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1. INTRODUCTION

The main theorem of this paper describes quasiprimitive linear groups G
which contain a matrix with two eigenvalues —1 and the remaining eigenvalues 1.
This is a special case of a linear group containing a unimodular matrix with a
trivial eigenspace of codimension 2. If a linear group contains a unimodular
matrix with trivial eigenspace of codimension 2 other than this, the group is
known by [1], [12], or [8], as is described in [8]. In a later paper [9], we treat
linear groups containing a matrix with any eigenspace of codimension 2. Of
course, there we refer to this work. Linear groups containing a matrix with
eigenspace of codimension 1 were determined in [14] in 1914.

We prove the following theorem.

Main THeOREM. Suppose G is a finite quasiprimitive linear group of degree
n > 8 and X is the corresponding representation. Suppose further that G contains
an involution + for which X(=) has trace n — 4 (i.e., X(r) has exactly 2 etgenvalues
—1 and exactly n — 2 eigenvalues 1). Then G mod the maximal solvable normal
subgroup is known and G satisfies one of the following two conditions:
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(1) There is an element y of G for which X{y) has one eigenvalue w, one

(2) The product of any two elements =, , 7, with X(ry) and X{(r,) similar to
X(r) has order 2,3, 4, or 5. If ryr; has order 4, either (ry7,)2 is in Oy(G) o7 X{{z375)%)
1s stmilar to X(r). Here G mod the maximal solvable subgroup is known by [15].
Also Oy(G) is the maximal normal 2-group of G.

We note that in G the group generated by all conjugates in G of 7 is a normal
subgroup H. Either X | H is irreducible or as in [9, Theorem 3|, X | H = 2 - X;
where X, has degree #/2 and X (7} is a reflection. For this latter case, as in
[9, Theorem 3], we use [10] to show G/Z(G) o« K x 4 where K is generated
by reflections and so is listed in [14], and 4 ~ A4,, S,, or 4;. Also X(G) is a
subgroup of ¥ & Z where Y is a projective representation of K of degree /2,
and Z is a projective representation of 4 of degree 2.

The proof is organized as follows. We assume G does not satisfy either
condition 1 or 2 and so has elements =, and 7, for which X(r;} and X{(r,) are
similar to X(7). Also 7,7, has order 2m where m > 2 and if m = 2, X{r7y)? is
not similar to X{r) and is not in O,(G) where Oy(() is the largest normal 2-group
of G. By considering various restrictions to subgroups containing =, and 7, we
show in Section 3 that m is 2. In Section 4 we show that the product of any two
distinct elements of X(G) similar to X(r) is of order 2, 3, 4, or 5. In Section 5
we find the possible subgroups generated by 7, , 7, , and another involution =4
for which X{(r,) is similar to X{(7); 7;7, has order 4, but X((r,,)?) is not similar
to X(7). In Section 6 we show that this last case is impossible. This last section
involves generators and relations for appropriate subgroups as well as actual
matrices for appropriate subgroups.

The notation is as follows. The group G is a quasiprimitive linear group of
degree n which does not satisfy the Main Theorem. We let X be the faithful
representation of G acting on the n-dimensional vector space V. There is an
element 7 in G such that X(=) has two eigenvalues —1, and n — 2 eigenvalues 1.
Denote by D the set of involutions ¢ of G such that X(o) is similar to X(r).
An element y of G is called a special element if X{y) has eigenvalues ¢, &, and
n — 2 eigenvalues 1. If € is a primitive rth root of unity, ¥ is called a special
r-element. Note that elements of D are special 2-elements. Elements arising in
case 1 of the Main Theorem are special 3-elements. The group G contains no
‘special 3-elements as we assume condition 1 of the Main Theorem does not hold.
Also G contains no special r-elements for » > 4 by [1, 8, 12]. A representation X
of a group G is called quasiprimitive if X is irreducible, and for every H <1 G,
X | H breaks into similar constituents. By [4, (9.11)] if X is not quasiprimitive
it is induced from a proper subgroup. The term Blichfeldt refers to [1, p. 96].
If Y is a monomial representation of a group H we assume the matrices are in
monomial form and speak of the associated permutation of the elements of H.
This permutation naturally is the one obtained by replacing the unique nonzero



LINEAR GROUPS WITH TWO EIGENVALUES — | 467

element in each row and column by 1. For typographical convenience we let
diag(d, ,..., d,) denote the n X n diagonal matrix whose (i, 7) entry is d; .
The remaining notation is standard as in [6, pp. 4-6].

2. PROPERTIES OF THE SMALL DIMENSIONAL QUASIPRIMITIVE GROUPS

In this section we gather together some properties of the small-dimensional
primitive linear groups. These groups are known to dimension 7 by [1, 3, 11, 16,
17]. They are listed in [5, Sect. 8.5]. Since the properties we need can be found
by inspection, we just sketch some of the details.

Lemma 2.1.  Suppose H is a subgroup of G generated by special involutions
and X | H=Y @ (@D (m—r— 1)1y, Y is primitive of degree r, £ is linear,
and 1y is the trivial character of H. Assume r 15 5, 6, or 7. Then ¢ s trivial and
the product of any two special 2-elements in H has order 1, 2, 3, 4, 5, or 6. If it is 4,
the square is again special. If it is 6, r = 5, and H ~ S .

Proof. Note first that £ is trivial; otherwise the matrix Y(7), 7 in D, has one
eigenvalue —1, the rest are eigenvalue 1. These groups are described in [14] and
all have a special 3-element in the commutator. This would be a special 3-element
in G. As H is generated by special 2-elements, Y(H) is unimodular and so H is
listed in [5, Sect. 8.5]. We refer to this notation.

If r = 7 we note the groups 4, Sy, Spe(2) all have special 3-elements. The
involutions in I, , PSLy(13), PSL,(8) are not special. In Gy(2) (case VI) there
are two classes of involutions. Those outside Uy(3) are not special; those inside
satisfy condition 2 of the main theorem. The same holds for PSLy(7) and
PGLyT).

If » = 6 the groups II, XI, XII have no special 2-elements. The groups of I
could not be generated by special 2-elements as such elements would be
Y(r) = A(a) ® B(b) where A, B have degree 3, 2, respectively, and B(b) must
be a scalar. The groups VI, XIII have special 3-elements. The groups V, VIII,
XV, XVII have centers of order 6 which contradict Blichfeldt’s theorem. Also,
XVI has an element of order 6 with three eigenvalues —w, and three —a@;
this contradicts Blichfeldt. The group Uy(3) or its extension, XIV, is handled
as in the case when r = 7, as are the groups in IX. For case X, SLy(7) has only
one involution which is not special. In GL,(7) there is one class of involutions
not in SLy(7) represented by the matrix [ J]. Each normalizes an element of
order 7 and so is not special. The cases remaining are III, IV, VIL

To handle case III note that an element of order 5 is’ conjugate to all its
powers so that the character is 1. The subgroup of index 2 must be 4; as the
center cannot split by the quasiprimitivity. Note that 4, has no irreducible
representation of degree 6 and that a sum of two identical ones of degree 3 has
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the wrong trace. As A; o SLy(5), there are no special involutions in this
subgroup. The special involutions, then, all correspond in S; to 2-cycles. The
product of two in .S; has order 2 or 3 and so in S the product can only be 2, 4, 3,
or 6. If it is 4 or 6, its square or cube would be central with six eigenvalues —1,
This is impossible for a product of special involutions.

Cases IV and VII remain. From inspection it can be seen that the involutions
in A, satisfy condition 2 of the theorem and in the extension of 4 in case IV
there are no special involutions outside 4y which leaves only case VII to be
considered. Note that the orders of products of special elements have the values
1,2,3,4,56.

To handle case VII, suppose Y acts on the irreducible 6-dimensional space U.
Let 7 be an element of D such that X(r) moves U. Now X | <H, 7> = Y, &
(m — 8) l¢<y.ry - Suppose Y, is irreducible and primitive. By [13], 72 + [<H, )|
and so |(H, 7| has 7 to the first power only. By Brauer, an element with six
eigenvalues w and two eigenvalues 1 cannot centralize an element of order 7
with trace 1 [2, IT]. If Y; permutes 2-dimensional subspaces, an element of
order 7 is block diagonal and Y; | H cannot have an irreducible 6-dimensional
constituent. If Y, is monomial, an element of order 7 must be a 7-cycle and
cannot centralize an element with exactly six eigenvalues w. This means ¥, =
Y, @ & where Y, is irreducible of degree 7. If Y, is primitive we contradict
the above proof when r = 7. If Y, is monomial we get a contradiction as above.

To handle the case r = 5 note that Ay, S, and Oy(3) have a special 3-
element and the involutions in A and I satisfy condition 2. For PSLy(11) we
must adjoin to H another special involution which moves the invariant subspace
corresponding to Y. This group has a6- ora 7-dimensionalirreducible constituent
containing an element of order 11. By examining the groups in [5, Sect. 8.5] one
sees that this is impossible. This leaves S; . By consulting the character table
of S; one sees that there is a unique irreducible 5-dimensional representation
in which involutions in S;-A; are special 2-elements. The product of two
involutions, one in Ay , the other in S;—4; , has order 6.

3| mme| =2k k=3

In this section we assume that there are two special involutions whose product
has order 2%, k& >> 3, and we reach a contradiction. We prove the following
theorem.

THeorReM 3.1. If 7, and 7, are distinct special involutions in G, | my7, | = 2,
4, or odd.

Before proving this theorem we require some preliminary notation and lemmas.
The lemmas describe in certain situations how X, restricted to certain subgroups
containing 7, and , , breaks into irreducible constituents.
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Suppose 7, and 7, are special involutions. As {r,, 7,> is dihedral and each
X(7;) has an n — 2-dimensional fixed space, X |{(r;, 7> =X, D X; ®
(n — 4) 1, ., where each X, has degree 2 and may be reducible. If ; and 7,
do not commute, either X; or X, is irreducible. If X, is irreducible and X,
reducible, X, ((ry75)%) = I. Now (my7,)? is a special element. As G has only
special r-elements for r = 2, X ((ry7)?) = —I, and so 7,7, has order 4. In
general, if 7, and 7, do not commute, let K; be the kernel of X; and suppose =
is an element in K; . As X,(r) = I, 7is a special element and so 7 has order 1 or
2 and Xj(r) = 41. This means | K;| < 2 and K is in the center of {r;, 7,).
Assuming =, and 7, do not commute, the center of {(r,, 7,> is cyclic and so at
most one K is nontrivial. If X and X, are both irreducible, one must be faithful;
the other could have a kernel of order 1 or 2.

We say that two special involutions are bad of order m if | ry75 | == m where
m = 2k, k > 3. To prove Theorem 3.1 we must show there are no bad pairs of
special involutions. Suppose then that r, , 7, are a bad pair. Now X | {7, 7> =
X, ®X, D (m—4)]1, ., where X; are both irreducible. Assume X is
faithful.

By examining the dihedral group D, , we can if necessary replace =, and =,
by special elements for which the order of 7,7, is 8 or 2p with p an odd prime.
We assume then that 2 = 4 or p. Let X, act on U and X, act on U,. We let
X(r,75) have eigenvalues «, and &; . Note that «, is a primitive 2kth root of 1,
oy % 0y OF & o X(7y7,) would contradict Blichfeldt and so U, and U, are unique.
In a series of lemmas we show that some subgroups of G containing <{r; , 75>
are restricted.

LemMA 3.2. Let H be a subgroup of G containing {r,, 7,) and generated by
special tnvolutions. Suppose X |\H =Y @ € ® (n — 7) 1y where Y is irreducible
of degree 6. Then one of the following holds.

(1) Y is monomial

0100 0 0] 0 o 0 0 0 0
100000 % 0 0 0 00
~looo0o100 ~Jo 0o 0 4 00
Y =100100 0| Y(Tz)“00&20 00
000010 0 0 0 0 10
00000 1] 0 0 0 0 01
or

0 0100 0

000dO0O0

100000

Y =10 200 0 o’

000010

[0 00001
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where d — (o0y)? and the permutation group contains no 3-cycles. The second form
of Y(r5) occurs only iof k < 5.

(i) Y is not monomial

001000 0 0 0 00
000100 0 0 0 o 00
|t oo0oo0o0o0 |l 0 0 0 00
Yo =lo 10000 YWW=1¢ 5 0 0 0 o0
0000T10 00 0 0 10
00000 I 0 0 0 0 01

Y permutes 2-dimensional subspaces, | 1,7y | = 8, and X, , X, are faithful on both
U, and U, .

Proof. We first remark that except for the treatment of the nonmonomial case
this proof also works when | 77, | = 9, 9, or 15 with p == 7. This will be dealt
with in Lemma 4.2.

Note that if Y is primitive, Lemma 2.1 gives a contradiction. Otherwise,
Y(H) permutes 1-, 2-, or 3-dimensional subspaces. An involution interchanging
two 3-dimensional subspaces has trace 0 and cannot be special. As H is generated
by special involutions, Y(H) cannot interchange two 3-dimensional subspaces.
Suppose first that Y(H) is not monomial and so permutes 2-dimensional sub-
spaces but not 1-dimensional subspaces. Let these spaces be V,, V,, and V.
As H is generated by special involutions, there must be special involutions p,
and p, such that Y(u,) interchanges V; and V, and Y(u,) interchanges V, and
V5 . By choosing an appropriate basis we can assume Y(u,) is the permutation
matrix corresponding to (1, 3)(2, 4) and Y(u,) is the permutation matrix corre-
sponding to (3, 5)(4, 6). Then p; = (g,)#2 will correspond to (1, 5)}(2, 6).

We examine the possible permutation actions of Y (ry) and Y{(rp) on V,, V,,
V, . Suppose all are fixed. By reordering V, , ¥y, V, and rechoosing the basis we
can assume Y(u,), where ¢ = 1, 2, 3 are unchanged and

010000 0 0,0 0 0 0
100000 4% 00000
~looo100 oo 0«00
Y =10 010 0 o0 ¥(m) = 0 0&G 0 0 0
000010 000010
00000 1 0000 O 1

Now Y[(7y75), ug] = diag(ay , &, 1, 1, & , o)) contradicts Blichfeldt as o, is a
primitive 2kth root of 1. Suppose then Y(r;)7 =1 or 2 fixes all three V;. By
reordering and changing the basis we can assume
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A4 0 0
Y() =10 B 0},
0 0 I,

Y(r) =

OO ~=O O
SO OO0
(=il w i ol B
OO DO D
[ R = e R )
—_-0 L OoOoo

where A, B are2 X 2 matrices of order 2and 4 = diag{+-1, +1).If 4 = +1,,
Y(ryrs) has order 4, a contradiction, and we can assume A = diag(l, —1).
Note B 5= I as £ | {7, , 7y is trivial. Replace u, by 7, and change the basis of V,
so that Y(u,), Y{(iz5) are the permutation matrices as above and we have

I, 0 0 A0 0
Yy =0 B 0|, Y&E)=|o I, 0f,
0 0 4 0 0 B

SC

Vestr) = [ tg)
This is a special r-element where r 2> 3 and hence impossible unless AB = 41,
In each case B is determined and 7,7, has order 2 or 4, a contradiction.

We have shown that both ¥(n) and Y(r,) interchange two of V3, V,, V.
If they interchange different ones the product ry7, has order 3, contradicting our
assumptions. We may assume

0 I, O 0 A4 0
Y('rl) : 12 0 0 Y(Tz) == A“l 0 01.
0 0 I, 0 0 I

By rechoosing a basis for ¥ and ¥, and if necessary replacing o; with &; , we can
assume A = diag(oy , o).

Let K be the normal subgroup of H such that Y{K) fixes V, , V,, V. Clearly
H = K{ry, 11y and {7y, poy 22 S;. Let Y| K = R, ® R, ® R, where R;
acts irreducibly on V. As we are assuming Y is not monomial, R; is not
monomial. This follows as if R, were induced from a subgroup K, of K of
index 2, ¥ would be induced from (K] , u,) of index 6 in H. Note my7, € K and
Ryryrs) = I . The groups R{K)/Z(R{K)) are isomorphic as groups and must
be 45, S, , or A, by Blichfeldt [1].

Suppose the cyclic group det(R,(K)) has order d. I L is SLy(5), GL4(3), or
SL(3), then R(K) is a subgroup of L o D where D is cyclic of order 2d. Here
R{K)Z(R{K)) covers' L o D|Z(L o D). The matrix Ry{r;7y) = didg(o , o).
As o 7 oy by Blichfeldt, R (+;7,) is a noncentral element. As an element of
LoD, Rirymy) = XY where XeL, YeD. As R/(ry7,) is noncentral, X is
noncentral in L. The commutators of Ry(ry7,) by elements of R;{K) generate a
normal subgroup of L o D containing at least the quaternion group Q.
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It follows that in K’ is an element y for which Ry(y) = —1,, Ry(y) = +1,,
Ry(y) = I, . By conjugating with {7, , p,> we obtain an element r of K’ with
Ry(1) = Ry(r) = —I,, Ry(r) =1,. Now if £k + 4 and o, # +oy, there is
an element of order & in Ry(K)/Z(Ry(K)) and so kis 3 or 5. If it is 5, a high
commutator contains an element with eigenvalues on V of —w, —&, 1, 1, 1, 1;
—w, —@, —w, —o, 1, 1; or —w, —®, —w, —&, —w, —&. This contradicts
Blichfeldt. If £ = 3, 7(ry7,)? contradicts Blichfeldt with eigenvalues on V of
—w, —&, —w, —a, 1, 1. If oy = 4oy, 0y = —a, by Blichfeldt, and 7(;7,)? has
eigenvalues on V of —ay2 —oy? —&?% —&% 1, 1, contradicting Blichfeldt.
Finally, if 2 = 4 and o, is not a primitive 8th root of 1, Ry(K)/Z(R,(K)) has an
element of order 8 which is a contradiction. This means that X, and X, are
faithful and gives case ii completing the nonmonomial case.

Assume now that Y is monomial. Suppose first that Y(r;) and ¥ (r,) as per-
mutations are both pairs of disjoint transpositions moving the same set of four
letters. We can assume by reordering and rescaling that Y(z;) have the same
form as (i) in the lemma. Note that if 2 > 5, the second form of ¥(r,) cannot
occur or (1,75)% contradicts Blichfeldt. Suppose there is an element s of H for
which Y(s) acts as a 3-cycle. As H is generated by special involutions which
cannot interchange two 3-dimensional subspaces, the permutation group Y(H)
must be transitive. This means it is Ag or Sg . If ¢ is an element of H such that
Y(¢) represents the 3-cycle (1, 5, 6), Y([(1y7)% £]) = diag(y, 1, 1, 1, f2, 1) where
u is a primitive kth root of 1. This is a special k-element contradicting our
assumptions. The lemma is proved now if ¥(r;) and Y(r;) act on the same four
letters both as products of two disjoint transpositions.

Suppose Y(r;) and Y(rp) both act as products of two disjoint transpositions.
If they are transitive on five letters, Y(r,7,) has order 5 contrary to assumptions.
If they are transitive on four letters and interchange the other two, Y (r7,) has
order 4. If they move six letters and act like (12)(34), (15)(36), 7y, has order
3. By reordering and rescaling and recalling that ¥ | (sy,7,> has no non-
trivial linear constituent, we can now assume

010000 0o 0000
100000 3 00000
000100 001000
Yo=loo1000 Yo =1o00001 0
000010 000100
0000O0O01 0 00O0O011

The product =7, must have order 6 and so we can assume o = —w Where

w = /3, The permutation group is 44 or Sy as Y((ry7,)?) is a 3-cycle. As
Y((ry7s)®) = diag(—1, —1, 1,1, 1, 1) and Y(H) as a permutation group is Ag or
S¢ we easily get —Ig in Y(H). Let .S be a Sylow 3-group such that Y(S) as a
permutation group is {(123), (456)>. If S is nonabelian Z(S) N S’ contains
diag(w, w, w, &, @, ®), diag{w, w, w, 1, 1, 1), diag(l, 1, 1, w, w, ), or wlg.In the
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first three cases, by conjugating with an element representing (34)(56) one gets a
special 3-element. In the last case —wly is in Y(H’), an element contradicting
Blichfeldt. If .S is abelian an element s representing (123) must be scalar on
{4, 5, 6} or it would not commute with an element representing (4, 5, 6). However,
Y{((ry75)?) is not scalar on the points it fixes. This case is therefore impossible.

If Y(ry) is diagonal, Y (ry7,) has order at most 4. The only possibility not dealt
with is that Y(r;) is a transposition for 1 = 1 or 2. As X| {7y, r,> has two
irreducible constituents of degree 2, Y |{r ,r,> also has two irreducible
constituents of degree 2. The eigenvalues of Y(rym,) are oy , &y , &, , & Where o
is a primitive 2kth root of 1 and «, is a primitive 2kth or kth root of 1, The only
possibility for Y{r,) and Y{r,) after reordering and rescaling is now

010000 0oy 0 00O
100000 43 00000
000100 001000

Y@ =loo01000] Y=1000-10 of
000010 000010
00000 1 000001

or
—10 000 0
001000
010000
Ym=106001 0 ol
000010
000001

where o, is a primitive 8th root of 1. If the permutation group contains a 3-cycle,
the permutation group is S, a conjugate o of =, represents either (1, 2} or (2, 3}
and (or,)?® is a special 3-element. This means the permutation group contains no
3-cycles. In the first case of Y (), the 2-cycles present so far are (1, 2) and (3, 4).
As the permutation group is transitive there must also be (5, 6). As there are
no 3-cycles these are the totality of transpositions in the permutation group. As
the permutation group is generated by special 2-elements and transitive on the
sets {1, 2}, {3, 4}, and {5, 6} there is a special two element r interchanging the
sets {3, 4} and {5, 6}. This of course acts trivially on the first two coordinates and
80

0« 0000
5 0000 0
. joo1o000
Yed=1060010 o0
000 010
0000 0l

Now (ry7,7)? = diag((&)% (=)% 1, 1, 1, 1) a special 4-element,
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In the second case of Y(r,) the transpositions obtained so far are (2, 3) and
(1, 4). Again (5, 6) must be in the group. Again there must be a special 2-element
74 such that Y(r;) is the permutation matrix corresponding to (15)(46). Now
((ro75)%r1)?75 is a special 4-element.

LemMMA 3.3. Let H be a subgroup of G containing {r,, 7,> and generated by
special involutions. Suppose X | H =Y @ & @ (n — 8) 15 where Y is irreducible
of degree 1. Then Y is monomial, the permutation group contains no 3-cycles, no
2-cycles, and has no element of order 5. In an appropriate basis

—

01000 0 0] [0 0, 0 0 0 0 0
1000000 % 000000
0001000 000akOO0O0

Y(r)=[0 01000 0|, Y()=|00&0O0O0O0],
00007100 0000100
0000010 00000T10
(000000 1] 000000 1]

or

00100 0 0]
000dO0O0O
1000000

Y(r)=]0 2 00 0 0 0 where d = (o).
0000100
00000T10
000000 1]

The second form of Y(r;) occurs only if k < 5.

Proof. This proof again works in the case | 77y | = p, 9, or 1S with p > 7
which will be handled in Lemma 4.3.

By Lemma 2.1, Y cannot be primitive and so must be monomial. If Y(H)
contains a 3-cycle, the permutation group is A, or S, as these are the only
transitive subgroups of S, containing 3-cycles. It follows as in Lemma 3.2 that,
Y(r)) and Y(r,) are both products of disjoint 2-cycles moving the same four
points. The form for Y(r;) and ¥(r,) after reordering and rescaling is as specified.
As in Lemma 3.2 the permutation group contains no 3-cycles and so no 2-cycles.
It has no elements of order 5 as a transitive subgroup of .S, containing an element
of order 5is 4, or S;.

Lemma 3.4.  There can be no subgroup H of G such that H contains (vy , 75>
and X |H =Y D ED(n — 6) 1y where Y is irreducible of degree 5.

Proof. 'This proof again works in the case | 7y | = p, 9, or 15 with p > 7
to be dealt with in Lemma 4.4.
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Replace H by the normal subgroup generated by all conjugates of 7, and ;.
There is still an irreducible constituent of degree 5 as otherwise, by Clifford’s
theorem [6, Theorem 3.4.1], ; and =, would commute. As X | {7y, 7> has only
trivial linear constituents, £(r;) = (r;) = 1 and so £ is now trivial.

As X is irreducible there must be a special 2-element r in G such that X{7)
does not fix the 5-dimensional space U on which Y acts. As X(7) has an#n — 2-
dimensional fixed space and X(H) has an #n — 5-dimensional fixed space,
X({H, ) has an n — 7-dimensional fixed space and satisfies the hypothesis of
either Lemma 3.2 or 3.3. The groups in Lemma 3.3 have no subgroup which has
an irreducible constituent of degree 5 as any elements of order 5 would be in
the diagonal abelian subgroup.

This means X | {H, ) has an irreducible imprimitive constituent of degree 6.
Again replace (H, ) with the normal subgroup K generated by H and all
conjugates in (f, 7> of 7; and =,. This contains H and again by Clifford’s
theorem this group has an irreducible constituent of degree of at least 5 and so
has an irreducible constituent of degree 6. Now X | K == Y @ (# — 6) 1.
For some special 2-element ¢ in K, X(¢) must move Uand X' | (H, o) = Y, ®
(n — 6) 14.., where Y7 acts irreducibly on Uj of dimension 6. As X is irreducible
there is a special 2-element oy for which X{o,) moves U; . Either X{oy} or X{(o,%)
moves U as well. Assume X(o;) does. As above, we may replace X{o,) by a
special 2-element X(op) moving U and U,, such that X |{(H, 6> =Y, ®
{n—6)1, Hoop where Yy actson Uy . As U, £ U, , X | {H, o, 0, satisfies the
hypothesis of Lemma 3.3 a contradiction as no such group has a subgroup with
an irreducible constituent of degree 5. This completes the proof of the lemma.

Lemma 3.5.  There is no subgroup K of G generated by 3 special 2-elements r, ,
1o, 7 with the following special form. X | {ry, 70, 7> =T, DT, D(n—5) 1%

re=[) o =[5 7T ne=[ il

010 100 —10 0
Tyr) = |1 0 0f, Tyr)=10 0 1|, Tyr)=|0 —10].
00 1 010 00 1

Here w = ¢¥i53,

Proof. Let Tyacton V., T, on ¥V,, and let o be a special 2-element for
which X(o) moves V. Let H = {ry, 7, , 7, o). Note that Ty and T, are irre-
ducible. :

Note first that X' | H has an n — 7-dimensional fixed space. If there is an irre-
ducible 6- or 7-dimensional constituent Y, apply Lemma 3.2 or 3.3. Since
| 7973 | = 6 the group is monomial and Y{(r,) acts as the permutation (12) (34).
Now Y(r) must permute the letters 1, 2, 3, 4 among themselves as 7 and 7
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commute. However, now Y | {ry, 75, 7) has two irreducible constituents of degree
2, while the rest are linear. This conflicts with 7, and T, being irreducible. Con-
sequently X | H has constituents of degree at most 5. If there is a constituent
Y of degree 5 the remaining constituents are linear as ¥ must act on 1V + V,
as X(¢) moves V; and X(o) is special. This means H must satisfy the hypothesis
of Lemma 3.4 and so this is impossible. We conclude the constituents have degree
at most 4.

Suppose X |H=S5,® S, @& (n — 7) 1 where S, acts irreducibly on V;*
and V; C V;*. There are three cases to consider:

(i) S; has degree 4 for some .
(ii) S, has degree 3 and S, is irreducible of degree 4 for some .
(iii) .Sy has degree 3 and .S, has a linear constituent for all o.
These are the only possibilities as S; cannot have degree 2 since X(o) moves
V; and T, has degree 3.

In case (i) above S; must be imprimitive, by Blichfeldt. Suppose .S; permutes
2-dimensional subspaces. As S;(r;) are reflections, we have

0100 0 —w0 0
1000 —&0 0 0
S =19 01 0] S™@D=|0o0 1 0]
000 1 0 0 01
0010
0001
9 =11 0 0 o
0100

Now Sy(o) is trivial'and (S; @ S,) [y, 6] = diag(—w, —@, —&, —w, 1, 1, 1)
contradicting Blichfeldt. If .S, is monomial we obtain the same forms as S;(7)
is trivial and so S}({7y , 75, o) must be transitive.

In case (ii), .S5; is again imprimitive by Blichfeldt and so must be monomial.
We can assume

010 0 —w0 100
Sy =11 0 0|, Sym)=|—®0 Of, Sye)=1|0 0 1},
001 0 0 1 010

and so Sy(H) = DS where D are diagonal matrices and S== S;. A Sylow
3-group of D has order 32 If 32+ | S,(H)|, there is a special 3-element in
ker S, . Suppose .S, is primitive. The groups S,(H) are listed in [14] or [5,
Sect. 8.5]. All have elementary abelian Sylow 3-groups of order at most 9. Note
that O,(3) is not generated by reflections. Consider the group Hy = {7y, 75, o).
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As Sy(H,) contains a full Sylow 3-group of S,(H), S,(H,) must also contain a
full Sylow 3-group of S,(H), or H, would contain a special 3-element. Now
Sy(H,) is generated by three reflections and so S, | H, has a 1-dimensional
fixed space. A Sylow 3-group of S,(H,) being elementary abelian must now
contain an element with eigenvalues w, w, w, 1. This is impossible according
to [14] or inspection of the groups in [5, Sect. 8.5]. If S, permutes 2-dimensional
subspaces, then Sy(7;) are block diagonal. As [, , 7] = 1, S,(r) is block diagonal
and so T, is reducible. Finally, S, must be monomial. We may assume

0100 0 w 0O

1 000 —o00 0 0

SZ(TI) = 0 0 1 0 ’ S2(7'2) = 0 0 1 O ’

0 001 0 001

or

1 000
0010
S2(7'2): 0100
0001

As [r1, 7] =1, Sy(7) permutes the first two coordinates. As T, is irreducible
Sy(7;) must be the permutation matrix. Now Sy(H) = D,;S* where D, are
diagonal matrices and S* ~ §,. As 3? I | Sy(H)|, 3 I | Dy|. Now Sy(H") is
diagonal and S,(H") is a diagonal group with V' = ((12) (34), (14) (23) acting.
As 3|| D, |, there is an element y in H” with S,(y) = diag(w, », », 1). Now
conjugating by an element y, of H”, for which Sy(y,) acts as (12) (34), gives a
special 3-element.

In the final case S, = R @ £ where R is irreducible of degree 3 and ¢ is
linear. Let R act on Vy*. Here V,* must be the irreducible 3-dimensional space
T, acts on. Again by Blichfeldt, S, is monomial. If R{c) is trivial (,0)? must be a
special 3-element. It follows that £ is trivial. This shows that if X(o) moves 7,
X(o) fixes V,*, acts nontrivially on V,*, and V * = (V,, X(0) V,> is an invariant
subspace of dimension 3. Relabel V' * as W;, 6 =05, Hy = {7y, 15, 7, 03).
Note W5 = <(W,, X(e3) W,>, where W, =TV,. Suppose o,,..., 0; special
2-elements have been chosen so that H; = (ry , 75, 7, 05 ,..., 0> = {(H; 4, 0>,
W, =Wy, X(a)) Wiy, X(a;) (V*) = Vo*, X(o;) | Vo* is not trivial, and
X(H,;)| W, is irreducible. Choose ¢ such that X(¢) W, == W, . There is some
conjugate o,y of o by an element ' of H; such that X{(o;,,;) moves V;. Then
Wi = (X(0:y) Wi, W is an irreducible subspace for H,,, = (H;, a;,,>
of dimension 7 + 1 and X{(o;,,) (V,*) = V,*. Continuing until { =n — 2 we
obtain a contradiction.

We now turn to two lemmas which demonstrate how an arbitrary special
2-element 75 interacts with 7, and 7,. In particular we show that, except for
very special situations, 7,74 and 7,73 have order 3.
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Levmma 3.6, Suppose v5 is a special 2-element such that X(r) moves both
U @D U,and Uy . Then | vy75 | is 3 or 4 and if 4, X(7y73) has eigenvalues i, —1i,
—1, —1, the vest being 1. Also, if |mr3] =4, X |1y, 7o, Ty =
Y®(m—6)1,.,.., where Y satisfies the hypothesis of Lemma 3.2(i) with
Y (7,) representing (1, 3) (2, 4) and Y(r,), the permutation matrix (1, 5) (2, 6),
| 7979 | = 8, and X, is faithful.

Proof. We divide the proof into cases according to how X | {(r, 7y, 73>
breaks into irreducible constituents. As 7y, 7,, 75 are special 2-elements there
will always be an # — 6 dimensional fixed space. Let H = {7y, 75, 73".

Case A, X|H=Y,®DY, D (n— 6) 1, where Y, is irreducible of degree
3and Y, | {7y, 7o) contains X, as a constituent.

As Y, | {7y, 7,y contains X; as a constituent and X | {7y, 75> = XA D X, D
(n—B 1 .y, Y11{n, 70 =X, @ l¢y,.r,y - Now ¥; must be imprimitive
as otherwise Y;(r,7,) contradicts Blichfeldt. We may assume

01 0 0 o O 100
Yim) = [1 0 0f, Vi) =]a 0 0f, Yyr)=([0 0 1{.
00 1 0 0 1 010

This implies Y,(r,75) has order 3 and so if | 7375 | %% 3, | my75 | = 6. In this case
Yy(ry75) must have order 6.

If Y, is irreducible it is again monomial by Blichfeldt. In order that Yy(r,7;)
have order 6 we must have

010 0 —w 100
Yor) = |1 0 0f, Yyrm)=[-a 0 0Of, Yym)= |0 0 1}.
00 1 0 0 1 010

But now 7, , 75, (my7,)® satisfy the hypothesis of Lemma 3.5 and this is impos-
sible.

Suppose Y, is reducible, If it is monomial, Yy((7y75)%) and Y,((7y75)%) are
diagonal. Let [(r17,)?, (r175)%] be x. Now Y{[x, 7] = diag(&,5, o5 1), Y,[x, 7,]
is trivial and this is a special element not allowed unless 2 = 3. If & =3,
Yo((m73)%) = —1I, © 1 and 7y79(my75)® contradicts Blichfeldt. This means
YV (H)Z(Yy(H)) =~ A4,, S,, or A;. It cannot be A; as then H” contains a
Blichfeldt element. It follows that 7,7, must have order 6 and the Sylow 3-group
of Y,(H) is of order 3. As the Sylow 3-group S of Y,(H) is nonabelian, class 3,
of order 27, there is a special 3-element in S in the kernel of Y, . This contra~
diction eliminates case A.

Case B. X|H=Y,0Y,® (n— 6)1, where Y, is irreducible of degree 4

and Y, | {ry, 7,> contains X, as a constituent.
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As Uy @ U, is not fixed by X(5), ¥y |<my, 70 =X,D2" 1, ., and
Y, | {ry, 1yp = X, . Now Y, is imprimitive as otherwise Y,(ryr,) contradicts
Blichfeldt. If Y, permutes 2-dimensional subspaces or is monomial the basis

can be chosen as follows.

0100 0 o 00
1000 _lmoo0o0
i =19 0 1 of =10 01 of
0001 0001
0010
0001
Yl =11 0 0 0
0100

Note Yy(r3) = I. Now [y 75, 75] contradicts Blichfeldt.

Case C. X|H=Y,8¢@ (n— 6) 1,4 where Y, is irreducible of degree 5.
This case is impossible by Lemma 3.4.

Case D. X|H=Y @ (n— 6)1,; where Y is irreducible of degree 6.

By Lemma 3.2, if Y is not monomial and so permutes 2-dimensional sub-
spaces, Y(ry) and Y(r,;) interchange the same subspaces. Now to make Y
irreducible, Y(r3) must permute one of these to the third and Y(r,7;) would
have order 3. We can assume then that ¥ is monomial and has the form specified
by Lemma 3.2. In order that the permutation group be transitive on 6 letters,
Y(r,) must have the second form. If ¥(r;r5) as a permutation has cycle type
(3, 3), its cube must be trivial as such a matrix has the wrong eigenvalue structure
to be of order 6. After reordering we may now assume that Y(7;) as a permuta-
tion is (1, 5) (2, 6) as other inequivalent choices give Y (ry73) of type (3, 3). Now
Y([(r179)%, (1y75)%]) = diag(d? d% 1,1,1,1) which is a special element. This
means d? = —1 and «, 18 an 8th root of 1. Now | 7,7, | = 8, the eigenvalues of
Y (7y75) are as specified, and X; and X, are both faithful.

LemMma 3.7. There is no special 2-element 74 such that X(r3) moves Uy @ U,
but fixes U, .

Proof. Again let H = {7y, 75, 73). As X(75) leaves U, invariant X | H =
R, ® R, ® (n — 6) 14 where R, acts on U, . Here either R, is irreducible or
R, = 5 @ ¢ where € is linear and S is irreducible. We consider first the latter
case.

Suppose that R, is monomial. If .S is primitive and S(H) is not solvable there
is a special 3-element in H*. This means S(H) is primitive and solvabl¢ and
so is one of the groups listed under [5, Sect. 8.5].

Note that as the Sylow 3-group of R,(H) is unimodular, it is cyclic. As the
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Sylow 3-group of S(H) is nonabelian of order at least 27 there is a special 3-ele-
ment in ker R, . This means .S is monomial. We may assume

010 0 o« O 1 00
S(r) =11 0 0|, S()=1]a 0 0f, or [0 0 If.
0 0 1 0 0 1 010

In the first case, 7; must represent the permutation (2, 3). If R,(r;) is diagonal,
{7175 , T3] Or its square is a special k-element. Consequently, R,(ry7;) is diagonal
and S(ry75) is a 3-cycle. Now let ¢ = [ry7,, 7y75]. We see Ry(o) =1, , £(a) =1
and S(¢) = diag((a,)? &, , &;). Now [e, 7,] gives an element y for which R, and
¢ are trivial and S(y) = diag(a,? «,% 1). This is special unless o, is a cube or a
sixth root in which case 2 = 3. Now the Sylow 3-group of R,(H) is cyclic, the
Sylow 3 group of S(H) is nonabelian of order 27, and there is a special 3-element
in ker R, .

In the second case for S(r,), S(y7,) has order 3 and so | 737, | = 6. Let D be
the normal subgroup consisting of elements y for which S(y) is diagonal. If
there is a nonscalar element of order 3, a Sylow 3-group of S(H) must contain
the nonbelian exponent 3-group of order 27 and there is a special 3-element in
ker R, . Otherwise let 4 be a subgroup of D for which S(A) is elementary
abelian for some prime p # 3 and [S(4), S(ry75)] == S(A4). This is possible
by [6, Theorem 5.2.3] as S(D) is not scalar or S would be reducible. As R,(ry7,)
is diagonal by taking commutators of 4 with 7,7, sufficiently often one obtains a
subgroup 4, for which R,(4,) and é(4,) are trivial and [S(4,), S(ry7s)] = S(4,).
Nowif p =2, Ais Z, X Z,,and =, , 75 , together with an element of 4, contra-
dict Lemma 3.5. If p 5 2, there is either a special p-element in 4, or conjugating
by r, gives one. We conclude R, is not monomial.

We note this implies £ is trivial. Let 7, be a special 2-element for which
X(7,) moves U, and let K = {(ry, 7y, 74, 79> = {H, 74>. As in Lemma 3.6 we
divide the argument according to how X | K breaks into irreducible consti-
tuents.

Case A. X|K=T,DT,D(n — 7)1y where T, is irreducible of degree 3
and T acts on a subspace containing U, .
By Blichfeldt, 7 is monomial. We may assume

010 0 o 0
T() = |1 0 0|, Tfr)=|a 0 0.
001 0 0 1

As the 2-dimensional space U, is unique U, = (v, , v,> where here v, is the
ith coordinate vector. As X(r;) leaves U, invariant it follows that Ty(H) is
monomial contrary to the above.
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Case B. X|K=T,® T, ® (n—T)1xwhere T} is irreducible of degree 4
and acts on a subspace containing U, .
Again T is imprimitive by Blichfeldt. We see

0100 0 « 00
[t ooo0 _la 0 00
Tl(Tl) - 0 0 1 0 ’ T1(72) - 0 0 1 0
00 01 0 0 01

As T\(rs) must act nontrivially on U,

=10

0|1,

Tl("a) =

This means

Ty(ry) = [(1)2 %]

Now [ryrs, 74] has eigenvalues contradicting Blichfeldt.

Case C. X|K=T@®£®(n— 6)1; where T is irreducible of degree 5.
This contradicts Lemma 3.4.

Case D. X|K=T@ &P (n—T) 1x where T is irreducible of degree 6.

Note that Lemma 3.2 applies. As X | H has irreducible constituents of degree
3 and 2 and only trivial linear constituents, T' cannot permute 2-dimensional
subspaces. This means that T is monomial and T'(r) and T'(r;) have the form
described in Lemma 3.2. If T(ry) and T(ry) both act as (1, 2) (3, 4), the first two
coordinates span U, . As X(r;) leaves U fixed, R, is monomial. In the remaining
case T'(ry) and T'(r,) act as (1, 2) (3, 4) and (1, 3) (2, 4). As there are no 3-cycles
in the permutation group, and X | H has the irreducible constituents R, and S,
T(ry), T{ry), T(r;) must be transitive on six letters. Now the diagonal subgroup
of T'({7y , T2, Ta)) has six nontrivial linear characters which is impossible in this
case since X [ {7y, 7, Tp =R, BSP(n—5) | PR

Case E. X|K=T@ (n— 7)1 where T is irreducible of degree 7.

In this case Lemma 3.3 applies and can be handled as in Case D. This final
contradiction shows that R, must be irreducible of degree 4. As Ry(r;) extends
U, to an irreducible 4-dimensional subspace, say ¥V, , Ry(ry) | ¥ cannot be a
reflection. This means that Ry(ry) is trivial and Ry(H) = Ry({ry, 7o) which is
dihedral. If R, is primitive the groups are listed by [14] or [5, Sect. 8.5]. Note that
R,(r,) is a reflection. All of these groups in our situation contain either special
3-elements or elements contradicting Blichfeldt. This checking is facilitated by
noting that if R,(H) is nonsolvable, R,(H=} is trivial; there is a special 3-element

481/45/2-15
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in Ry(H>), and so H contains a special 3-element. The remaining possibilities
for Ry(H) all have Sylow 3-groups S of order 9 and centers of order 2. These
groups are generated by (w, @, 1, 1) and diag(1, 1, », @). Now S contains s for
which Ry(s) = (w, &, w, &) and H contains z for which Ry(2) = —1I, Ry(3) = L.
Also Ry(s) = diag(w, @) or I, Ry(rym)® = —1I,, and Ry(ryr,)%) = 1; . Now
(my79)® s2 or sz contradicts Blichfeldt.

This means R, is imprimitive. Suppose R, permutes 2-dimensional subspaces.
Then

0 1 Q0 « 1 0
R =[] of B =[ G Red=[ ]
0100 0 o 00
1000 % 0 00
Rg(’rl) = 0010/( R2("'2) == (:)2 0o 1 ol
0001 0 0 01
0010
0001
Rw) =11 0 0 o]
0100

Then R, @ Ry([[r172, 73], 7)) = diag(l, 1, &3 a? 1, 1) which is a special
k element unless k2 = 4. In this case Ry @ Ry((myry)? [[nma, 7ol 7ol) =
diag((&)? (%)% 1, 1, 1, 1) a special 4-element. This means that R, is monomial
and the representations for Ry(ry), Ry(ry), Ry(7g) do not have the form above.
The only possibilities are that R, is as above and

0100 +1 0 0 0
1000 0 F10 0
R =190 1 o R9=|o o1 of
000 1 0 00 1

001 0

000 1

R2(Tﬂ)_10001

010 0

or

0100 1000
1000 0010
Rl =10 010 BwW=|0 10 0|
000 1 0001

In the first case, & = 4 and (ry{r,)™)? is a special 4-clement. In the final case
we have & = 3. If Ry(ry) is a 2-cycle it can by conjugation be assumed to be (3, 4)
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and now (r,75)* is a special 3-element. This means that Ry(g) is a product of
disjoint 2-cycles. After conjugating if necessary by r,7, and rescaling we can
assume

0B 00
0 00
Rz("'a):go()l
0010

As R, is irreducible, 8 5= 1. Now (ry75)? is a special m-element m > 3 unless
B=—1or +i. If B = i, =, 7, (1375)? contradict Lemma 3.5. This means
B = —1. However, if v, is the ith coordinate vector, (v; -+ v, + 03 — 9, is
invariant and R, is reducible. This case is therefore impossible and Lemma 3.7 is
proven.

Proof of Theorem 3.1. We now proceed directly to the proof. Suppose first
that £ >> 7. We have chosen =, and 7, to be bad with | 7,7, | = 2k. Suppose 7, is
any other special involution for which | 7,7y | = 2k. Further assume that under
the isomorphism sending v, > 7 and 7, —> 75, X | {1, 7o) is similar to
X | {7, 75y. By Lemmas 3.6 and 3.7 as | m75 | 3£ 3 or 4, X(r;) must fix
U, ® U,. Since X |{r, 7y for i =2,3 has only trivial linear constituents
X|{ry, 79,70 =2 —4) 1¢; 1,0, - Suppose Z is irreducible. Let 7,
be a special involution for which X(z,) moves U, @ U, . Then by Lemmas 3.2
and 34, and as |ny7y | #8, X|{r, 7,15, 70 =R P (n—6) 1<71‘72,,3'74> .
Here R is irreducible and monomial and R(7), R(r,) have one of the forms
described in Lemma 3.2. As 2 2> 7, R(r,) represents the permutation (1, 2) (3, 4).
As X(7,7;) has order 2k with eigenvalues the same as X(r,7,) as a permutation
it must also act as (1, 2) (3, 4) or a contradiction arises. We see that X(r4) acts on
U, and U, , and in particular Z is reducible.

Let Z = Z, ® Z, with Z; acting on U;. As the eigenvalues of Z(r;7,) and
Z (7 73) are primitive kth or 2kth roots of 1, each Z; is monomial. Now Z;((r;7;)?)
for i =1,2;7 =1, 2 are diagonal and unimodular. This means {{1,75)?, (1,75)>>
is abelian of order % or k% In the latter case one obtains a special k-element
a contradiction. 'This means {(1y75)%)> = {(7y73)*).

We now define ¢(r) = {(ry7,)*>. This is an important definition for our
subsequent work. The lemmas we have proved so far have been designed to
determine properties of y(r;). Note that the argument of the above paragraph
shows that if one replaces 7, in the definition by any =, for which X | {7y, 7> is
similar to X | {7y, 7o) under the isomorphism sending =, —> 7, and 7, — 75,
y(r;) is the same group of order k. The definition is thus independent of the
choice of ,.

Suppose now that o, is any special involution for which there is a special
involution o, for which |o,0,| = 2k and under the isomorphism sending
>0y, To—>0y, X|<{1y,7yy is similar to X |<{oy,0,). Define y(o,) =
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{(0405)*>. Note that 7, is such an involution using {75, 7> and (1) = (7).
Note also that any conjugate of 7, is such an involution and (y(r)y¥ =
{ryme)?>? = (rof7s7)?) = (7).

Let 7, = 7%, 7, = 7,7 be conjugates of 7, and =, by the same group element g.
Our goal is to show that y(7,) and y(7;) commute. Once this has been done, the
group generated by all conjugates of y(r;) forms a noncentral normal abelian
subgroup contrary to the supposed quasiprimitivity of X.

To this end suppose | 7y7s| == [ 77y | = 3. As [ myry | =3, (7)™ = (m3)™.
Now ((rg) = 7(r9)1) = 7{(r)s) = (). Similarly (y(m)) — (A —
(i) a8 () = ylrs). Now (y(r))"s = o(m) and so 7474 € N(y(ry)) and
¥(r3) € N(p(ry)). As |y(ry)| =k, a prime, this implies that y(r;) and y{r;)
commute.

Suppose now that y(r;) and y(7;) do not commute. By the above argument one
of | 775 |, | 7474 | is not 3 as is the case with | 7,75 |, | 7ory | | 7475 |, | 7273 |3
and | 747, |, | 7974 | - Now X | (74, 7> acts nontrivially on V; = X(g~) U; and
Vy = X(g™V) U,, and X(ry) and X(r,) fix V; @ V, by Lemmas 3.6 and 3.7.
Also X(ry) and X(7,) fix U, @ U,. Now X |{r}, 7,73, 70 =Y DY, D
(n — 8) 147z, r,ny Where Y acts on U; @ U,. f Y, acts on V; @ V,, then
y(7,) and y(r;) commute since all the action is on complementary subspaces. If
¥, has only two linear constituents, all U, , U, , V,, V, are fixed. As 2-dimen-
sional primitive groups have no noncentral elements of order %, y(r;) and y(75)
are diagonal and so commute. This means Y is trivial. If Y is reducible again
y(r,) and yp(r5) are diagonal on U, and U, and so commute. If Y is irreducible
adjoin a special involution 7; for which X(7;) moves U; @ U, . Then by Lemmas
3.2and 34, X | {7y, 7y, 74,74, 75> has a 6-dimensional irreducible monomial
constituent R. Again R((7y75)%) and R((v47,)?) are diagonal and we have y(ry)
and y(7;) commuting.

It now follows that the group generated by all conjugates of y(r,) is an abelian
normal noncentral subgroup. This contradicts the quasiprimitivity of X. We
have shown & = 3, 4, or §.

Suppose first & =3 or 5. Again let 7; be a special 2-element for which
| 7473 | = 2k and under the isomorphism ry— 7, 73 —>75, X | (v, 7o) is
similar to X | {1y, 75y. We want to show {{my7,)?> = {(ry75)?>. Again as
| 7173 | = 6 or 10, X(73) leaves U; @ U, invariant and so X | {ry, 7y, 730 =
ZD(m—4) 1 ryr,y - I Z is irreducible, let 7, be a special 2-element for
which X(r,) moves U; @ U, . Again by Lemmas 3.2 and 3.4, and as | 7375 | 7 8,
X <{ry,75,73,7) =R D (n—6) 1<,l,,2,,3ﬁ4) where R is irreducible and
monomial. As X | {r;, 75, T3> has an irreducible 4-dimensional constituent one
of X(7;), X(r,) must act as the permutation (1, 3) (2, 4) or (1, 4) (2, 3). Now
Z((1y72)?) or Z((y75)%) has nontrivial eigenvalues d, d, d, d and so both Z((7,75)?)
and Z((7y75)?) have these eigenvalues. Consequently. X | {(r,75)%, (1y75)%> has at
most 2-dimensional constituents. This is of course true also if Z is reducible.

Now let A = {(r7)% (1y75)®> and X | A =T, O T, ®(n — 4) 1, where
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T, and T, have degree 2. If A4 is abelian and {(m;7,)®> # {(7y73)*), 4 contains a
special k-element. If 4 is nonabelian assume T is irreducible. As it is generated
by elements of order % it is primitive. If £ = 5, T\(4)/Z(Ty(4)) ~ As;and in a
high commutator of 4 are elements contradicting Blichfeldt. This means k = 3
and to avoid elements contradicting Blichfeldt, T,(4)/Z(Ty(A) >~ A4,. If T,
is reducible there is a special 4-element in A’. If T, is irreducible,
To(A)]Z(Ty(A)) =2 A, and again there is an element v for which X(v) has eigen-
values (—1, —1, —1, —1, 1,..., 1). Now X{(9v(r;7,)?) contradicts Blichfeldt,

We have shown {(7175)%) = {(ry75)%>. Again let y(r) = {(ry75)*>. This
definition is independent of the particular choice of 7, and we have the properties
of y obtained above. Again extend the definition to all special involutions o, for
which there is a o, for which | 0,0, | = 2k and under the'map o, — 7, 63 > 75,
X | <oy, 0y is similar to X | {7y, 79).

As above, we again let 7, = 79, 7, = 7,¢ for some g € G. Suppose k = 5 and
y(1) does not commute with y(rg). The argument above provides a contra-
diction unless X | {y(7,), y(75)> has some two-dimensional constituents pro-
jectively representing A, . Unless there are four such constituents, a high
commutator contains an element contradicting Blichfeldt. If there are four,
U, @ U,and V, @ V, are complementary. Here y(r,) and y(r;) act nontrivially
on complementary subspaces and so commute.

Consider now k& = 3. We assume that y(r;) and y(r5) do not commute. As
above, the pair {| 7475 |, | 747, |} cannot both be 3 nor can {| 7o75 |, | 7974 |},
{| ra |, | 7ara |}, or {| 747y |, | 7o7, [}. It follows from Lemmas 3.6 and 3.7
that X(r3) .and X(v,) both fix U; @ U, and X(r,) and X(r,) both fix
XU, @Uy)=V,@V,. f Uy ® U, and V; @ V, are complementary,
y(71) and y(rg) commute. If U, @ U, = V; @ V,, let 7, be a special 2-element
for which X(r;) moves U, @ U, . If X({ry, 73,75, 7) | Uy @ U, is irredu-
cible, Lemmas 3.2 and 3.4 show y(7,) and y(r3) commute. If it is reducible,
X[ vrs)y =Y, Y, D (n — 4) Lyt vtegs - As [A(r1), ¥(mg)] = 1, we
may assume Y is irreducible and hence primitive. If ¥, is reducible {y(r,), p{75)>’
contains a special 4-element. In any other case there is an element z with
Y; @ Y,(z) = diag(—1, —1, —1, —1) and 2(7y7,)? contradicts Blichfeldt. In the
remaining case X | {ry , 75, 73, 7, is a sum of three 2-dimensional constituents,
Now X | {(y(ry), ¥(r5)) has one 2-dimensional constituent, the rest being linear.
A commutator contains a special 4-element. This shows & = 3.

The final case remaining is k = 4. This time we define y(r;) == (r,7,)% Again,
we wish y to be independent of our choice of 7, and so we let 7; be a special
2-element such that X | {r,,7,> is similar to X | {7y, 74> under the usual
isomorphism. By Lemmas 3.6 and 3.7 X | {7y, 73, 730 = Y @ (7 — 47 rporyy -
If X; and X, are both faithful then X((r;75)*) = X((7y75)*?) = diag(—1, —1, —1,
—1,1, 1,..., 1). Suppose X, is not faithful. If Y is irreducible let 7, be a special
2-element such that X(7,) moves U; @ U,. Now by Lemma 3.4 X|{r,
Ty, Ty, T4y Satisfies the hypothesis of Lemma 3.2 with a monomial irreducible
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constituent of degree 6 as X, is not faithful. However, again as X, is unfaithful,
each of 7y, 7, , 73 represent the same permutations and Y is reducible. This
means X | {1y, 7,73y = ¥, @Y, where Y; acts on U; for 1 =1,2. If
X((rym)Y) # X((ryma)?), (ryme)? (mymg)t = diag(i, —1, 1, 1, 1,..., 1), a special 4-ele-
ment. It follows then that (7y7,)* == (ry75)* = y(ry) and y is independent of the
choice of 7,. Again extend y to other possible special involutions.

Again let 74 == 7%, 7, = 7,7 be conjugates of , , 7, and assume y{r;) does not
commute with y{r;). Suppose first X, is not faithful. Again the various pairs of
orders cannot both be 3 and we see that X(ry) and X{r,) leave U; @ U, invariant
and X(r,) and X(r,) leave X(g) (U, ® U,) = V; @ V, invariant. Again if
Vi@V, and Uy @ U, are complementary, y(r;) and y(r5) commute. If
Vi®Vy= U @ Uy, X |{ry, 1,75, 7gacts nontriviallyon Uy , U, , ¥, Vs
and as y(r;) and y{r,) are scalar on each they must commute. This leaves
Vi®V,=U,®U,. Now X|[{ry, 75,735,790 =YD (n—4) 1(71.72,73,1'(5) .
If Y is reducible y(r;) and y{(r,;) commute as each is scalar on U, . If Y is irre-
ducible let 75 be a special 2-element for which X(r;) moves U; @ U, . The
usual contradiction follows from Lemma 3.2 as here the irreducible constituent
is monomial.

We are left with the case in which X, is faithful. If X(z,}, X(7,) leave U, @ U,
invariant, and X{ry), X(rs) leave V; @ V, invariant, the argument above applies
and provides a contradiction. This follows as the unfaithfulness of X, was only
used when U, @ U, = V; @ V, and if X, is faithful, y(r;) and y(r;) are both
scalar on U; @ U, and trivial elsewhere. We can assume then that X{(r,;) moves
U, ® U, and that 7, ,7,,7, satisfy the hypothesis of Lemma 3.6 where
{7y73 | = 4. From Lemma 3.6 we see

010000 001000
100000 0004doOO
000100 100000
Yed=lg 01000l Y=|o 2000 0|
000010 0000T1O0
00000 1 0000GO0 1
0000T10
00000 1
001000
Y =10001 0 ol
100000
010000

Let 7 = (ryr5)% Then Y(r) is the permutation matrix corresponding to (1, 2)
(5, 6) and Y((ry7,)?) = diag(d, 4, d, d, 1, 1). Now let # = [(ry7p)?, 7], 7% = (#)=.
Computing we see Y(F) = diag(—1, —1, 1, 1, 1, 1), Y(*) = diag(}, 1, —1, —1,
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1,1) and {#r*) = y(ry). Note that 7* and 7, commute and | 73| = 4 with
eigenvalues ¢, 7, —i, —i, 1, 1. It follows that X(+*) and X(¥) do not move
V, ® V, and so 7*% commutes with y(r;); therefore, ¢(r;) and y(r;) commute.
This final contradiction shows y(7;) and y(r3) commute and the proof of Theo-
rem 3.1 is finished.

4. |73 =2,3,4, OR 5

In this section we show that the product of two distinct special involutions
must have order 2, 3, 4, or 5. This uses and considerably improves upon Theo-
rem 3.1.

TueoreM 4.1. If v, and v, are distinct special involutions in G, | ryry | =2, 3,
4, or 5.

The proof of this theorem is the same in spirit as the proof of Theorem 3.1
and in fact could have been included in its proof. However, we felt Theorem 3.1
was complicated enough as it stands and included in this section the extra
details needed to prove this stronger version.

Suppose that 7, and =, are special involutions not satisfying the hypothesis
of Theorem 4.1. This means | 77, | is odd. Replace 7, and 7, by special involu-~
tions for which |7 | =2, 9, 15, or 25 where p > 7. This can be done by
rechoosing special elements from {7, , 7,). If | 7475 | = 25, some power contains
an element contradicting Blichfeldt or [12, Theorem 2] and so | 747y | =p, 9,
or 15. Note that X |[{ry, 790 =X, DX, D (n — 4) 1<71',2> where X; acts on
U,,i=1,2. To avoid special elements X, and X, must be faithful and X, not
similar to X, . This means U, and U, are unique. We prove analogs of Lemmas
3.2, 3.3, 3.4, and 3.6.

LemMa 4.2. Let H be a subgroup of G containing {r,, 7,> and generated by
special involutions. Suppose X |H =Y @ £ ® (n — 7) 1y where Y is irreducible
of degree 6. Then Y ts monomial and in an appropriate basis

010000 0 6, 0 00 0
10000 0 5 00000
fooo1o00 looo0owmoo
Yo =loo1000]” Y@ =]0 04&0 00
000010 0000710
00000 1 00000 1

where X(ryrs) = diag(e; , &;) and i = 1,2. The permutation group Y(H) con-
tains no 3-cycles.
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Proof. 'The proof is identical to the proof of Lemma 3.2 except in the
treatment of the nonmonomial case. Note that the second form of Y(7,)in Lemma
3.2 cannot occur since otherwise 7,7, has even order. Assume that ¥ permutes
2-dimensional subspaces. As in Lemma 3.2, it can be shown

0 I, 0 0 4 0
Y(r)= |1, 0 O0f, Y(r,) = (A1 0 0],
0 0 12 0 0 12

where A = diag(e, , @) Again let K be the normal subgroup which fixes each
of the three 2-dimensional subspaces V;, Vy, Vg,and Y | K =R, @ R, ® R; .
Again R(H)/Z(R(H)) is projectively 4,, 4;, or S;, and R; is primitive. As
oy # oy and R; is primitive, |a, | % p where p = 7. However, | o; | could be
9 or 15 with a,&, a cube or fifth root of 1. If R,(H) represents A; , a high commu-
tator contains an element contradicting Blichfeldt. There must be an element
z in K’ for which Ry(2) = diag(—1, —1). Conjugating and taking products we
obtain either diag(—1, —1, —1, —1, 1, 1) or diag(—1, —1, —1, —1, —1, —1).
If h=(rm) or h=(rm)3 Y(h) = diag(w, &, @, w, 1,1). If we have
diag(—1, —1, —1, —1, 1, 1), multiplying by Y(h) contradicts Blichfeldt.
Otherwise, if p, is as in Lemma 3.2, Y([4, p,]) diag(—1, —1, —1, —1, —1, —1)
has all eigenvalues —w or —¢@ contradicting Blichfeldt.

LemMa 4.3. Let H be a subgroup of G containing {(t, , 75> and generated by
special involutions. Suppose X | H =Y @ &£ @ (n — 8) 1, where Y is irreducible
of degree 1. Then Y is monomial and in an appropriate basis

0100000
1 000000
0 001 00O
Yrp)=]0 01 0 0 0 0y,
000O0T1O00O0
0 00O0OO0OT1O0
|0 0 0 0 0 0 1]
and
( 0o 0 00 0 0]
& 00 0000
000« 000
Ym)={0 0a& 0 0 0 O0j.
000O0T1O00O0
0 00O0O0T10
10 0000 0 1]

Also Y(H) contains no 3-cycles.
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Proof. 'This is the same as Lemma 3.3. The second form for Y(r,) does not
occur as | 77, | is odd.

Lemma 4.4. There can be no subgroup H of G such that H contains {ry , 75>
and X | H=Y @ £ D (n — 6) 1, where Y is irreducible of degree 5.

Proof. 'This is the same as Lemma 3.4.
We now proceed to a lemma analogous to Lemma 3.6.

LemMa 4.5. Suppose 75 is a special 2-element such that X(v3) moves both
U @ Uyand U, . Then | 7175 | = 3.

Proof. We again divide the proof into cases according to how Y | H breaks
into irreducible constituents where H = {(7{, 7y, 5.

Case A, X|H=Y,®Y, P (n— 6) 14 where Y, is irreducible of degree
3 and acts on a space containing U, .
In this case Y, is monomial as Y,(ry7,) is a Blichfeldt element. As

| X(my7m3)| = | 773 | # 3 we can assume
010 0 0 0 100
Yym) = |1 0 0], Yyr) = [& O O], Yyrs) = [0 O 1f,
0 01 0 01 010

and so | Yy(ryrs)| = 3. To avoid special elements using Theorem 3.1 we see
| Yo(rimg)| = 3 and |7y | = 3. ‘

Case B. X|H=Y,®Y,® (n— 6)1, where Y, isirreducible of degree 4
acting on a space containing U, .
Again Y, is imprimitive and we see

0100 0 o 0 0
1000 la 000
Yl(Tl) - 0 010 ’ Y1(72) - 0 010 »
0 001 0 0 01
0010
0 0 01
YI(TS):IOO()'
0100

Now [r,7,, 75] contradicts Blichfeldt.

Case C. X|H=Y D E¢® (n— 6) 1y where Y is irreducible of degree 5.
This case is impossible by Lemma 4.4.

Case D. X|H=Y @ (n— 6) 1, where Y is irreducible of degree 6. By
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Lemma 4.2, Y is monomial with Y(z,) and Y(r,) representing the same permuta-
tion (1, 2) (3, 4). But now adjoining the permutation ¥Y(r;) cannot make the
permutation group transitive on six letters and Y must be reducible. This
proves the lemma.

As in the proof of Theorem 3.1 we now wish to define y(r;). We do this
differently for the different values of | 7y, | . If | 77y | = p, 2 prime, define
) = {myryp. I | myrp | =15, define y(ry) = {(ry7p)*), and if |7y | =09,
define y(r;) = {(r,75)®>. We again wish to show that this definition does not
depend on the choice of 7, . Let 75 be any other special involution such that
X | {7y, 7oy is similar to X | {r;, 75> under the isomorphism sending 7, — 7,
and 7y — 73 . By Lemma 4.5, as | 773 | # 3, X(r3) fixes one of U; @ U, or U, .
Since X, | {7y, 75y is faithful on U;, Lemma 4.5 holds when U is replaced by
U, , and so X(r;) fixes one of U, @ U, or U, . In any case X(r;) now fixes
UyBDU,.So X|<{ry, 719,750 =Y D(n—4) | PR If Yis irreducible let
74 be a special involution such that X{r,) moves U; @ U, . By Lemmas 4.2 and
44, X |{ry, 74,73, Ty has an irreducible monomial 6-dimensional constituent
R. Now using the form for R(r;) for 7 =1, 2,3 we see Y is reducible. This
means Y =Y, @Y, where Y; acts on U; for i =1, 2. As Y,(rm,) =
diag(e; , &;), Y, is imprimitive and so 77, and 7,73 commute. If (775> % {(ry7m5)>
there is a special element. We see y(r;) does not depend on the choice of 7,
and the properties of y needed will apply. As in Section 3, extend the definition
of y to all appropriate special involutions.

Now let 73 = 7 and 7, = 7,9. We will obtain a proof of Theorem 4.1 by
showing y(r;) and (r;) commute. If y{r;) and y{r;) do not commute we again
find that | 7,75 | and | 7,75 | are not both 3 and so X(7y) fixes U; @ U, . Here we
use the fact that if | 77y | =9 we have chosen y(r;) = {(#75)*> rather than
{ryryy. Similarly X(r;) fori = 1,2, 3,4 fix U; @ U, and X(g™) (U, ® U,) =
Vi@ V,.If Uy ® U, and V; @ V, are complementary, y(ry) and y(r;) act
nontrivially on complementary spaces and so commute. If U, Q U, 4 V; @ V5,
all X(r;) leave U, , U,, V;, V, invariant and on each such subspace the repre-
sentation is imprimitive. Consequently ¥(r,) and y(v3) commute. If U, @ U, =
V,® Vyand U, U, are left invariant, y(r;) and y(r;) must commute as above.
U U, =V,PV, and U, is not fixed by X({r5, 7,>) let 7; be a special
involution for which X(r;) moves U; @ U, . Applying Lemma 4.2 we see y(ry)
and y(ry) are diagonal and so commute. This completes the proof of Theorem 4.1.

5. Bap InvoLuTiONs WHOSE ProbUCT Has ORDER 4

In this section we reduce the main theorem to one final case that is completed
in Section 6. We call two special involutions bad of order 4 if their product has
order 4 and their square is not special. In a counterexample to the main theorem,
in view of Theorems 3.1 and 4.1, there must be some bad pair of order 4 whose
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square is not in Oy(G). We prove some preliminary results and then describe
the subgroups generated by three special involutions =, 7,, 73 where =, , 7,
are bad of order 4. The object is to show that if =, , 7, are bad of order 4 and
74, 74 are bad of order 4, then {(r,75)?, (757,)®) is a 2-group, which by Baer’s
theorem [6, Theorem 3.8.2] will complete the proof of the main theorem.
Theorem 5.4 reduces the problem to the final case done in Section 6.

Lemma 5.1. Let H be a subgroup generated by special 2-elements such that
X|H=X®¢(D(n—8)ly where X, is irreducible and monomial acting
on a basis v, ,..., v, , and £ is linear. Then X (H) acts as the permutation group
PSLy(T) on {o,),..., {vs.

Proof. Special 2-elements acting on {,),..., {v;» either fix each subspace,
or act as a 2-cycle, or as a product of disjoint 2-cycles. As X is irreducible,
X (H) is transitive on {v;),..., {Vp>.

We first show that a transitive permutation group on seven letters generated
by elements of the form (a, b) or (a, b) (¢, d) is PSLy(7), A,, or S;. Let L be
such a group. If (@, b) e L, L ~= S, as is well known. We may assume the genera-
tors of L have the form (a, b) (¢, d). So L C 4, . Assume L is solvable. Let L, be a
minimal normal elementary abelian subgroup of L. A 7-cycle does not normalize
a subgroup with a fixed point and so L, is not a 2-group, 3-group, or 5-group.
As (ab) (ed) does not normalize a 7-cycle, L, could not exist. If L 5= 4, , then L
contains 4, , PSLy(7), or PSL,(8) as a composition factor. The latter is impossi-
ble as A4, has no subgroup of index 5. The first is impossible as | 4 | l |L|and
7| 1L | implies 2 -3 -5+ 7| |L| but 4, has no subgroup of index 6, 3, or 2.
As PSL,(7) has index 15 in A4, , it is maximal, and so L = PSLy(7).

We now assume X;(H) acts as the permutation group 4, or S, . Let Hy be
a Sylow 3-subgroup of the diagonal group of (X; @ £) (H). Let K = £,(H,).
Assume K is nontrivial. Then as £ | K == 1, X;(K) has no nontrivial scalar
matrices. Let g € H be a 7-element with X,(g) a 7-cycle. Then g € Ny(K) and
{g, K> has order 327> where | K| = 32 As [g, K] # 1 because X,(K) is not
all scalars, {g, K> has more than one Sylow 7-group. So for some ¢ < @ and
¢>1,3 =1 mod 7. Hence, a >> 6 and we have a special 3-element in K, a
contradiction. So H, is trivial, and in particular the Sylow 3-group of H is
Zy X Zy. Such a group is {g, k> and must be

0100000 w 0000 0 0]
0010000 0 w0 0000
1000000 0 0w0OOO
X()=10 00 o0 00|, X(®=]0000T100f,
0000 wOO 0000010
00000 w00 0001000
(000000 1] 0 00000 1]

where o = 27i/3,
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As H is generated by special 2-elements, there is a special 2-element r€ H
with

10000 0 0] 1 000000
0100000 0100000
0010000 0010000
X()=10 000100 or 0001000
0001000 00007100
0000001 000000 I
000001 0] (000001 0]

So g~¢7 is a special 3-element, a contradiction.

LEMMA 5.2. Let r, 7o, 75 be special involutions such that X((7,75)%) has
eigenvalues —1, —1, —1, —1, 1, 1,.... Then | 73| 5.

Proof. Assume|ryrg| =5.Then X | {7y, 750 = X, DX, D(n—4) Ler o
and X |[(ry, 1) =Y, @ Y, ® (n — 4) 1(, ., where X;, Y, are faithful and
irreducible of degree 2. Let X; act on U, . Assume first that 7, fixes U; @ U, .
Then X | (ry,my, 730 = ¥ @ (8 — 4) Ler, 5 and Y(ryra)?) = ding(—1, —1,
—1, —1). So 7 = 74(7y75)? is a special involution and 7,7 has order 10, a contra-
diction to Theorem 3.1. Without loss of generality we may assume X(r3) U; €
U & U,.Let H= {1, 7y, 73 We examine four cases.

Case A. X|H=T,®T, D (n— 6) 1y where T is irreducible of degree 3
acting on a subspace containing U, . If T} is monomial, T}({r, , 7,>) must fix
one of the basis vectors. As T is irreducible, Ty(r;) must move that vector;
hence Ty(ry7s) is a 2-cycle or 3-cycle contradicting | Ty(ry73)| = 5. So Ty is
primitive. As 5 || Ty(H)|, Ty(H) is projectively 4; or 4, . In the first case
Ty(H) 2~ Z, x Az, which has no elements of order 4, a contradiction. In the
second case Ty(H') must be the nonsplitting central extension of Z; by A4, .
As T, is nonunimodular, Z(Ty(H)) > Z(T,(H')) and so | Z(T,(H))| = 6. By
[7, Theorem 5.5.1] as G has no special 3-elements, T, is irreducible with
Ty(H) o= T,(H) with ker T; C Z(H). In any case we get an element with eigen-
values —w, —w, —w, —w, —w, —w, 1, 1,...,0r —w, —w, —w, — &, — &, — @, 1,1,...,
contradicting Blichfeldt.

Case B. X|H=T,® T, P (n— 6) 1y where T\ is irreducible of degree 4
acting on a subspace containing U; . By assumption Ty({7y , 7)) is irreducible.
But then T,(73) must be trivial as 75(r;) cannot all have exactly one eigenvalue
—1 in order for T to be irreducible. So Ty({ry, 75») has a nontrivial linear
constituent, a contradiction.

Case C. X|H=T® ¢ P (n— 6)1y where T is irreducible of degree 5.
As {1, 75), {71, T3y have no nontrivial linear constituents, £ = 1, . Let 7 be
a special involution moving the subspace V, on which T acts. Let K = (H, 7).
Then X[ K=R®@n—7) 1x.
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Suppose R is irreducible. So R is monomial by Lemma 2.1 in some basis
0} 5.y U7. As a permutation group of {v,),..., {v;>, R(K) is PSL,(7) by Lemma
5.1. We may assume 7, acts as the permutation (1, 2) (3, 4) or is diagonal. In the
latter case | 7375 | % 5. As 7y, 7, are bad of order 4, the only possibility is for
R(r,) to fix {wg), (vgy, and (). As T is irreducible r; must move one of {z,>,
{vg), and {v,), making ;75 a 5-cycle. As PSL,(7) has no 5-clements, we have a
contradiction.

So R = R; @ & where R, is irreducible of degree 6. If H acts invariantly on
Vo, HrVy = 1Vy and so 7V = V), a contradiction. So R, | (H, H") is irre-
ducible and ¢ | (H, H™> is trivial. Let # be a special involution which moves the
subspace on which R, acts, If 7 fixes V, then #¢ does not for some g € (H, H™).
Replace # by #9. If X | (H, #) has an irreducible constituent of degree 7, we
argue as in the preceding paragraph. If not, the # — 6 dimensional subspaces on
which (2 — 6) 1y g+, and ( — 6) 1, gy, act intersect in a subspace of dimen-
sion #— 7. Hence X|<H,H,H) =S @ (n—7) g yrpyr, where S is
irreducible. We obtain a contradiction as in the preceding paragraph.

Case D. X|H=T®(n— 6)1y where T is irreducible of degree 6.
By Lemma 2.1 T is imprimitive. Suppose T permutes 2-dimensional spaces. As
T is irreducible, at most one T'(r;) is block diagonal. As | T(ry7,)| = 5, we may

assume
0 4 0 0 C 0
T(r)=|B 0 0, T@)=|D 0 0.

0 0 12 0 0 I2

But then T is irreducible implies

I, 0 0 0 0 E
T(r)) =10 0 E or T(r) = |0 I, 0].
0 F O F 0 0

Now 3 ||y, |, a contradiction.

This means that T is monomial in some basis vy ,..., ¥g . If both T(ry) and T'(r;)
are not products of two disjoint 2-cycles, then either T'is reducible or | 7375 | % 5
a contradiction. As 7y, 7, are bad of order 4, T, and T, ) both fix 5 and 6.
Since T is irreducible, T'(r;) is (a, 5) (b, 6) contradicting | 775 | = 5.

TuroreM 5.3. Let 7y, 75, 73 be special involutions such that X | {7y, 15> =
X, DX, ® (n — 4) Ly, -,» where the X; are irreducible of degree 2 with X((7,715)%)
having eigenvalues —1, —1, —1, —1, 1, 1, 1,.... Let H = {7y, 75, 73p. Then, by
ordering T, , T, correctly, one of the following occurs.

I. X|H=Y®E¢t® (n—5) 1, where Y has degree 4 and £ is linear.

II. X|IH=Y,QY,DEDED(n—6)1, where Yy, Y, are trre-
ducible of degree 2 and &, , £, are nontrivial; H ~ (7, 7> X {r3» = Dg X Z,.
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I, X|H=Y,®Y,® @ — 6) lywhere Y, Y, areirreducible of degree
3 with

010 ] 100
100 0 001 0
001 010
YY) = | —F—{ (1@ Yo)rg) = § ————
010 100
0 100 0 001
3 001 | 010]
The following possibilities hold for =,:
[0 F¢ O ]
+¢ 0 O 0
0 0 1
A (Y@ Ye)r) = ;
0 F/ 0
0 4 0 O
0 o0 1]

Hoew (Zy X Z3) % Sy
B. (Y, @ Yy(r) = ding(—1, 1,1, —1,1,1); Hz Z, X 5.
C. (Y, @ Yo)rs) = diag(—1, 1,1, 1, —1, 1);

How (Zy X Zy X Zy X Zy X Za) % S

IV. X|H=Y,®Y,®(n— 6)1, where Y, is irreducible of degree 4
and Y, s irreducible of degree 2 such that

70100
1000
0oo10] ©
(Yi®Yy)r)= (0001 ,
01
9 l1o
(Yl @ Y2)(72) = dlag(;'l» l) 1: 1) '-1’ 1);
0010
0001
tooo]| ©
(Y, @ Yo)r) = 10100 , Hee(Z X Zy X 2y X Zy X Z,) % Dy
10
| 0 Jor]

Here A x B is a semidirect product of A by B.
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Proof. Let X; @ X, act on U. If ~, fixes U, then clearly I or II are the only
possibilities. So we assume 7, does not fix U. We obtain the following cases.

Case A, X|H=Y;®Y,® (n— 6) 1y where Y, is irreducible of degree
3. Then either Y, is irreducible or Y, = Y; @ ¢ where Y, is irreducible of
degree 2.

Assume first that Y, is primitive. By [1] or [5, Sect. 8.5] we note that Y,(H)
is not a subgroup of an extra special group extended by SL,(3) as none of these
groups are generated by involutions. Y,(H) is not projectively A4 since then
Yy(H) == A5 X Z, which has no elements of order 4. If Y,(H) is projectively
PSL,y(7) or A, in order to avoid special 3-elements, Y, is irreducible. If Y,(H)
is projectively A;, Y,(H)=x Ay X Z,; avoiding special 3-elements implies
Y,(H) = As X Z, . Then H contains an element with eigenvalues —w, —w, —w,
—w, —w, —w, 1, 1,...,, 0 —@, —@, —®, —w, —w, —w, 1, 1,..., contradicting
Blichfeldt. So Y (H) = PSLy7) X Z,. In order to avoid special 3-elements,
Yy (H) =2 PSLy7) x Z,. Choose a special involution 7, which moves the sub-
space on which Y; @ Yyacts. Let K = (H, 7). Then X | K =T @ (n — 8) 1.
The following could happen:

) T=T,®T, where T, is irreducible of degree 4. As PSLy7) is
simple, T, is primitive. By [3, II, p. 426] and [1] or [5, Sect. 8.5], elements
centralizing a 7-element are scalars, contradicting the forms of H.

(i) T = T, @ T, where T is irreducible of degree 5 or 6. As PSL,(7) is
simple, 7, is primitive, contradicting Lemma 2.1.

(i) T = T, @ £ where T is irreducible of degree 7.

If T, is monomial, the 7-element is a 7-cycle which could not be centralized
by a nonscalar element, a contradiction. So T is primitive, a contradiction to
Lemma 2.1.

(iv) Tisirreducible. As in (iii) T is not monomial. As PSLy(7) is simple,
T cannot permute 2-dimensional subspaces. So T is primitive and by [13],
72+ K| . By [2], the centralizer of a 7-element never has an element with
eigenvalues —1, —1, —1, —1, —1, —1, 1, 1, a contradiction,

So Y, is monomial. By ordering =, , 7, cotrectly, we may assume

010 1 00
Yi(r)=|1 0 0], Yy(r)= |0 0 1],
0 0 1 010

1 0 0] [—=1 00
Yy =0 —1 of,{ 0 1 0|, or
0 01 001

and

F: 0 0].
0 0 1

0 4 O]
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Suppose Y, = Y, @ £ where Y is irreducible of degree 2. As | Y (ry75)| = 3,
| 7yma | = 3. Then if + = (7y7,)? and 2 = 7777717, (V; @ V) (2) == diag(l, 1, 1,
—1, —1). But 732 is a special involution and | ry(752)| = 6, a contradition to
Theorem 3.1.

So Y, is irreducible and hence also monomial. In order to avoid special 3-¢le-

ments,
010 1 00
YZ(TI) =100 ’ Yz(Ts) =10 0 1f}.
001 010

The possibilities for Y; @ Yy(r,) are

"0 44 0 0 +i 0 7
F o0 0 0 T 0 0 0
0 0 1
0 +i 0 41 0 0O
0 T 0 0 0 0 FI 0
i 0 1] | 0 o0 1]
1 0 0 ]
0 F1 0 0
0 0 1

,  diag(—1,1,1, —1,1, 1),

4

— o O

0 =+
0 Fi 0
g 0 0 1]

diag(1, —1,1, 1, —1, 1), diag(—1, 1,1, 1, —1, 1), and diag(1, —1I, 1, —1, 1, 1).

In the second and third cases, (ry73)* is a special 3-element. Replacing =, by
731, cases 4 and 6 are equivalent to 5 and 7, respectively.

Case B. X|H=Y, DY, ®(n— 6)1ywhere Y, isirreducible of degree 4
and Y, is irreducible of degree 2. Then Yy(7) is trivial and Y,(H) is dihedral of
order 8. Assume Y is primitive. Then in order to avoid special 3-elements there
is an element 2 € H” with Y,(2) = diag(—1, —1, —1, —1). Suppose there are
special involutions 7, # € H such that | 77 | = 3 or 5. Then #z is a special involu-~
tion and | 7(72)] = 6 or 10, a contradiction. So by [6, Theorem 3.8.2], H is a
2-group contradicting the primitivity of ¥;. If Y, permutes 2 dimensional
spaces, Yy(r;) for £ =1, 2 are block diagonal and Y,(r;) permutes the blocks,
implying ¥) is monomial.
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So
[0 0 1 0 “]
A 0 0 0 01 0
o ! 910 1000
(Y, @ Yy)n) = 01 y 1@Ye)m)=10 1 0 0 ,
0 A 1
|0 1]
and
B 0] 7
0 1 010
(Y, @ Yy)(ro) = 01 .
0 B |

By a change of basis, we get conclusion IV,

Case C. X|H=Y @®§¢D(n— 6)1; where Y is irreducible of degree 5.
By Lemma 2.1, Y is monomial. Y(H) can have no 2-cycles as Y(H) would be an
abelian diagonal group acted upon by S; and would contain a special 3-element.
By ordering 7, , 7, correctly,

Juy
ey

Y(r) = Y(ry) =

OO MmO
coc o —
O OO
co~oo
—oc o0 o
cooc ol
coolh o
colt oo
Yo
ol oo o
[
—oo oo

]
~,

coo
oo ool

, or
—1
0

~.

co~Ooo
SO O -
oo o |
L)
-—oooa
ccoHo
cHooo
ool oo
-~y
—0 O LD

Y(ry) must act like a permutation (a, b} (¢, 5). The permutation group must
contain a dihedral subgroup of order 10 containing 7, . In this subgroup there
is a conjugate r of 7, such that | rry | = 5, contradicting Lemma 5.2.

Case D. X|H =Y @ (n— 6) 1y where Y is irreducible of degree 6. Y is
not primitive by Lemma 2.1. Suppose ¥ permutes two-dimensional spaces.

481/45/2-16
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As YV is irreducible, by ordering 7, 7, correctly and in an appropriate
basis,

- 110 1o
o g0 o b0l o ] o
Y =g 0| 0 | 0 ad  Yeg=| 0 | 0 [3 0]
10 10
ERER KR
It
04[] 0
vey=|B1°1 O |, B=un
10
0f0f,

and we can change basis without changing the form of ¥{ry), Y{(,),so that 4 is
diagonal. If

A0 O
0/B] O
Y(Tz) = 2
10
00 0 1

we may assume A is diagonal. If

a=2[0 % B=x[ ]} © ="

0 01 0 1
then
1 0 A
o1l @10
Y{rgrg"Pry) = 10
0 |o 110
| 0 0 |AB]

and in order to avoid special elements, 4B = 4 [3 % So B = -4 and in all
cases Y is really monomial.
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Assume Y is monomial in the basis 9, ,..., ¥ . By the irreducibility of Y, not
both ¥(r;) and ¥(r,) represent transpositions. By ordering =, , 7 correctly and
by scaling and ordering o, ,..., 4 correctly, we may assume

010000
100000
000100

Yo =10 010 0 0
000010
00000 1

As Y is irreducible Y(r,) is not diagonal and cannot represent the permutations
(1,2), (3, 4), or (1, 2) (3, 4). If it is a 2~cycle, we may assume by correctly scaling
and ordering the basis,

100000
001000
010000

Ym) =10 0 0—-10 ol
000010
00000 1

But then | 7,7, | = 8, a contradiction. So Y(r,) is a product of disjoint 2-cycles
and as | 7,7, | = 4, we may scale and order the basis correctly so that

001000
00 0—100
100000

¥ =10 _10 0 0 o0
000010
000001

Y(r;) must represent the permutation (a, 5) (b, 6) and we may assume a < b.
By conjugating by 7, , 7, or 7,7, we may assume Y(r;) to represent (1, 5) (2, 6),
(1, 5) (3, 6), or (1, 5) (4, 6). Interchanging 7, , 7, and v, , v; and rescaling, we may
assume it is (1, 5) (2, 6) or (1, 5) (4, 6). So by scaling v; , v, correctly,

000010 000010

000O0O01 01 0000

Yir) = 001000 or 001000
3 000100 00000 T1]|

100000 100000

010000 000100
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In the first case {v; + v,, ¥5 — 9, , U5 + Vg Is invariant, and in the second case
{v; + fv,, vy + 1v5, U5 + 10> is invariant. This proves the theorem.

THEOREM 5.4. Let 7y, 7, be bad of order 4, and let v, , 7, also be bad of order 4.
Let H=={(ry, 7,13, and X |H=Y @ (n — 7)1y . Then {(rym)% (z47)>
s a 2-group.

Proof. First assume that Y is monomial in some basis v, ,..., v, . As 7, , , are
bad of order 4, by ordering v, ,..., v, correctly, Y(r;) and Y(7,) are trivial on
U5, g, and v, . As Y((r,75)?) has trace —1, then Y ((ry7,)?) is diagonal. Similarly,
Y ((7474)?) is diagonal and the result holds.

Now assume Y permutes three two-dimensional spaces and acts linearly on a
one-dimensional space. Then as r,, 7, are bad of order 4, Y({ry, 7,>) acts
trivially on one of the two-dimensional spaces and the one-dimensional space.
So Y((r;75)%) acts as a scalar on each of the spaces. A similar result holds for
T((7474)?) and so the theorem holds.

We now examine several cases:

Case A. Yisirreducible or Y = Y; @ ¢ where Y is irreducible of degree 6.
By the preceding arguments Y is primitive in the first case and Y, is primitive
in the second, contradicting Lemma 2.1.

Case B. Y =Y, @ Y, where Y, is irreducible of degree 5. If Y] is primitive
it contains no special 4-elements by [8], and so Y, is trivial, which contradicts
Lemma 2.1. This means Y, is monomial. As Y is irreducible, one of Y,({r; , 7,)>)
or Yy({ry, 74>) is trivial. This means Y, is monomial and so Y is monomial,
and the result holds.

Case C. Y=Y, @Y, where Y, is irreducible of degree 4.

If Yy({7y,7s)) is trivial, then Y ((ry75)?) is scalar and [(ry7,)%, (7579)%] = 1.
Using the same argument with Y,({r3, 7,>) we may assume Y,(r;) has eigen-
values 1, 1, 1, —1 for each j. If Y ((7y7,)%) € Ox(Y(H)) for both z =1 and 2,
the result holds as O,(H) = Oy(Y,(H)) N Oy(Yo(H)). If Y,((1,75)%) € Oy(Y,(H))
but Yy((7375)%) ¢ Oy(Y,(H)), there must be an element k € {{(7y7,)*}%) of order 3
such that Y,(k) is not scalar. As Y,(&) is trivial, & is a special 3-element.

So we may assume Y;((m,70)%) ¢ O(Yy(H)). By the irreducibility of Y7, Y, is
primitive. By examining [!, 14], the group Y ,(H)/Z(Y(H)) has the following
orders and is one of the groups listed in parentheses from Blichfeldt’s list [1,
pp. 139-173]: 23 - 3 - 5(H, G); 25 - 33(2°, 3°, 10°); 28 - 3%(5°, 8°, 9°); 27 - 33(12°);
27-3-5(18° 19°); 28 - 32 . 5(21°); 2% - 3% - 5%(11°). As an element with eigen-
values 1, 1, 1, —1 is not the tensor product of two 2 X 2 matrices, 2°, 3°, 5° are
impossible as they are subgroups of tensor products of two dimensional groups;
as 8°-12° are extensions of index 2 of groups which are subgroups of tensor
products, Y,(r;), Yy(r,) are not in the tensor product and hence Y,(r;r,) is.
If we have cases 8°, 9°, 10°, or 12°, the tensor product involved is projectively a
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subgroup of S; X S,.In S, X S, squares of 2-elements lie in Oy(S; X S,) and
s0 Yi((m175)?) € Oi(Y,(H)), a contradiction. In case 11°, the tensor product
involved is projectively 4; X 4y, and so Yy((ry7,)?) € Z(Y,(H)), a contra-
diction. The remaining groups of order 22 -3-5,27-3-5, and 28-3%-5 are
projectively Sy, an extension of an extra special group by S;, and an extension
of an extra special group by Sg, respectively. None of the 2- or 3-dimensional
groups have Sy or S; as a section. Thus, by the subdirect product theorem
[7, Theorem 5.5.1], the kernel of Y,(H) contains at least either 4y or SLy(5)
in the first case or an extra special group of order 32 extended by A4; in the latter
two cases. The first case gives a special 3-clement, and the latter cases give
either a special 3-element or an element with eigenvalues —w, —@, —w, —@,
1, 1,..., a contradiction.

Case D. Y=Y, @Y, where Y, is irreducible of degree 3 and Y, has a
constituent of degree at most 3. If Y, has an irreducible constituent of degree 3,
Y, =Y, @ 1 and as in the previous theorem, Y; and Y, are monomial (i.e.,
Y is monomial). So Y, = Y; @ Y, where Y, Y, are of degree 2. If Y, is
primitive, Y,(H)is PSLy(7) X Z,or A X Z, , and we obtain a special 3-element
in kernel Y, as Y,(H) and Y,(H) cannot have common nontrivial homomeorphic
images. So Y, is monomial and Y ((ry7,)?), Y((757,)?) are diagonal. As Y,;((7,7,)%),
Y ((7474)?) are scalar for j = 3, 4, [Y((ry7)?), Y({(ms7)®)] = 1.

6. FinaL Case

We now introduce notation describing the three generator groups. Suppose
Ty, T3 , T3 are special involutions such that 7, , 7, are bad of order 4. The special
involutions in (7, , 7, are 7, 7, , 7,77y , and 7,77, . The notation 7+ # will
mean 7, ¥ are special involutions whose product has order 7. If r is 4g or 45, =
and ¥ have product of order 4 and in the first case (7¥)? is special and in the second
X((77)®) has eigenvalues —1, —1, —1, —1, 1, 1,.... We now examine cases
II-IV of Theorem 5.3 and describe certain of the 3 generator groups by the
orders between some of the special 2-elements. We obtain

71 T2 T1 Ty 1 T2
N N N
I1 " Ty , IIT A <74 , II1 B < Tg s

2 3 3 3 4b 3
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Ty To 1 Ta

N w/ o w0
N/
/

III C o7y , and v o 74
J \3\ Ve =
T1TaTy ToT172 T1TaTy TeT1T2

Suppose that H is a group generated by special involutions such that
X|H=Y @ (n— 8) 4 where Y contains no trivial linear characters. Then if
Ty, Ty, T3 are special involutions such that =, , 7, are bad of order 4, and if
H={r, 7,75, 7y for some special involution 7,, then {r;,7,, 75 Iis
one of the groups in cases II-IV of Theorem 5.3, because case I could not occur
as Y has no trivial linear characters. We notice that if we have the order of =4
with any two generators of {(r; , 75> we have the case determined. We now extend
the previous theorem using a computer program for coset enumeration.!

TueoreM 6.1, Let 7y, 74, 73, 74 be special involutions such that v, , 7, and
Tg,Tgarebad of order 4. Let H = vy , 75,73, 7). f X | H=Y @ (n — 8) 14
where Y contains no trivial linear constituents, then {(7ym5)%, (t374)%> is a 2-group.

Proof. We work with several cases and rename 7, , 75, 73, 74 by 4, B, C, D
respectively to simplify notation.

Case A. Suppose all subgroups of the form {4, B, Fy where F € {C, D} are
case 1T or ITI B of Theorem 5.3. If we have

A2 2 B and A2 .B
c D

then H~ D, X Dy, and the result holds. By ordering C, D correctly and
replacing 4, B by other generators of (4, B), we may assume

A3 2 B
C
We now:have 5 possibilities.
(i) A+—2—-—2-B=C+2-2D,  acontradiction.
D ABA
(i) 422 -B=C22.D, acontradiction.
D ABA

1 The program was written for us by Chris Landauer.
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(i) 422 B=Ce2 .2 _..D,  acontradiction.
D ABA

(iv) A . 2 ._Lo B = C._j__. 2 L] D’ C. 2 .-_3_~. D,
D A B

Ce2 .2 .D.
ABA

Using the program for coset enumeration with generators and relations derived
from the above diagrams, we obtain a faithful permutation group on 24 letters
in which {(4B), (CD)®*> is a 2-group.

(v A2 .3 .B
D

Let C,=CB D,=DE Then {(4,B,C,D)={4,B,C,D> and
{(4BY, (C,D1)*} = {(4B), (CDy*}*  implying {(ABy, (CD)*) = {(4BY,
(C1Dy)?) and (AB): (CD)? is a 2-element if and only if (4AB)? (C D,)? is a 2-ele-

ment. We have

A 3 2 B, A 2 3 B,
G D,

which gives (iv).

Case B. Suppose all subgroups of the form {4, B,F) where Fe{C, D}
satisfy case II, IIT A, or III B of Theorem 5.3. By case A, we may assume

4.2 .3 . B,
C

We now have six possibilities:

() A~—2+2.B=>Ce2.2.D

D 4
Co? v 2 . Dg. B .2 B a contradiction,
B CcDC

(ii) A.203-B¢C0302aD,Ccsos-D’
D A B

Ce3 . D42 .3 .B.
BAB CcDC
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Using the program for coset enumeration on the subgroup {4, B, C> and
generators A, B, C, D with relations from the above diagrams, we obtain a
faithful permutation group on 80 letters in which the result holds.

(i) 423 .B  LetC, = C% D, = D" As in case A(v).
D

((AB), (CDY> 2 (ABY, (C;Dy)*> and we have

A2 o2 .B and 4.2 32 .B,
Gy D,

which is the group in (ii).

(iv) A +—2——2« B. Interchanging 4 and B gives ii.
D

As (AB)* = (BA)? and (BA)? (CD)? is a 2-element, so is (AB)? (CD)®.

(v) 4 +—2—2_. B. Interchanging 4 and B gives iii and the arguement
D

is as in iv.

(vi) 4. 3 .3 . Bo(Co2u® .D
D F

where Fe {4, B, ABA, BAB}.

Also using the relations given we get (B¢4C)* = (BABA)°4 = B4 and C
are bad of order 4. As (B4, C, D, A> = {4, B, C, D}, and as

D+« .Cweget BC4 .2 . %,
D

Using the program for coset enumeration on the subgroup {4, B, C)> where
relations between generators A, B, C, and D come from the above diagrams,
we obtain a faithful representation on 864 letters in which the result holds.

Case C. Suppose all subgroups of the form {4, B,F)> where Fe{C, D}
satisfy cases II or III of Theorem 5.3. By the preceding cases, we may assume

A2 % . B
C
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We have X <A, B,C) =T @ {n — 6) 1.4, Where

[0 1 0
100 0
001
T(A) = N T(B) == diag(—-l, I, I, 1, ““'L 1))
1 0
0 100
i 00 1]
10 I
6 01 0
010
T(C) — = T(BCBCABA) = diag(—1,1, 1, —1, 1, 1).
100
0 0 01
i 01 0]

Now (AB)? = (A(B°B¢4B4))* and if B* = BCBCAB4, 4 «- % . % . B*
c

If Y(<4, B*, C, D)) has a trivial linear character, Theorem 5.4 gives the result.

So assume our hypothesis holds if B* replaces B. By case A, we may assume

{4, B*, D} has form III A, III C, or IV of Theorem 5.3. If it has form III A,

we may interchange C and D to get case B iv. We now have three possibilities:

(@) Aot  B¥ = Cotuut D acontradiction.
D B*

(i) 42wt B* ottt p
D 4

Replace D by D* as earlier so that C «—2—w—2— D*, We may assume
A
Y({A4, B*, C, D*}) has no nontrivial linear constituents. We have 4 2.1, pr
D*

and so D¥ «—2—. B* or D* «- 2. B* which is covered in case A.

(i) 42t .B*= Co2 ¥ .D  acontradiction.
D B* -
Case D. We may now assume by interchanging C, D if necessary that

4.2 . 8, B We have eight possibilities:
c
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2

(i 4= «B= C+* 2D, a contradiction.
D A
i) A2 .B=C.2 .2 D acontradiction.
(i)
D B
(i) 422 vB=C+«*2..D,  acontradiction.
D ABA
iv) 42—+ 32 .B=>C+* 2D, acontradiction.
D BAB

v A-2-32 " B=C2 .2 .DC.-2 .2 .D If weinter-
D 4 B

change 4 with D and B with C, we get case C.

(vi) 4—2—-% .B.  Asin case C, choose B* such that (4B)? ==
D

(AB*)? where
422 .B*%
D

We may assume Y ({4, B*, C, D)) has no trivial linear constituents. So examining
all possibilities for 4 « « B*, we get cases A, B, C, or D ii with B*

c
replacing B.

(vii) 42 2B Interchange 4 and B to get vi.

(viii) A4 -2 o2 . B Co—2.. %, D where Fe{4, B, ABA, BAB}
D F

and 4+ % . B where Fe{CDC, DCD}.
F

This is the only remaining case. We need the following lemma to complete
the proof of the theorem.

LemMma 6.2, Let A, B, C, D be special involutions satisfying the diagram

A% . % B 4.8 . % .pB ad C.2.% ,p
C D B
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]

1 0000O00O0

(01 00000
0010000
000T1O0OTO0DO
0000010
000O0T1O0O0
000O0O0T©O0T1

-

ACAC, then X |<F, B, C, D)

R(B) =

000O0T1O00
0010000
00 0O0O0TO0]11
0100000
000O0O0OT1090
0001000

k4

1 0 0 0000

I

Proof. From Theorem 5.3, X|<{4,B,C) =Y, @Y, ®D(®—6) 1 450c>

where

]
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R(D)

0 010000
0001000
1000000
0100000
0000100
0000010
[0 000001

R(C) = diag(li _1’ 1: "—1) ly 1) l)

Then either [(AB)%, (CD)?*] =1 or if F

R ® (n—7) Lip,p.c.py where

R(F)
and

O —
I ] {
-— O o —
=) | @ =
O
oo~
oo o~ e o—~oco
)
oo —o ee—e - —o oo
o oo
=) Nl co o —~
coo
_0100 ___ ) _0010
I Il f
— o~ —~
< q Q
o N’ N
P~ B~ P~
-l il -l
P P P
N’ A S’
o
g
<
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and Y; acts on the 4-dimensional space V. Then X |{(F,B,C; =TODE®
(n — 5) 1¢z.3.c; where T acts irreducibly on V;. So X|<{F,B,C, D) =
R®(n—T) Yr.5.c.ps - We examine the possible cases.

Case A. R = R, @ R, where R, is irreducible of degree 4. Then R, acts
on ¥y and R((CD)?) = diag(—1, —1, —1, —1) as C, D are bad of order 4.
As X{(4) and X(B) act on this subspace, [(4AB)% (CD)?¥] == 1.

Case B. R = R, ® R, where R, is irreducible of degree 5. As Ry(C) is
trivial, so is Ry(D) because C, D are bad of order 4. But R,(F) is trivial and hence

R, is reducible, contradicting C «—*—«—42. D and Theorem 5.3 IV.
B

Case C. R = R, @ £ where R, is irreducible of degree 6. As BBF is special
and BBF, C are bad of order 4, R, is not primitive. Suppose R; permutes two
dimensional spaces. As BBF, C are bad, we may assume R,((BB¥, C)) looks like

* 0

1 0
0 01
where [*] is 4 dimensional and acts on V; . As Ry(D) moves F; , we may assume

1 0

0 1 0 0

R(D)=1] 0 | 0

o
D

10
As C, D are a bad pair, R,(C) == diag(l, 1, —1, —1, 1, 1). But for all possibilities
of Ry(B), we have either B +—2—+ C or B« C, a contradiction.

So R, is monomial in some basis v, ,..., v . We may assume R,({BBF, C))
acts trivially on vy, v and so V; = {9y ,..., v,>. So we may assume

—

OO~ OW

Ry(C) =

cooomo
COCO0 OO m
co—ocoo
coomoo
omocoo0O
—_—_o 0000
OO OO m
coocol o
colococo
omoooco
—_O OO0



LINEAR GROUPS WITH TWO EIGENVALUES —1

or

(== =i

OO0 O0 O~

oo~ OO
col oo

[=2E I o e B e I o)

-0 0o oo
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As Ry(D) moves V,, it moves one of v; , v; as C, D are bad of order 4, R,(C)

is not the first choice. Assume R,(C) is diagonal. Because B %

0

Ry(B) =

CSCOOO O
COOO O -
COoOO—~=OO0
CO = OO0

0
0
0
+
0

1

As [F, C] = 1, R(F) is diagonal,

coo~oco
comococo
coocoo—
cocoo~o
o~ ocococo
—coooOQo
coo~oo
coocol o

o

0

0
0
0
0
q:

1

cooco—
ocHooo
—oo0 0o

000

or

0
0
0
0
0
1

OO0 —~,O

OCOO0OO O -

cocoococoh

0

S OO =0O

(= = =]

OO = OO0
OOO'HOO

-0 OO0 O0

—
SO OO —=O

. C

O~ OO OO

[l el e B o B e R =)

O OoQ0C O

Since T is irreducible, Ry(F) is the second case. As C, D are bad, then by ordering
5 ,0g correctly, R,(D) must represent the permutations (1, 2) (4, 5), (2, 3) (4, 5),
(1,4)(2,5),(2,5)(3,4),0r(2,5)(4,6). AsC, Dare bad and 5 + | FD | by Lemma
5.2, Ry(D) must represent (2, 5) (4, 6). However in that case 3 | | BD| or
5|1 BD |, a contradiction. So Ry(C) is the third choice.

AsB.% .C, R(B) =

(===l
OO =0
-0 0o
O OO

or

0 i 0 0] 7
~i0 00
001 of°
000 1] |
*—
0 —10 0
—100 0
o 001 °
0 010
1o
0 01
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Since [F, C] =1, Ry(F) maps {7y, v,y into itself and {o,,v,> into itself.
This implies T is reducible, a contradiction.

Case D. R is irreducible. By Lemmas 2.1 and 5.1 R is monomial and has
no 2-cycles. Arguing as in case C and because there are no 2-cycles,

10000 0 0] [0 1 00000
0—10 00 0 0 1000000
0010000 0010000
RC)=1000-100 0], RB=|[000100 0],
0000100 00000T1O0
0000010 0000100
(0 00000 1] 000000 1]
00 1 00 0 0]
0001000
1000000
RF)=101000 0 0f,
0000100
0000010
000000 1

where V, is the span of the first four vectors. R(D) must move v, . Since C, D
is bad, R(D) represents (2, 7) (4, c) where c€{l, 3, 5, 6}, or (2, d) (4, 7) where
de{l,3,5,6}. As 31| BD| and R| (B, C, D) has irreducible constituents of
degree 4, 2, and 1, the first is out. By Lemma 5.2, 54 |FD | which implies d # 1 or
3. Interchanging v;, v if necessary, we may assume 4 =5, The lemma is proved.

With this lemma we can now construct the group Y ({4, B, C, D}). We
assume {(AB)? (CD)?> is not a 2-group. Let Y acton V, .

We have YV | ACAC, B, C, D) = R ® 1 4cac.p.c.p, Where R is monomial
in some basis such that

i

00100 0 0] 01 00000
0001000 100000 O
1000000 0010000
R(ACAC)=]0 1 0 0 0 0 O}, RB) =000 100 0}
0000100 00000T10
0000010 0000100
(000000 1] 000000 1]
10000 0 0] 100000 0]
0—-1000 00 0000100
0010000 0010000
RC)=1000—-10 0 0!, and RD)=!0 0 0 0 0 0 1}.
00007100 0100000
00000710 0000010
000000 1] 0001000

(1)
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We notice that by Lemma 5.1, as R is irreducible (ACAC, B, D) ~ PSL{(7)
and R|CACAC, B, D) = S @ 1 cac.n.p> - Let R act on the space U. The
vector in U, generating the space on which 1 4c4¢,5,ps acts, 18 v, =(1,1,1, 1, 1,
1, 1T where T denotes the transpose. Let {v,, vg> C V; be the space on which
2 liucac.p.p> acts. Then if ¢ =(1,—1,0,0,0,0,0), ¢, =(1,0,—1,0,
0,0,0), ¢3=(1,0,0,—1,0,0,07, ¢, =(1,0,0,0, —1,0,0)7, ¢ =(1,0,0,
0,0, —1,0)7, ¢, =(1,0,0,0,0,0, —1)", S acts on {e,..., ¢>. In the basis
Vg, Uy, €, & ,..., & We get by calculating Y{g) v where v is a basis element and
g€{dACAC, B, C, D}:

]
J

1 0 00 0 0 0 0
01 00 0 0 0 0
0 00 0 1 0 0 0
0 0 —1 —1 —1—1—1 —1
YACAO) =16 6 1 0 0 0 0 ol
00 00 0 1 0 0
00 00 001 0
0 0 0 0 0 0 0 1.
"1 0 0 0 0 0 0 0
01 00 00 0 0
0 0 —1—1—1—1—1—1
00 01 00 0 0
YB=16 0 0 0 1 0 0 0
00 0 0 0 0 1 0
0 00 0 0 1 0 0
0 00 0 0 0 0 1]
(2)
2 0 00 0 X
3 2 2
b3 303
5179?7—503;-000 "1 000000 0]
I 01000000
dZ* 212000 00000100
00010000
Y(C):elg-%oiﬁooo’Y(D)‘00000001
R 00100000
fZE 202100 00000010
00001000
:"_‘!203010
&7 7 Y 7
42 2
505000
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Now interchange 4 with C and B with D in the preceding Lemma. So
Y| (CACA, D, A, B> = Ry ® l(cac4.p.4.8> Where in some basis of the space
on which R, acts, we have R,(CACA), Ry(D), R,(A4), R,(B) look like the matrices
R(ACAC), R(B), R(C), R(D) in Eq. (1), respectively. As {4, C} is dihedral of
order 8, ACAC = CACA. Let R, act on the subspace U;. Then
R, | {ACAC, B, D> = S @® 1 scuc.p.ps; the vector in U; generating the space
on which 1 4c4c.5.py acts is o,* = (1,1, 1,1, 1, 1, 1)7. Let <{v,*, vg*> C V; be
the space on which 2 -1 4 cuc.n.p, acts (ie., (v, v3*> = {v;, vg>') Let
e* =(1,—1,0,0,0,0,0)7, e,* = (1,0, —1,0,0,0, 0)7, eg* =(1,0,0, —1, 0,
0,0, e*=(1,0,0,0,—1,0,0)7, e*=(1,0,0,0,0,—1,0)7, and ¢* =
(1,0,0,0,0,0, —1)7. In the basis vg*, v,*%, ¢,*,..., eg*, Y(ACAC), Y(D), Y(4),
Y(B) looks like the matrices Y(ACAC), Y(B), Y(C), Y(D) of (2), respectively
(where Y(4) may have different unknowns that Y(C), of course).

We have {e, ,..., e5> = <& *,..., 6*>; as Y is irreducible {v;> # {v,*). So
we may choose v = ,* and 2g* = v, . We want to find Y(4) in the basis
Vg, Vg €1 ey € - S0 We need to find a linear transformation § with Svg = g™,
Sv, = v,*, Se; = e*. If T is a linear transformation of V;, and my(T) and
my(T) are the matrices of T in the basis vg, 2, , €, ,..., & and ¥, ;% &/ %,..., g™,
respectively, then we have my(S)t my(T) my(S) = my(T). We need to find a
linear transformation .S such that my(T) m,(S) = m,(S) my(T) where T ranges
over Y(ACAC), Y(B), Y(D). But we know m(Y(ACAC)) = my(Y(ACAC)),
my(Y(B)) == my(Y (D)), and m;(Y(D)) = my(Y(B)). These results plus z3* = v,

o * = vy, give

O 1 0 0 0O 0 O 07
1 0 0 0 0 O O O
0O 0 s s 0 O s s
0 0 —s — 0 —
my(S) = 0 g s __i Os Bs 0 Os where s # 0.
0 0 —s 0 —s 0 —s O
0 0 0 0 O —s —s5 —s
|0 0 s 0 s s O
Also
0 1 0 0 0 0 0 07
1 0o 0 0 0 0 O O
0O 0 ¢t ¢t 0 0 ¢t ¢
» 0 0 0 —t —t 0 0 —t 1
M =10 0 —t —t 0 —t 0 0 where £ = 5.
0 0 —t 0 —t 0 —t O
0 0 0 0 O —t —t —t
6 0o ¢+ 0 t t 0 ¢
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Hence
—;b*OOO—_—TZ-t%—t 2e ]
0 a* 0 0 0 0
R,
EREREE
my(Y(A)) = ;725_ 1 11% 17‘ ;
SRR
RN
ER I R

Replacing vy by fvg , we may assume s = % and ¢ = | in the above. As Y(4),
Y(C) have trace 4, a = a* = 1. Also Y(4), Y(C) each have eigenvectors in
{wg, v,y corresponding to the eigenvalue 1. If these eigenvectors are
(«, 8,0,...,0)T and (y, 3, 0,..., 0), respectively, by the forms obtained so far,
my(Y(4)) (1, 0,..., 0)7 == (1, 0,..., 0)T and my(Y(C)) (0, 1, O,..., O) = (0, 1,
0,...,0)". We may assume 8 =1 and y == 1.

Calculating my(Y(4)) (, 1,0,...,0)7 and m(Y(C)) (1, 8§, 0,..., 0)T gives
b* =4a, *=d* =¢*=1a, f*=5a, gr=h*="Po, b=43, c=e=
— 328, and d = f = g = h = 48. The (2, 8)-entry of m(Y(ACAC)) is 0 from
above. Calculating the (2, 8)-entry of (my(Y(4)) m,(Y(C)))? gives 8 = — {.
Calculating the (1,2) entry of (my(Y(C)) my(Y(A)))? = m(Y(CACA)) =
my(Y(ACAC)) which also is 0 gives « = — 3. Thus Y({4, B, C, D) is now
determined. Inside this group we verify that (AB)? (CD)? has order 4 contra-
dicting our assumption that {(4B)?, (CD)*> was not a 2-group.

This completes the proof of the main theorem by Baer’s theorem [6, Theo-
rem 3.8.2] as it shows (r,7,)? is in O,(G) for any bad pair of order 4.

APPENDIX

It seems of interest to determine explicitly the group <4, B,C, D) =G
found at the end of Section 6. The matrices Y(B) and Y(D) are given in (2),
Section 6.

481/45/2-17
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"6 -4 0 0 0 —4 4 47
O 14 0 0 0 0 0 0
2 1 0 —14 0 -8 —6 —6
1 -2 -1 —14 0 0 —8 —6 —6
Y =11 2 1 14 14 14 6 8 8
16 -8 0 0 0 6 8 8
2 6 0 0 0 6 8 —6
|12 6 0 0 0 6 —6 8|
"4 0 0 0 0 0 0 0]
2 6 4 0 4 0 0 0
5 20 —10 0 4 0 0 O
112 =8 4 14 4 0 0o 0
YO=115s5 20 4 0 —100 0 0
2 -8 4 0 4 140 0O
2 -8 4 0 4 0 14 0
|2 8 4 0 4 0 0 14

It has been found that G is an extension of an extra special group H of order

128

by (O+(6, 2)) =2 L,(2) =~ A, . This was determined by explicitly showing

that the conjugates of (AB)?2(CD)? generate H. As H admits automorphisms
from K = (ACAC, C, B, D), Hz~ Dyo Dyo Dy, Y(H) is irreducible, and
G/H =< subgroup of Out(H). It was found A fused some orbits in H/Z(H)
which K did not. From inspection, G/H =~ 4. It is found that (4B)* and
(CD)? are in H and G satisfies part 2 of the main theorem.

I

10.

REFERENCES

H. F. Bricurerpr, “Finite Collineation Groups,” University of Chicagoe Press,
Chicago, 1917.

. R. Brauer, On groups whose order contains a prime to the first power, 1, II, Amer. J.

Math. 64 (1942), 401-420, 421-440.

. R. Brauer, Uber endliche lineare Gruppen von Primzahlgrad, Math, Annalen 169

(1967), 73-96.

. W, FEeit, “Characters of Finite Groups,” Benjamin, New York, 1967.
. W. FriT, The current situation in the theory of finite simple groups, Actes, Congr. Int.

Math. 1 (1970), 55-93.

. D. GorensteiN, “Finite Groups,” Harper and Row, New York, 1968.
. M. Havi, ‘“The Theory of Groups,” Macmillan, New York, 1959.
. W. C. HurrMAN, Linear groups containing an element with an eigenspace of co-

dimension two, J. Algebra 34 (1975), 260-287.

. W. C. HurrMaN anNp D. B. Wavss, Linear groups of degree # containing an element

with exactly n — 2 equal eigenvalues, Linear and Multilinear Algebra 3 (1975), 53-59.
B. HurperT, Lineare auflésbare Gruppen, Math. Z. 67 (1937), 479-518.



11
12,
13.
14.

15.
16.

17.

LINEAR GROUPS WITH TWO "EIGENVALUES — 1 515

J. H. Linpsky, Finite linear groups of degree six, Canad. J. Math. 23 (1971), 771-790.
J. H. Linpsey, Complex linear groups of degree p + 1, J. Algebra 20 (1972), 24-37.
J. H. LinpsEy, Projective groups of degree less than 4p/3 where centralizers have
normal Sylow p-subgroups, Trans. of Amer. Math. Soc. 115 (1973), 233-247.

H. H. MrrcssLL, Determination of all primitive collineation groups in more than
four variables which contain homologies, Amer. J. Math. 36 (1914), 1-12.
TimmesFELDT, On Characteristic —2 groups, to appear.

ID. B. WaLzs, Finite linear groups of degree seven, I, Canad. J. Math. 21 (1969),
1042-1056.

D. B. Wavzs, Finite linear groups of degree seven, 11, Pac. J. Math. 34 (1970), 207-
235,



