac. J. Math. 34 (1970), 207235.

[^0]: * Sponsored in part by the Army Research Office, Durham, under Grant DA-ARO-D-31-124-72-G171.
 + Sponsored in part by NSF GP-35678.

[^1]: ${ }^{1}$ The program was written for us by Chris Landauer.

