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The strong law of large numbers is considered for a multivariate martingale normed by a 
sequence of square matrices. In particular multivariate martingale extensions of the strong laws 
of Koimogorov and Marcinkiewicz-Zygmund are presented. Convergence to zero in L~ is obtained 
under the same conditions. Norming by powers of the covariance matrix is considered in detail. 
Results are further used to derive conditions for strong consistency of the least squares estimator 
in linear regression with multivariate responses. These conditions do not necessarily assume square 
integrability of errors. They become particularly simple for polynomially bounded regressors. 
Two examples are treated, including polynomial regression. 
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I. Introduction 

In this paper, the strong law of large numbers is considered for a multivariate 
martingale {s,, M,, n/> 0}, i.e. a sequence of random vectors of dimension p, 1 <~ p < 
0% satisfying the martingale properties. Additionally, we assume So=0. More 
specifically, we consider the normed martingale { B , s , ,  n >1 1}, where B, is an M,_~- 
measurable p x p-matrix, and ask for conditions under which 

B,,s,  ~ 0 almost surely. (1.1) 

Typically, (1.1) is needed in proving strong consistency of some estimator of a vector 
parameter. Indeed, most results on (1.1) have been given for the least squares 
estimator in the univariate linear regression model 

y , , = z ' f l + e . ,  n > l I ,  

where B. resp. s. are of the special form 

B,, = ziz s,, = Z i E  i .  

i = 1  i = 1  

The weakest conditions in this direction have been presented by Lai, Robbins and 
Wei [11] and Lai and Wei [12]. For instance, if the regressors {z,} are nonrandom 
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and the errors {en} form a martingale difference sequence with uniformly bounded 
second moments, then (1.1) is implied by the minimal assumption Bn-~0, see [11, 

Corollary 5]. 
However, there are also interesting situations, for instance in the theory of 

maximum likelihood estimation, where the consistency question can be reduced to 
(1.1), without the special form of B, resp. s, treated by those authors. In the present 
paper, we take a totally different approach. Some comparison of those results to 
ours will be given in Section 5. 

In the sequel, we will use the following notation. The martingale difference 
sequence corresponding to {s,} will be denoted by 

Xn -~ Sn -- S n - l  , n ~ l .  

For any square matrix A, we write [A[ for the determinant of A and ;tmaxA resp. 
)tminA for the largest resp. smallest eigenvalue of A, if A is additionally symmetric. 
The symbol Ilxll resp. Ilall will be reserved for the Euclidean vector norm (x'x) 1/2 
resp. the corresponding matrix norm ()tmaxA'A) 1/2. If A is positive semidefinite, 

then this norm reduces to Ilall = hmaxa. 

In analogy to the scalar case (see the monographs of Hall and Heyde [9] and 
Stout [14]), (1.1) should be induced by some convergence condition relating {B~} 
and moments of {s,}, together with some kind of monotone convergence of {B,} 
to zero. By componentwise application of the martingale convergence theorem it is 
not difficult to obtain conditions assuring the a.s. convergence of ~ B~x~. Some kind 
of multivariate Kronecker lemma would then give B,s, ~ 0 a.s. However, the multi- 
variate versions of the Kronecker lemma known so far lead to conditions which are 
very strong for p >  1, namely )tmaxBn=O(AminBn) (Anderson and Taylor [3], 
Anderson and Moore [1]) or B, diagonal. 

A more sensible recourse to the martingale convergence theorem can be based 

on the series 

n 

(lln,s, ll -IIn,s,_ ll ), l ~ < c t <  oo, 
i=1 

respectively 

/1 

E IIn,x, II °, 
i=l 

under the monotonicity condition 

II n.s II t> II no+l s II for all s e R P, n I> 1. (1.2) 

This approach will be studied in Sections 2 and 3. Let us first discuss (1.2). It is 
equivalent to the requirement that the difference B ' B ,  -B'+~B,+I is positive semi- 
definite. If (1.2) does not hold for some sequence {B,,} of interest, there may be 
related sequences for which it holds, e.g. {IIB.II1/2B~/2} if B,-Bn_~ is positive 
semidefinite. Such a replacement typically leads to conditions slightly stronger than 

Bn ~ 0, as illustrated in Sections 4 and 5. 
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The series z , (a ) ,  n >- 1, is a multivariate analogue of the series appearing in the 

martingale generalization of the H~ijek and Rrnyi [8] inequality given by Chow [4]. 
In fact, it is straightforward to extend this result to the present situation. This could 

be used to obtain a.s. results. In Section 2, we go another route and use the martingale 

convergence theorem to demonstrate that sup, E z , ( a ) < o o  for some a />  1 implies 

that {[1B,,sn [[} converges a.s., with the further consequence that Bnsn ~ 0 a.s. and in 
probability are equivalent. If  B,s ,  ~ 0 in probability holds, this gives the desired 

result. 
The series Ew,(a) ,  n >I 1, is a multivariate analogue of series common in the 

theory of a.s. convergence. It leads to conditions of the Kolmogorov and 

Marcinkiewicz-Zygmund type. If  a =2 ,  then E z , ( a ) =  Ewe(a)  is valid, due to 
properties of  square integrable martingales. In the remainder of Section 2, it is 

shown that Ewe(a)  dominates E z , ( a )  for 1 <~ a <~ 2. This is used to obtain a corollary 

with sup~ E w , ( a )  < oo assuring a.s. convergence of { ]l B,s,  [1}. 
Sometimes Bnsn --> 0 in probabili ty is easily demonstrated, and results of Section 

2 can then be used to conclude B,s,--> 0 a.e. Nevertheless, it is of interest to have 

general conditions assuring B,s,-->O a.s. For a nonrandom sequence {B,}, such 
conditions are given in Section 3. Actually, multivariate martingale generalizations 

of the Kolmogorov [ 10] and Marcinkiewicz-Zygmund [ 13] strong laws are presented. 

Convergence in L,~ is obtained as a by-product. 
Sections 4 and 5 are independent  of each other. Extending the scalar case, it 

seems natural to norm by powers of the covariance matrix of s,. Section 4 deals 

with this norming. In Section 5 strong consistency of the least squares estimator is 
considered for a fairly general class of linear regression models for multivariate 

responses. This class includes the more familiar models described by Anderson [2]. 

Conditions are given not necessarily assuming square integrability of errors, and 
particular attention is paid to polynomial ly bounded regressors. Two examples are 

treated, including polynomial  regression. 
In Section 6, we conclude with some remarks of limitations and possible extensions 

of the approach presented in this paper. 

2. Convergence of {llB.s.ll} 

In this section, we suppose without further mentioning that the sequence {B,} is 
decreasing in the sense (1.2). First we use this assumption to show the following 

martingale properties of the series zn (a )  essential in the proof of Theorem 1. 

Lemma 1. Let 1 <<- a < oo. I f  E II Bnsn II ~ is finite for  all n >I 1, then {z, (a)} is a 

nonnegative submartingale. 

Remark. Under  (1.2), it can be shown that the assumption 

EIIB. .II  <oo, n l, 
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is equivalent  to 

E IIBnx. II ° < ~ ,  n~>l .  

Proof.  By part ial  summat ion,  z , ( a )  t ransforms into 

I"1--1 

z ° ( ~ ) - - I I n . s . I I  ° + E (llnis, ll°-lln,+,s, ll~). (2 .1)  
i = l  

Due to this equat ion  and (1.2), z , ( a )  is nonnegative.  Further,  (2.1) implies that  

Ez,  ( a )  < oo for all n I> 1 if and  only if E II nns° II ° < ~ for all n/> 1. It remains to 

prove that  

E(IIB.s.  II~Is~._,)-IIB.sn_,It°>>-O. n>~ 1. 

This follows from the condi t iona l  Jensen inequali ty,  since for a t> 1 the funct ion  

[I Bs[[ '~ is a convex funct ion of  s for any matrix B. [] 

Theorem 1. Let 1 <~ a < ~ and 

sup Ez, ,(a)  <oo. (2.2) 
n 

Then {llBns~ll} converges almost surely. 

probability are equivalent. 

Therefore B,,s,, ~ 0 almost surely and in 

Proof.  Under  (2.2), the series z , ( a )  converges a.s., by the mart ingale  convergence 

theorem.  Moreover ,  the remainder  in (2.1), namely  the series 

n--1 

E (llB,s, ll~-ilni+,s, ll~), 
i = l  

is a.s. b o u n d e d  above by sup ,  z , ( a ) .  Since it is nondecreasing,  it converges a.s. I f  

both  series converge, then also their  difference and hence { l lB .s . l l}  converges a.s. 

Since B,sn --> 0 is equivalent  to II n.s. II -~ 0 and the a.s. limit can be identified from 

the probabi l i ty  limit, B,s,--> 0 a.s. and in probabi l i ty  are equivalent.  [] 

Now we turn to the quest ion whether  Ewn(a)  dominates  Ezn(a) ,  1 <~ a 4 2 .  The 

l ink between the two series is furnished by the following inequali ty.  

Lemma 2. Let x and y be p-vectors and 1 < a <~ 2. Setting x '  yl lyl l  ~-2 

inequality 

IIx + yll  ~ - I lYl l  ° <~ 2=-°  Ilxll ~ + ~x'Yllyll ~-2 

holds, with equality i f  a = 2. 

= 0 i f y  = 0 ,  the 

(2.3) 
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Proof. The cases a = 2 or y = 0 can easily be checked directly. Let 1 < a < 2 and 

y ~ 0 in the sequel. Defining ~ = ( x ' x / y ' y )  1/2 and 0 = x 'y /y 'y ,  the inequal i ty  (2.3) 

can equivalent ly be t ransformed into 

h (~, 0) = ( 2 +  20 + 1)~/2-  1 - 2 2 - ~ g ~  ~ - o~0 ~< 0, (2.4) 

where ~ t> 0 and 101 ~ ~, due to the Cauchy-Schwarz  inequali ty.  

For  any fixed ~, set g(O)= h(~, 0). This funct ion is well defined and strictly 

concave on {~2+20+1>~0} ,  which conta ins  On the larger set, g(O) is 

maximized by 0 o = - ~ 2 / 2 .  I f  ~ < 2 ,  then  0o lies within and it is easily 

checked that  g(0o) <~ 0. This implies h(~,  0) ~< 0 on {0 <~ 101 2}. 
If  ¢ > 2, then 00 lies on the left of  {101 and on this set, g(O) is maximized 

by the left endpoin t  0 = - ~ ,  due to concavity.  Insert ing into (2.4), it remains to be 

shown that  

h(cp, - ¢ )  = (~p- 1) ~ -  1 - 2 2 - ~ ¢  ~ + a ~  <~0 

on {¢ > 2}. By checking the derivatives of  h ( ¢ , - ¢ ) ,  this funct ion is found  to be 

concave on {¢ >~2}, with the max imum 2 a - 4 ~ < 0  obta ined  at ¢ =2 .  

Corol lary 1. Let 1 <~ a <~ 2. Then the inequality 

Ez,(a)<~22-~Ew,(a),  n >1 1, 

holds. Consequently, if 

sup Ew,, (or) < ~ ,  
I1 

then the conclusions of Theorem 1 hold. 

(2.5) 

Proof.  I f  a = 1, (2.5) is a consequence  of  the tr iangle inequali ty.  Let 1 < a <~ 2 and 

assume without  loss of  general i ty that  

EIIB.x.ll n >l. 

If  x and y of  Lemma 2 are r andom vectors with EIIxll < and Ellyll ° < then 

the H61der inequali ty implies that  Ex'y[[yll `~-2 is finite. With x = Bixi, y = BiSi-l, we 

can form expectat ions on bo th  sides of  (2.3) condi t iona l  on gti_l. Due to the 

mart ingale  property,  the mixed term on the right vanishes.  By integrat ion and 

summat ion  (2.5) follows. [ ]  

3. Laws of large numbers 

If  the condi t ions  of  Theorem 1 ho ld  for  some a >t 1, one may suppose that  B, ~ 0 

a.s. is sufficient for B,s, ~ 0 a.s. In general  it is not  clear whether  this claim holds. 

However,  it can be proved under  the s t ronger  condi t ions  of  Corol lary  1, if  {B,} is 

a n o n r a n d o m  sequence. The fol lowing l emma on summabi l i ty  replaces use of  the 

Kronecker  lemma. 
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Lemma 3. Let {a~j, 1 <<- i ~ j }  be an infinite triangular array o f  real numbers such that 

lim a~j = 0  for  any f ixed i ~ 1, (3.1) 
j - -*oo 

/1 /1 

sup E E la~j - a,.j+ll < oo. (3.2) 
/1 i = 1  j = i  

Then 

J 
lim ~ ao =0.  (3.3) 
j ~ o o  i = l  

Proof. By partial summation, 

n n n - - I  n - - 1  

~, ai/1= ~ aii+ ~ ~ (ai, j+l--aij). (3.4) 
i = 1  i = 1  i = 1  j ' = i  

Due to (3.2) and the theorem on rearrangement of double series, the rightmost sum 
has a limit which equals 

/1 co 

By (3.1), 

lim E E (ai,~+l-ao). 
n ~ O O  i = l j = i  

oo 

E ( a , , j + l  - a , j )  = - a , , .  
j = i  

/1 
Hence l i m / 1 _ ~ =  1 a,  exists. Inserting into (3.4), (3.3) follows. [] 

Now we can get the following multivariate martingale generalization of the strong 
laws of large numbers of Kolmogorov [10] and Marcinkiewicz and Zygmund [13]. 
Utilizing Lemmas 2 and 3, it is first shown that the conditions of Corollary 1 imply 
B,s/1--> 0 in L~. The a.s. result then follows from Corollary 1. 

Theorem 2. Let 1 <<- a <<- 2 and assume that 

sup Ew/1(a) < ~ .  (3.5) 
/1 

I f  {Bn} is a nonrandom sequence with the monotonicity property (1.2), then Bn --> 0 

implies 

Bns/1 -'> 0 almost surely and in L~. 

Proof. Apply Lemma 3 with 

aij : E II n~x, II o, 1 <~ i <~ j. 
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Due to (1.2), for fixed i the sequence { II Bjx, II 5, j I> i} is monotonically decreasing. 
Since Bj-->0, we have Ilnjx, II 5 -~0  a.s. ,  for any fixed i. Due to (3.5), E I I n , x ,  tl 5 < 

holds and the monotone convergence theorem implies E IIBjx, II ~ -~0, i.e. (3.1). 
Further, (1.2) implies that a o - a~,j÷~ >t O, whence 

n i1 n 

sup ~ Y. lao-a i ,  j÷ll<~sup ~, a,. 
n i = 1  j = l  n i = l  

Due to (3.5), the right hand expression is finite, and (3.2) is verified. From Lemma 
3, we obtain 

n 

E EIInnx, II ~ -~0. (3.6) 
i = l  

Since Bn is nonrandom, we can apply Lemma 2. As in Corollary 1, it follows that 

11 

EIIBnsnll  5 ~ 22-5 E EIIBnxil[ ~, n >I 1. (3.7) 
i = l  

Statements (3.6) and (3.7) together imply that IlBnsn II -~ 0 in L~, and Corollary 1 
gives the a.s. result. [] 

If second moments exist, analogy to scalar theorems becomes even more apparent 
in the following corollary. 

11 
Corollary 2. Let the martingale s. = ~, ~= 1 x~, n >>- 1, be square integrable with cov x. = 
Z. ,  say. I f  {B.} is a nonrandom sequence satisfying (1.2) and B.  --> O, then 

o O  

E Ilnn~.n'1111 < oo (3.8) 
n = l  

is sufficient for B,,s, ~ 0 almost surely and in L2. 

Remark. Since the matrices B,,ZnB'~ are positive semidefinite, (3.8) is equivalent to 
n 

~n°°__~ trace BnY,,,B'<oo, and this holds if and only if ~=1 B,Y,~B~ converges to a 
matrix with all elements finite. 

Proof. First we consider the remark for a general sequence {A,} of positive semi- 
definite p x p-matrices. Since IlA. 1[ = AmaxAn and all eigenvalues of A, are nonnega- 
tive, [IA.I]<~trace A, ~<PllAnll. Hence, if one of the series Y, I[Anl] or E trace A. 

n 
converges, then so does the other, by the monotonicity criterion. IfY~ i= 1 Ai converges 
elementwise, clearly ~ trace An < ~ .  Conversely, i f~  trace An < oo, then the sequence 

n 
x' Y.i=~ A~x converges for any fixed x, since it is nondecreasing and bounded above 
by x ' x  F. trace An. Choosing x = (1, 0 , . . . ,  0 ) ' , . . . ,  ( 0 , . . . ,  0, 1)' gives convergence 
of the diagonal elements. Convergence of the (i , j)-element is then obtained with 
the choice xi = xj = 1, and zero for the other components of x. 

Applying the remark, it is easy to see that (3.5) and (3.8) are equivalent, and this 
finishes the proof. [] 
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4. Norming by powers of the covariance matrix 

I f  {s,} is a square integrable  mart ingale with cov s, = F, ,  say, the a.s. behaviour  

of F ~ s , ,  a >1½, is of  par t icular  interest. Recall that  for any positive definite matrix 

A with d iagonal i sa t ion  A = PAP',  PP '= I, A diagonal ,  powers are defined by 

A~'=PA'~P ', a ~ R .  
Results for a > ½ will be consequences  of  the result for a =~. In estimating the 

magni tude  of  the s tandardized vector F-~l/2s,, the following lemma is helpful.  It is 

a general iza t ion of  Lemma 2(i) of  Lai and Wei [12], who consider r = 1. 

Lemma 4. Let B and C be positive semidefinite matrices with rank C = r, say, and 

A = B + C positive definite. Then 

1 - IBI / IAI  <~ t race(A -~/2 CA -1/2) ~ r( 1 - I n l / l a l ) .  (4.1) 

Proof. Since A- I /2BA  -1/2 is a symmetric  matrix, there exists an or thogonal  transfor- 

mat ion  P such that  B ,  = TBT' ,  with T = PA -1/2, is a diagonal  matrix diag(bl ,  . . . ,  bp), 

say. Then  

A . = T A T ' = I  and  C . = T C T ' = d i a g ( 1 - b l , . . . , 1 - b p ) .  

Not ing 

P 

I B I / I A I  = I n ,  I = 1-I bj 
1 

and 

trace A-1/2CA -1/2 = trace C ,  
P 

= p - 2  bj, 
1 

assert ion (4.1) becomes 

1 -I-I bj <~ p - 2  bj <~ r 1-1-I bj . (4.2) 
1 1 1 

Due to the assumptions  on B and  C, 0<~ b j ~  1 , j =  1 , . . .  ,p. By induct ion,  it can be 

proved tha t  the left hand  inequal i ty  holds  for any p such numbers.  Due to rank  

C = r, exact ly p -  r e lements  of  b l , . . . ,  bp equal  one, and r elements are less than  

one, say b l , . . . ,  b,. Using this fact, the right hand  inequali ty of  (4.2) can be 

t rans formed into 

r 

bj>~ r ~ bj, (4.3) 
1 1 

where 0 ~  < bj < 1, j = 1 , . . . ,  r. This inequal i ty  holds trivially if r = 0. Otherwise,  

insert ing z = 1-I~ bj into z <~ z 1/r which holds  if z ~< 1, r I> 1, (4.3) follows from the 

well k n o w n  inequal i ty  be tween ari thmetic  and  geometric mean.  [] 
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If I IF~ l l -~ ,  the first part of Theorem 3 states that the magnitude of F~/2sn is 

o((logllF~ll) ~) a.s., for any ~ >½. This is well known in the scalar case. The second 
part gives a result on F-~'~s,, a > ½. It follows easily from the first part, similarly to 
Theorem 1 of Lai and Wei [11] following from their Lemma 1. 

Theorem 3. Let the martingale {s,} be square integrable with F, =cov s, positive 
definite for n >1 1. 

1 (i) I f  II F~ II -~ oo, then, for any 8 > -~, 

F-~'/2s,, -- o((logll F~ II) ~) 

(ii) I f  a > ½, then 

(logtl F. II) ~ = O ( A m i n f  n ) 

implies F-~'~s, ~ 0 a.s. and in L2. 

a.s. and in L2. (4.4) 

forsome 3,> (2a - 1 )  - 1  (4.5) 

Proof. (i) Set 

Bn=(logllF.ll)-aF~ 1/2, n>~ 1. 

The fact that F, - F~_I is positive semidefinite implies that {B,} is decreasing in the 

sense (1.2). The assumption I[ F, l] -) oo implies Bn ~ 0 and I Fnl- ,  oo. Noting that 
loglF,[ ~<p logllFnl] and using Lemma 4 with A = F,,  B = F~_~, (3.8) follows. Hence 
Corollary 2 applies and yields the result. 

(ii) If (4.5) holds, then AminF, -~ oo and II Fn H -~ oo. Further, (4.5) and 1 - 2t~ < 0 
imply that, for any e > 0 and sufficiently large n, 

IIF~ ~snll ~< (XminFo)('-2~)/211F~'/=s~ll 

<~ e(logll F,, l! )-~ ll F~'/2 s~ ll, 

where 3 = ( 2 a - 1 ) y / 2 > ½ .  Hence (ii) follows from (i). [] 

Remark. In part (ii), it seems tempting to set B, = F~ ~ and to replace (4.5) by the 

weaker assumption /~rainFn--~o0. The convergence condition (3.8) can be demon- 
strated under this assumption in the important case a = 1, for example. However, 
for Bn = F~ ~ with a > ½ the monotonicity condition (1.2) may fail. 

5. Strong consistency in multivariate linear regression 

In this section we consider the linear regression model 

y , = Z ' / 3 + e , ,  n = l , 2 , . . . ,  (5.1) 



82 H. Kaufmann / Multivariate martingales 

where y/1 is the observed q-dimensional response, q >i 1, Z,  is a nonrandom p x q 

regressor matrix and/3 an unknown p-vector of parameters. The unobservable errors 

{e/l} are supposed to form a q-dimensional martingale difference sequence. Setting 

' 0 0 1 
Z / 1  " " " 

! / 3 t  ! z ' =  o z° o , = ( / 3 , , . . . , / 3 ; )  
l 0 " ' "  0 z/1 

and assuming that the error vectors are i.i.d, and square integrable, it follows that 

the model of Anderson [2] is a particular case. 
The least squares estimator from the first n observations, i.e. the estimator 

/1 /1 

minimizing ~,i=1 [[Yi-Z'i/3[[ 2, will  be denoted by /3/1. With s ,=~i=~ Ziei, V , =  
A 

/1 Y~i=~ Z,Z~ nonsingular  for n 1> N, say, it satisfies/3, - /3  = V~sn .  Hence it is consistent 

if and only if V~s,--> 0 a.s. 
For nonrandom regressors, if the responses are univariate (q = 1) and SUpn Ee 2 < 

00, then Ami, V/1-->°° or equivalently V~ ~ 0  implies strong consistency, see Lai, 

Robbins and Wei [ 11 ]. Actually, those authors prove this statement for more general 

error sequences than martingale difference errors with uniformly bounded second 

moments. With the methods of the present paper, only a somewhat weaker assertion 

can be obtained, namely that sup,, Ee 2 < oo and 

(log[lV. ll)V=O(hminVn) forsome ~/> 1 (5.2) 

is sufficient for strong consistency. Similar conditions are given in Lai und Wei [12] 

for q = 1 and random regressors Z ,  supposed to be ~n_rmeasurable .  However, we 

can get theorems where the assumptions on the error sequence are weakened in 

another direction, namely to martingale difference errors where some moment of 

order a, 1 ~< a <~ 2, is uniformly bounded,  and results are easily extended to multivari- 

ate responses. 

T h e o r e m  4. In the regression model (5.1), assume that sup/1EIl /111 < oo holds for  

some a, 1 <~ a <~ 2. Then 

oO 

E (llZ'V-n'Z. ll/Ami V-) ~/2 < ° °  (5.3) 
n = N  

implies that ft, -->/3 a.s. and in L~,. 

Proof. The sequence 

B, = (AminV,)-~/2V'~ ~/2, n >t N, 

is decreasing in the sense (1.2), and 

IIv- 's.ll llB.s.ll, n>>- N. 

W i t h  s = SUpn E II e. II ~ < oo, it is easy to see that 

EIInnZ  .ll s(ll/" VnlZ. ll/XminV.) ~/2, 
Hence (5.3) implies (3.5), and Theorem 2 applies. 

n>~N. 

[] 
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In the first part of the following corollary we consider the practically important 
case of polynomially bounded regressor matrices. This restriction leads to a simple 
minimum growth rate for {,~minVn}. The second part focuses on square integrable 

errors. 

In the regression model (5.1), assume that sup~ EIIE.II ~ < ~  holds for Corollary 3. 
some o~, 1 <~ ot <~ 2. 

(i) I f  Ilzoll =O(n ~) for some 8 > 0 ,  then 

n2/~-1 (log n) v = O(;tmi, V,) for some y > 2/~ (5.4) 

or, somewhat more strongly, 

n 3' = O(ArninVn) forsome y >  2 / a  - 1 (5.5) 

implies (5.3). 
(ii) I f  a=2 ,  then (5.2) is su~cient for (5.3). I f  a = 2  and IIZ~ll = O ( n  ~) for some 

real 6, then (5.2) is implied by 

(log n) v = o(,~minVn) forsome 7 >  1. 

Proof. The elementary inequality 

x'~y~-l<~x+y -1, x~>0, y > 0 ,  0 < a < ~ l ,  

implies 

IIz" v~'zoll°/=n °/=-1 ~l lz"  v~ lz ,  ll+n -', n~> N. (5.6) 

If Ilznll = O ( n  ~) for some 8 > 0 ,  then II v~ll = O(n ~') holds for some 8 ' > 0 ,  whence 

logll v~ II = O(log n). Noting 

, -1 V - d ~ / 2 Z . Z ,  IIz" v~lz~ It ~< trace z ,  v ,  z ,  =trace v~ 1/2, 

Lemma 4 can be applied in a similar way as in the proof of Theorem 3. With 

logll v~ II = O(log n), this yields 

o o  

~, IIz' v ~ ' z . l l ( l o g n )  -~ <oo  forany y > l .  
n = N  

Since 

o o  

y~ 
n = N  

n-l(log n)-Y <oo, y > l ,  

inequality (5.6) leads to 

o o  

IlZ, V-dlznll~/=n~/2-1(log n) -~ < oo forany 3/> 1. 
n = N  

Together with (5.4) or (5.5), this implies (5.3), and part (i) of Corollary 3 is proved. 
Part (ii) can be proved as Theorem 3. [] 
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The fol lowing examples  illustrate the scope of  Corol lary 3 and demonst ra te  that  

sensible results can also be obta ined if errors are not square integrable. 

Examples.  (i) I f  q = 1 and  the regressors are polynomials ,  

z ,  = ' ,  - ½ <  c,  < < .  • • < 

the matr ix  V, is nons ingular  for n i> N = p. Asymptot ical ly ,  n 2q+~ = O(,~mi n W.) holds 
(the c o n v e r s e  XminW. = O(/'/2c1+1) is stated by Eicker [5, (3.5)]). Therefore (5.5) holds 

if Cl > 1/a - 1, an d /3 ,  -->/3 a.s. follows if the error  moments  of  some corresponding 

order  a are uniformly bounded .  Note  that  a > 1 allows for c /= 0 for some i, i.e. 

inclusion of  a constant  term. 
(ii) I f  q = 1, p --2 and  Z ,  = (1, (log n)v) ' with some y > 0 ,  then /~minW. diverges 

at the same order  as , ( l o g  n) -2, independent ly  of  3' > 0. Hence (5.4) holds for a > 1, 

whereas  it fails to hold if a = 1. 

Proof.  (i) Defining D ,  = diag(nq+l/2,..., nC,+1/2), we have that D~ 1V.D~ ~--> M 
positive definite, see G r e n a n d e r  and Rosenbla t t  [7], p. 246. The p roof  given there 
for ci = i -  1, i = 1 , . . . ,  p, carries over to the present  situation. Positive definiteness 

of  M and continuity of  brain(" ) and ;tmax(" ) imply that  there exist constants c~ and 

c2 independent ly  of  x such that  

O<c~<~x'V,x/x'D2x<_c2<~, n>~p, x~O. 

In part icular ,  {)tminV,} diverges at the same order  as {AminD2}, whence n 2q+~= 

O(hmi. V.) and  hminVn = O(n2c'+~). 
(ii) I f  p = 2, the inequal i ty  

IV.l / t race V. <~hmir, V. <~2[V.[/trace V., n =  1 , 2 , . . . ,  

can be used to determine the order  of  divergence of  {hmi~V.}. In part icular ,  if 

Z .  = (1, x . ) '  with x.  scalar,  then 

I V,I / t race V, =Y~ ( x , - ~ , ) 2 / ( 1  + n - ~ E  x~). 

Results of  Fahrmei r  and  K a u f m a n n  [6, p. 198] imply that  ~ ( x ; - ~ , )  2 diverges as 
2 (log r/) 2v, for any y >  0. Hence /~min V. n(log n) 2v-2, whereas 1 + n -1 ~ xi diverges as 

diverges as n(log n) -2, for  any y > 0. []  

6. Some final remarks 

The most drastic restrictions in this paper are consideration of finite dimensional 
martingales, the monotonicity condition (1.2) and nonrandom norming matrices 
from Section 3 on. However, not all of these seem limitations necessarily connected 

with the approach presented. 
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Since discussion is largely based on norms, at least some of the results should 
carry over to more general spaces without major difficulties. The monotonicity 
condition (1.2) plays an essential role in several places, and it does not seem easy 
to weaken it. Combining the methods given here with the stopping rule methods 
common for obtaining local theorems with random norming for scalar martingales, 
it should be possible to also obtain such theorems for multivariate martigales. This 
would lead to conditions for regression models with random regressors. 
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