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We study an effective 4-dimensional scalar–tensor field theory, originated from an underlying brane–bulk 
warped geometry, to explore the scenario of inflation. It is shown that the inflaton potential naturally 
emerges from the radion energy–momentum tensor which in turn results in an inflationary model of the 
Universe on the visible brane that is consistent with the recent results from the Planck’s experiment. The 
dynamics of modulus stabilization from the inflaton rolling condition is demonstrated. The implications 
of our results in the context of recent BICEP2 results are also discussed.
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1. Introduction

The standard cosmological paradigm, while successful in de-
scribing our observable Universe, is plagued with horizon and flat-
ness problems. Moreover, despite being able to explain the large 
scale structure formation due to some seed fluctuations in our Uni-
verse, standard cosmology fails to provide a mechanism that can 
produce such seed fluctuations. Inflationary models are at present 
the only way to provide solutions for these shortcomings in stan-
dard cosmology [1]. According to this paradigm, the Universe at 
an early epoch experienced an exponentially rapid expansion for 
a very brief period due to some apparently repulsive gravity-like 
force. Such a scenario not only can successfully address the horizon 
and flatness problems but at the same time, provides a theoreti-
cal setup to produce the primordial fluctuations which later may 
act as a seed for large scale structure formation in the Universe. 
Amazingly the predicted primordial fluctuations in any inflation-
ary model [2] can be tested accurately through the measurement 
of temperature anisotropies in the Cosmic Microwave Background 
Radiation as recently done by Planck experiment [3]. The construc-
tion of a viable models for inflation, which are consistent with 
cosmological observations like Planck experiment, therefore is of 
utmost importance and is a subject of study of the present work.

Among various models for inflation, the models with extra di-
mensions have been discussed by many authors [4]. Such models 
are independently considered in particle phenomenology due to 
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their promise of resolving the well-known naturalness/fine tuning 
problem in connection with stabilizing the mass of Higgs boson 
against large radiative corrections [5].

In this context, the 5-dimensional warped geometry model due 
to Randall and Sundrum (RS) [6] is very successful in offering 
a proper resolution to the naturalness problem without incor-
porating any intermediate scale other than Plank/quantum grav-
ity scale. The radius associated with the extra dimension in this 
model (known as RS modulus) acts as a parameter in the effective 
4-dimensional theory and from a cosmological point of view, such 
a modulus can be interpreted as a scalar field which, due to its
time evolution, may drive the scale factor of our universe before 
getting stabilized to a desired value. The well-known methodol-
ogy to extract an effective or induce theory on a 3-brane from a 
5-dimensional warped geometry model is demonstrated in [7,8]
where using the Gauss–Codazzi equation with appropriate junc-
tion condition in a two-brane warped geometry model and im-
plementing a perturbative expansion in terms of the brane–bulk 
curvature ratio, the effective Einstein’s equation is obtained on 
a lower-dimensional hypersurface. This eventually results in the 
form of a scalar–tensor gravity theory in our brane (known as vis-
ible brane) [7,8].

Here we try to explore the role of such a scalar–tensor the-
ory in stabilizing the modulus of the bulk geometry as well as to 
generate inflation in the visible brane which is consistent with the 
results obtained by Planck. We show that an effective potential for 
the modulus field (often called radion) automatically emerges from 
the construction of the model. The stabilization requirements put 
further constrains on various parameters of the modulus/scalar po-
tential. After deriving these constraints we study the cosmological 
evolution in the Einstein frame in presence of such a potential and 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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show that it gives a viable model for inflation with required num-
ber of e-folds (to solve the horizon and flatness problem) and also 
gives a primordial fluctuations which is perfectly consistent with 
the Planck results. The inflation is shown to end with the mod-
ulus attaining its stable value. Hence our setup not only provides 
a mechanism to stabilize the modulus in the bulk but also provides 
a viable model for inflation which is consistent with the recent ob-
servational results.

The structure of the paper is as follows: in Section 2, we briefly 
review the basic setup [7,8] for the low energy effective gravity in 
curved branes; in Section 3, we investigate the constraints on the 
potential that is necessary for moduli stabilization; in Section 4, 
we describe the inflationary behavior in our model and constrain 
it using the recent result from the Planck experiment; in Section 5, 
we briefly comment about the recent BICEP2 results; we end with 
conclusions in Section 6.

2. Low energy effective gravity in presence of curved branes

We start with a configuration which contains two 3-branes em-
bedded in a five-dimensional z2 symmetric ADS spacetime con-
taining a bulk cosmological constant (�5). The branes are located 
at two orbifold fixed points. One has positive tension and is placed 
at y = 0 in the fifth dimension (the “hidden brane”) while the 
other has negative tension and is placed at y = rπ (the “visible 
brane”), r being the distance between the two branes.

Next we assume the five-dimensional action as [6]:

S = 1

2κ2

∫
d5x

√−g

(
R + 12

l2

)

−
∑

i=1,2

Vi

∫
d4x

√
−gi +

∑
i=1,2

∫
d4x

√
−giLi

matter. (1)

Here κ2 is the five-dimensional gravitational constant, l is the bulk 
curvature radius which is related to the bulk cosmological constant 
as l =

√ −3
κ2�5

. V1 and V2 are the tensions of the hidden and the 
visible branes. The 5D line element is taken as:

ds2 = e2φdy2 + gμν(y, xμ)dxμdxν . (2)

Fixing the brane curvature scale to be L, we define a parame-
ter ε = ( L

l )
2 and assume ε << 1 which is legitimate as the scale 

of the cosmological evolution in brane is considerably smaller than 
the Planck’s scale namely the natural scale for the bulk curvature. 
This ensures that the classical solutions of the effective Einstein’s 
equation can be trusted. One can perturbatively expand the extrin-
sic curvature of the brane at fixed y in terms of ε . At the zeroth 
order one retrieves the RS model with the corresponding brane 
tensions:

1

l
= 1

6
κ2V1 = −1

6
κ2V2. (3)

The Einstein tensor can be calculated from the given action (see 
[7,8] for detail derivation) and in the first order, one can get the 
effective Einstein’s equation on the visible brane as:

Gμ
ν = κ2

l

T2
μ
ν
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+ κ2

l
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where � = exp2d0(x)/l −1 and ω(�) = − 3
2

�
1+�

. Here d0(x) =∫ rπ
0 dyeφ(y,x) is the proper distance between the two branes and 

is the modulus field in the effective 4-dimensional theory. T μ and 
1ν
T μ
2,ν are the respective energy–momentum tensors in the hidden 

and the visible branes. The internal coordinate (y) dependence of 
the 4D metric induced on the uniform y hypersurface (as defined 
in equation (2)) is given by:

gμν(y, x) = e−2d0(y,x)/lhμν(x).

If we now assume that the two branes are endowed with only cos-
mological constants i.e T2

μ
ν = �2δ

μ
ν and T1

μ
ν = �1δ

μ
ν where �1

and �2 are additional brane cosmological constants added explic-
itly on the two branes, then for a spatially flat FRW metric with 
scale factor a(t), the Einstein equations in the visible brane are 
given by:

3H2 = 1
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where H = ȧ
a is the Hubble parameter. The term

U (�) = −κ2

l
�2

(
1 + (1 + �)2

(
�1

�2

))
(7)

can be interpreted as the potential for the scalar field � in this 
model. This should also be interpreted as the potential for the 
scalar field � in this model which leads to the stabilization of 
the modulus following the Goldberger–Wise-like stabilization [9]
mechanism.

3. Constraints on the form of the potential

To study the dynamical evolution of our system, it is convenient 
to write the equations in the Einstein frame which can be obtained 
using the following conformal transformations:

g̃μν = �gμν

ã2 = �a2

dτ̃ 2 = �dτ 2 (8)

We use a field redefinition � −→ ψ , such that
(

dψ

d�

)2

= 3

4

1

�2(1 + �)
. (9)

On solving the above equation we arrive at

ψ = ±
√

3

2
ln

∣∣∣∣∣
√

1 + � − 1√
1 + � + 1

∣∣∣∣∣ + c1

where c1 is a constant of integration. We can also write Jordan 
frame field � in terms of field ψ in the Einstein frame as

� = 4α

(1 − α)2
(10)

where

α = K e
± 2√

3
ψ

(11)

with K = e
∓ 2√

3
c1 .
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Potential V (ψ) in Einstein frame is now related to potential 
U (�) in Jordan frame as [10]

V (ψ) = U (�)

2F 2(�)
. (12)

We further define two parameters

A = κ2�2

2l
,

B = �1

�2
. (13)

In terms of the parameters A, B and K , V (ψ) has the form:

V (ψ) = −A

⎛
⎝ (1 − K e

± 2√
3
ψ
)4 + (1 + K e

± 2√
3
ψ
)4 B

16K 2e
± 4√

3
ψ

⎞
⎠ (14)

Moreover, with these transformations, the Einstein equations (5), 
(6) simplifies to

3H2 = ψ̇2 + 2V (ψ) (15)

2H+ 3H2 = −ψ̇2 + 2V (ψ). (16)

There are several restrictions on the form of the potential so 
that the model can simultaneously address the following issue:
Firstly to achieve the stabilization of the brane motion, the po-
tential should have a minimum and field value at this minimum 
should be non-zero to avoid any brane collision. Secondly, the po-
tential should also satisfy the necessary slow-roll conditions to 
trigger the inflation on the visible brane and finally the spectrum 
of the primordial fluctuations produced in this case should also be 
consistent with its recent measurement by Planck experiment. We 
address these issues one by one to ascertain the viability of the 
model.

First let us examine the extremum of the potential given by 
equation (11). The equation dV

dψ
= 0 gives the following set of con-

ditions:

e−2βψmin = 0 (17)

K eβψmin = −1 (18)

K eβψmin = 1 (19)

ψ± = 1
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(1+B)2 − 1

K

⎤
⎥⎦ (20)

where β = ± 2√
3

. The first and the third conditions result the cor-

responding � in the Jordan frame to be either infinity or zero. 
Neither of these are acceptable as they imply infinite or zero sep-
aration between the two branes. The second condition is not pos-
sible as K is strictly positive. So the acceptable ψmin is given by 
equation (20). Also it is easy to check that −1 < B < 0 is neces-
sary in order to have a real ψmin. Now if one further calculates 
d2 V
dψ2 , one gets

d2 V

dψ2
(ψ = ψmin) = 2β2 AB

1 + B
. (21)

In order to have a minimum of the potential at ψ = ψmin , one fur-
ther needs A < 0. This, together with the condition on B , implies 
that �2 should be negative and �1 should be positive which is 
similar to the Randall–Sundrum setup of warped geometry.
Further, it is easy to show that at the minimum,

V min = − AB

(1 + B)
< 0. (22)

But the cosmological observations actually is consistent with a de-
Sitter Universe. Hence we need to add an uplifting term V 1 in our 
potential with the condition such that

V 1 >
AB

(1 + B)
. (23)

This feature is similar to the de-Sitter lifting by fluxes in KKLT 
model [11] where the supersymmetry preserving ADS minima is 
lifted to a de-Sitter one from the energy of the background fluxes 
of higher form tensor fields in type IIB string-based N = 1 su-
pergravity model in presence of brane and anti-brane. Presence 
of anti-brane breaks the supersymmetry giving rise to a positive 
definite vacuum energy by compensating the ADS value of the 
scalar potential at the minimum. The mechanism here is to gen-
erate some extra energy from background fluxes which show up 
in the scalar potential.

We should stress that adding this uplifting term does not dis-
turb the process of radion stabilization and the subsequent solu-
tion of the hierarchy problem.

So the final form of the potential is

V (ψ) = −A

(
(1 − K eβψ)4 + (1 + K eβψ)4 B

16K 2e2βψ

)
+ V 1, (24)

where A < 0, −1 < B < 0. Any mismatch in fine tuning between 
the brane and the bulk cosmological constant (see [12]) may re-
sult into an effective brane cosmological constant in the form of 
a constant uplifting term appearing in the radion potential. In the 
5D action this amounts to changing the brane tension from V i to 
V i + δ(V i).

4. Inflation

We now study the inflationary solution induced by the po-
tential as given in equation (24). We define two new variables 
χ = √

2Mplψ and V (χ) = 2M2
pl V (ψ), where Mpl is the reduced 

Planck mass. The form of the potential V (χ) is shown in Fig. 1. 
As χ rolls over from the flat part near the region χ = 0 towards 
the minimum at the either side, inflation continues to occur.

Equations (15) and (16) now become

3H2 = 1

M2
pl

(
χ̇2

2
+ V (χ)

)
(25)

2Ḣ+ 3H2 = 1

M2
pl

(
− χ̇2

2
+ V (χ)

)
(26)

We further define slow roll parameters as [2]

εV = M2
pl

2

(
1

V (χ)

dV (χ)

dχ

)2

(27)

and

ηV = M2
pl

(
1

V (χ)

d2 V (χ)

dχ2

)
. (28)

Inflation takes place when ε << 1 and |η| << 1 which are also 
called the slow-roll conditions. The inflation ends when any one of 
these conditions breaks down. In Fig. 2, we show the behavior of 
the slow-roll parameters for the potential shown in Fig. 1. The in-
flation ends at χend ∼ 5.52Mpl and hence it ends before the scalar 
field settles down at its minima at χmin ∼ 5.61Mpl .
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Fig. 1. Behavior of the potential for B = −0.96, K = 1. A and V 1 are chosen to be 
−1 and 49 in units of κ2�2

2l . Here χ is shown in units of Mpl and V (χ) in units 
of M4

pl .

Fig. 2. Behavior of the slow-roll parameters. The parameters are chosen to be same 
as in Fig. 1. The dashed line is for η and the solid line is for ε .

The total amount of inflation is measured through the number 
of efolding N , defined as [2]

N = ln
a(te)

a(t)
=

t f∫
t

Hdt (29)

To solve the flatness problem in standard cosmology, we need 
at least 70 efolds of inflation. For the potential shown in Fig. 1
and with χend ∼ 5.52Mpl , the required initial value of χ is χini ∼
1.02Mpl to achieve the desired number of efolding. Fig. 1 clearly 
depicts that at such a χini , the field is initially displaced slightly 
from the flat part of the potential. After that it slowly rolls down 
and one gets enough number of efolds before it finally settles at 
the minimum of the potential V (χ).

The relevant observational quantities related to the spectrum of 
the primordial fluctuations are [2,3]

r ≈ 16εV
ns ≈ 1 − 6εV + 2ηV

As ≈ V (χ)

24π2M4
plεV

, (30)

where r is the tensor to scalar ratio, ns is the scalar spectral index 
and As is amplitude of the scalar fluctuation. To comply with our 
purpose all these quantities here must be calculated at the time 
of Hubble exit k∗ = a∗H∗ . When the scale k∗ leaves the Hubble 
radius, the number of efolding before the end of inflation, N∗ , is 
given by

N∗ ≈ 1

M2
pl

χe∫
χ∗

dχ
V

Vχ
. (31)

So the quantities r, ns and As should be estimated at N∗ . The 
value of N∗ depends crucially on the reheating mechanism. For 
reasonable inflationary models, one can show that 50 < N∗ < 60. 
In our case we take N∗ = 55 which is consistent with the Planck’s 
analysis.

The constraints obtained by the Planck’s measurements are as 
follows [3]:

r < 0.11

ns = 0.9603 ± 0.0073

ln(1010 As) = 3.089+0.024
−0.027. (32)

To start with, we fix K = 1 without any loss of generality (this
is an arbitrary integration constant). To find out the values of pa-
rameters (there are three independent parameters e.g. A, B and 
V 1) for which inflation happens and satisfies Planck constraints 
(Eq. (32)), we proceed as follows: for different values of A, we 
choose a range of values for V 1 and B . We choose random points 
in the given range and see if inflation happens with enough num-
ber of e-folds and also it ends before the minimum of the po-
tential. If the point does not satisfy these two conditions then we 
discard them otherwise we calculate values of As , ns and r for 
those points in parameter space and check whether they satisfy 
the constraints given by Planck as mentioned in Eq. (32). The cor-
responding results are shown in Fig. 3.

Further in Fig. 4, we show the allowed regions for our model 
in the ns–r plane together with the Planck constraints. We show 
this for two particular values of A, e.g. A = −0.6 × 10−12 M2

pl and 
A = −1.0 × 10−12M2

pl . As usual, we fix K = 1 without any loss of 
generality. One can see the allowed regions for our model is very 
much inside the Planck’s 68% confidence region.

In Table 1, we give different values of model parameters which 
satisfies the Planck constraints and the corresponding values of 
d0/l and two cosmological constants at the visible and hidden 
branes.

5. BICEP2 results for gravity waves

CMB polarization is one of the most important observational 
signatures that can give important clues about the physics of very 
early Universe. The E-Mode polarization was first detected by DASI 
in 2001. But the B-mode polarization which is a clear evidence 
of primordial gravitational waves generated during inflation has 
not been detected until recently. Just few months before, BICEP2 
experiment [13] has announced the detection of the B-mode sig-
nal for the CMB polarization thereby confirming the existence of 
the primordial gravitational waves. Their measured value for the 
tensor-to-scalar ratio r turns out to be r = 0.2+0.07

−0.05 where as they 
rule out zero tensor fluctuation at 7σ confidence level. This result 



S. Kumar et al. / Physics Letters B 747 (2015) 351–356 355
Fig. 3. The allowed region in B–V 1 plane for K = 1. Grey dots represents the points for which inflation successfully happens but do not satisfy Planck constraints. Black dots 
do satisfy Planck constraints given in Eq. (32). Values of A are A = −0.6 × 10−12 M2

pl (top left), −0.8 × 10−12 M2
pl (top right), −1.0 × 10−12 M2

pl (bottom left) and −1.2 × 10−12

(bottom right).

Fig. 4. Top-left figure: plot for ns vs r for A = −0.6 × 10−12 M2
pl . K = 1.0. Bottom-left figure: same as above but with A = −1.0 × 10−12 M2

pl . In both figures, N = 55. The right 
figures are enlarged version of the above figures. The red regions are same as the black regions in Fig. 3 for corresponding A values. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Table for different values of Model parameters A, B and V 1 and corresponding values of cosmological parameters ns , r and ln(1010 As). The allowed values for the proper 
distance between two branes d0

l and the values of the cosmological constant in the two branes are also listed.

Model parameters Cosmological parameters Corresponding 
brane distance

Cosmological constants

A
(in units of 
10−12 M2

pl)

B V 1

(in units of 
10−12 M2

pl)

ns r ln(1010 As) d0/l �1

(in units of 
10−12 M4

pl)

�2

(in units of 
10−12 M4

pl)

−1.2 −0.96 50 0.955 0.003 3.09 0.02041 57.6 −60
−1.0 −0.97 55 0.959 0.003 3.09 0.01523 64.7 −66.7
−0.8 −0.98 55 0.961 0.003 3.08 0.01010 78.4 −80
−0.6 −0.985 57 0.962 0.003 3.07 0.00756 78.8 −79.9
brings in huge conflict with the Planck results on measurement 
of r which is r < 0.11. But the contribution from Galactic fore-
grounds to this B-mode signal has been an issue which has to be 
settled. People have shown that although the BICEP2 data is con-
sistent with r = 0.2 with negligible galactic foreground, it is also 
consistent with negligible r with significant polarization due to 
dust [14,15]. Just recently by using the Planck HFI polarization data 
for 100 to 353 GHz, Adam et al. [19] have shown that polarization 
signal due to dust over the multipole 40 < l < 120 is roughly the 
same as that obtained by BICEP2 over this l range. This shows that 
it is entirely possible that the polarization signal BICEP2 has mea-
sured is not due to the primordial gravitational wave but due to 
dust. Just recently a joint analysis of BICEP2/Keck array and Planck 
data [18] has given an upper limit on primordial gravity wave as 
r < 0.12 at 95% confidence limit. As still there is no lower limit 
for r, our model is still consistent with this result.

However, we should stress that it is difficult to get high value 
of r in the present model. Detection of lower bound of r in future 
which is greater that roughly 0.005 most probably will rule out 
this scenario. But added contributions coming from cosmic defects 
[16], primordial magnetic fields [17] as well as cosmic birefrin-
gence caused by the coupling between scalar field and the CMB 
photons through Chern–Simons term [20] can cause an enhance-
ment to the total contribution for the tensor components.

6. Conclusion

To summarize, we study a scalar tensor theory that can ex-
plain the moduli stabilization in the bulk geometry as well as 
can produce an inflationary Universe in the visible brane which 
is consistent with the recent measurements by Planck experi-
ment [3]. The scalar tensor theory can naturally arise as an ef-
fective 4-dimensional theory through perturbative corrections of 
the brane curvature in a two-brane RS-like setup as obtained ear-
lier by Shiromizu and Koyama [7]. The potential for the inflaton 
field is not an ad hoc one but emerges from the construction of 
the model through the effective energy–momentum tensor of the 
modulus field. The dynamics of radion facilitates the inflation and 
thus offers a natural explanation for the origin of inflation. Such an 
inflaton field (i.e. the radion) needs to be stabilized and stabiliza-
tion of the radion in turn is related to the scalar field sitting at the 
minimum of the potential. To inflict a de-Sitter character to this 
minimum, we have to add an uplifting term to the potential which 
is similar to the de-Sitter lifting by adding fluxes in the KKLT setup. 
We show that one gets enough e-folding in this model to solve the 
flatness and horizon problems. Moreover, the primordial fluctua-
tions produced by the inflaton field is consistent with the Planck’s 
measurements for ns , r and As . Hence the present setup not only 
provides a viable inflationary scenario which is consistent with the 
Planck data but also offers a possible resolution to the modulus 
stabilization mechanism concomitantly.
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