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Abstract 

For the multisensor multi-dimension autoregressive moving average(ARMA) signal system with a common 
disturbance measurement noise and sensor bias, when the model parameters,  sensor bias  and  noise variances are all 
unknown, their consistent estimates are obtained by the multistage information fusion identification method.   Firstly, 
by multi-dimension recursive extended least squares (RELS) algorithm, the estimates of the autoregressive 
parameters and sensor bias are obtained. Secondly, applying the correlation method, the estimates of the   
measurement noise variances are obtained. Finally, the fused estimates of the moving average(MA) parameters and  
the process noise variances are obtained by the Gevers-Wouters algorithm with a dead band.  A simulation example 
verifies the consistency of unknown parameters estimates. 
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1. Introduction 

The estimate problem of the multi-channel autoregressive moving average (ARMA) signal has 
received increasing attention. The classical system identification methods for the signal system have the 
limitations that they are only suitable the system without measurement noise or with only a single sensor 
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having measurement noise. The multisensor information fusion identification is a new field, whose aim is 
to combine or to weight the local estimators or local measurements from each sensor, and to obtain the 
fused estimators whose performance is better than that of the local estimators. Especially, in order to 
improve the robustness and reliability of the fused estimation, we take the average of local estimates as 
the fused estimate.   The presented method[1] solved the estimation problem of   unknown parameters for 
the single-channel ARMA signal, applying the RELS algorithm and the correlation method. For the single 
channel ARMA signal with a common disturbance noise, the paper[2] gave the estimation result  by the 
RIV algorithm, the correlation method and the Gever-Wouters algorithm, when the model parameters and 
these noise variance are unknown.  

The multi-dimension and the multiple identification method[3] for the multi-channel signal  is 
presented. But it only suit for ARMA signal with white noise. When the measurement of the signal has 
been affected by a common disturbance noise, it is that the measurement noises are correlated.  The 
reference [4] presented the multi-stage identification method to estimate  unknown  ARMA model 
parameters and the measurement noise variances. However, when measurements have a sensor bias, the 
RIV algorithm used in [3] can’t estimate the unknown sensor bias. Recently, the reference [5] presented a 
multistage identification method for multisensor single channel ARMA signal with a common disturbance 
white noise and sensor bias. Therefore, this paper extends the results in [5] to the multisensor 
multichannel case.   

2. System model  

Consider the multisensor multi-dimension ARMA signal with common disturbance noises and sensor 
bias 

1 1( ) ( ) ( ) ( )A q s t C q w t− −= ,     (1)
( ) ( ) ( ),j jy t s t b v t= + + ,                                                                                                                  (2)

( ) ( ) ( ), 1, , ,j jv t t t j Lξ η= + = L                                                                                                           (3)

where t is the discrete time, ( ) ms t R∈ is the signal, ( ) mw t R∈  is the  process noise, ( )jy t and ( )jv t are

the measurement and  measurement noise of the j th sensor subsystem, b  is the sensor bias, but ( )jv t

contain a common disturbance noise ( ) mt Rξ ∈ , 1q−  is the backward shift operator with 1 ( ) ( 1)q s t s t− = − ,
1( )A q−  and 1( )C q−   are the polynomial matrices having the form as 1 1

1( ) x

x

n
m nX q I X q X q−− −= + + +L ,

mI    is the m m×   identity matrix, xn  is the order, kX  is the m m×   coefficient matrix. 

Assumption 1. ( )w t , ( )tξ  and ( )j tη   are uncorrelated white noises with zero means and variances 

wQ , Qξ   and jQη .

Assumption 2. 1 1( ( ), ( ))A q C q− −   is left coprime, and 1( )A q−   and 1( )C q−   are stable. 

Assumption 3. The sensor bias b ,   noise variances wQ , Qξ   and j
Qη ,   and coefficient matrices in 

1( )A q−   and 1( )C q−   are unknown, but the order an   and cn   are known with a cn n> .

Assumption 4. The measurement data ( )( 1, , )jy t j L= L  are bounded for t  with probability one. 

3. Information Fusion Estimates of Unknown Model Parameters and  Noise Variances 

When the ARMA signal model parameters, the sensor bias and noise variances are unknown, we need 
to estimate them and to obtain their consistent estimates using the multistage identification method. 
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3.1. Fused estimates of model parameters for 1( ),A q b−

Substituting (1) and (3) into (2) yields 
1 1 1 1( ) ( ) ( ) ( ) ( ) ( )( ( ) ( )).j jA q y t C q w t A q b A q t tξ η− − − −= + + + (4)

Setting
1 1 1( ) ( ) ( ) ( ) ( )( ( ) ( )),j j jD q t C q w t A q t tε ξ η− − −= + + (5)

1
1( ) ( )

am nA q b I A A bρ −= = + + +L , (6)

 we have the innovation model 
1 1( ) ( ) ( ) ( )j j jA q y t D q tρ ε− −= +  .  (7)

Hence for the jth sensor, we have the corresponding least squares (LS) structure of (7) as 
( ) ( ) ( ), 1, , ,j j j jy t t t j Lϕ ε= Θ + = L (8)

T T T T T( ) [ ( 1), , ( ),1, ( 1), , ( )] ,j j j a j j dt y t y t n t t nϕ ε ε= − − − − − −L L (9)
( 1 )

1 1[ , , , , , , ] .a d

a d

m mn mn
j n j jnA A D D Rρ × + +Θ = ∈L L (10) 

Theorem 1.  For the jth sensor subsystem with multi-dimension stationary ARMAX model(7), the 

multi-dimension recursive extended least squares (RELS) estimate ˆ ( )j tΘ   of  Θ   is 
T

T

ˆ[ ( ) ( 1) ( )] ( ) ( 1)ˆ ˆ( ) ( 1) ,
1 ( ) ( 1) ( )

j j j j j
j j

j j j

y t t t t P t
t t

t P t t

ϕ ϕ
ϕ ϕ

−Θ − −
Θ = Θ − +

+ −
(11)

T

T

( 1) ( ) ( ) ( 1)
( ) ( 1) ,

1 ( ) ( 1) ( )
j j j j

j j
j j j

P t t t P t
P t P t

t P t t

ϕ ϕ
ϕ ϕ
− −

= − −
+ −

(12)

with initial value 0 0 0 0
ˆ ( ) , ( ) , ( ) 0( 0)j j j jt P t P y t tΘ = Θ = = ≤ ,where 

1 1
ˆ ˆˆ ˆ ˆˆ( ) [ ( ), , ( ), ( ), ( ), , ( )]

a dj j n j j j jnt A t A t t D t D tρΘ = L L , (13)
T T Tˆ ˆ ˆ( ) [ ( 1), , ( ),1, ( 1), , ( )]j j j a j j dt y t y t n t t nϕ ε ε= − − − − − −L L  , (14)

and ˆ ( )j kε  in ˆ ( )j tϕ  can be obtained by 
ˆˆ ˆ( ) ( ) ( ) ( )( 1, 2, , )j j j j dk y k k k k t t t nε ϕ= −Θ = − − −L . (15)

And if 1( )jD q−  satisfies the positive real condition[6], then the multi-dimension RELS estimate  

ˆ ( )j tΘ  for different sensor converges to the true value Θ  with probability 1, as 

ˆ ( ) , 1, , , as , . .1.j t j L t w pΘ →Θ = →∞L (16)

Theorem 2. Information fusion   estimates ˆ ( )kfA t  of  kA  and ˆ ( )fb t of b for the multi-dimension 

stationary ARAX model   (1)—(3) are consistent, i.e. 
ˆˆ ( ) , ( ) , 1, , , as , . .1.kf k f aA t A b t b k n t w p→ → = →∞L (17) 

      Proof. From Theorem 1, we have local parameter estimates ˆ ˆ( ), ( )kj jA t tρ   based on the jth sensor. The 

fused estimates ˆ ( )kfA t and   ˆ ( )f tρ  are defined as 

1 1

1 1ˆ ˆ ˆ ˆ( ) ( ), ( ) ( )
L L

kf kj f j
j j

A t A t t t
L L

ρ ρ
= =

= =∑ ∑ . (18)
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From the consistency of ˆ ˆ( ), ( )kj jA t tρ , we can easily obtain the consistency of ˆ ˆ( ), ( )kf fA t tρ .   From (6), 

we define the fused estimate of b as 
1

1
ˆ ˆ ˆ ˆ( ) ( ( ) ( )) ( ).

af m f n f fb t I A t A t tρ−= + + +L (19)

Hence, from the consistency of ˆ ˆ( ), ( )kf fA t tρ , we have that  (17) holds. The proof is completed. 

3.2. Fused estimates of noise variances Qξ  and jQη

Defining  
1( ) ( ) ( ) ,j jz t A q y t ρ−= − (20)

we have  
1 1( ) ( ) ( ) ( )( ( ) ( )).j jz t C q w t A q t tξ η− −= + + (21)

Defining the correlation function T( ) E[ ( ) ( )], 0,1, ,zij i j aR k z t z t k k n= − = L of ( )iz t  and 

( )( , 1, , )jz t i j L= L , and computing the correlation function for 1, ,c ak n n= + L   yields 

T

T

, ,

( )

[ ] , .

a

a

j

n

u u k
u k

zij n

u u k
u k

A Q A i j

R k

A Q Q A i j

ξ

ξ η

−
=

−
=

⎧
≠⎪

⎪= ⎨
⎪ + =⎪⎩

∑

∑
(22)

Defining the sampled correlation function ( )t
zijR k  of ( )zijR k  at time t as 

T

1

1
( ) ( ) ( ),

t
t
zij i j

u

R k z u z u k
t =

= −∑ (23)

from the ergodicity[6] of stationary stochastic process, we have 
( ) ( ), as , . .1.t

zij zijR k R k t w p→ →∞ (24)

When noise variances ,wQ Qξ and jQη  are unknown, substituting these estimates ˆ
kfA , ˆ ( )f tρ  into(20), 

we have ˆ ( )jz t . And the sampled correlation function estimate ˆ ( )t
zijR k  is 

T

1

1ˆ ˆ ˆ( ) ( ) ( ).
t

t
zij i j

u

R k z u z u k
t =

= −∑ (25)

From (23)-(25) and Assumption 4, we can prove   
ˆ ( ) ( ), as , . .1.t

zij zijR k R k t w p→ →∞    . (26)

For different ( 1, , )c ak k n n= + L , substituting ˆ ˆ( ), ( )t
kf zijA t R k  into the first equality  of  (22)  yields  

local estimates ˆ ( )ijkQ tξ . Then, substituting ˆ ( )ijkQ tξ , ˆ ( )kfA t  and ˆ ( )t
zijR k   into the second equality of (22) 

yields the local estimates ˆ ( )jkQ tη
[7] . 

Taking the average value of local estimates ˆ ( )ijkQ tξ , the fused estimate ˆ ( )Q tξ  of Qξ  is defined as 
1

1 1 1

2ˆ ˆ( ) ( ),
( 1)( )

a

c

nL L

ijk
i j i k na c

Q t Q t
L L n nξ ξ

−

= = + = +

=
− − ∑ ∑ ∑ (27)

and taking the average value of  local estimates ˆ ( )jkQ tη ,   fused estimates ˆ ( )jQ tη  of jQη are defined as 
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1

1ˆ ˆ( ) ( )
a

c

n

j jk
k na c

Q t Q t
n nη η

= +

=
− ∑ . (28)

3.3. Fused estimates of model parameters kC   and noise variance wQ

Defining  
1( ) ( ) ( ),m t C q w t−=  (29) 

and ( )m t   is a stationary stochastic process, whose correlation function ( )mR k   is defined as 
T( ) E[ ( ) ( )], 0,1, ,m cR k m t m t k k n= − = L . (30)

which is

T( ) , 0,
c

m j k c
j k

n

j wQR k C kC n−
=

= =∑ L (31)

From  (21), we have 
1( ) ( ) ( )( ( ) ( )).j jz t m t A q t tξ η−= + + (32)

Computing the correlation function of two sides of (32), and for different ( 0, , )ck k n= L , substituting 
ˆ ( )t

zijR k  , ˆ ( )kfA t , ˆ ( )Q tξ    and ˆ ( )
j

Q tη   into it, we can obtain the correlation function estimate of ( )m t

T
,

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )[ ( ) ( ) ] ( ), 0, , .
a

j

n
t t
mij zij uf ij u k f a

u k

R k R k A t Q t Q t A t k nξ η δ −
=

= − + =∑ L (33)

For (31), based on ˆ ( )t
mijR k , applying the Gevers-Wouters algorithm with a dead band[8], we can obtain   

local estimates ˆ ( )( 1, , , , 1, , )kij cC t k n i j L= =L L   and ˆ ( )wijQ t  . 

Taking the average value of these local estimates ˆ ( )kijC t   and ˆ ( )wijQ t ,   fused estimates ˆ ( )kfC t  of kC ,

and ˆ ( )wQ t  of wQ  are defined by 

2 2
1 1 1 1

1 1ˆ ˆ ˆ ˆ( ) ( ), ( ) ( ).
L L L L

kf kij w wij
i j i j

C t C t Q t Q t
L L= = = =

= =∑∑ ∑∑ (34)

Theorem 3.   For the multisensor multi-dimension ARMA signal system  (1)--(3)   with Assumptions 
1--3,   local and fused white noise estimates  and   MA parameters are consistent, i.e. 

ˆ ˆ ˆ ˆ( ) , ( ) , ( ) , ( ) , 1, , , 1, , , as , . .1j j w w kf k cQ t Q Q t Q Q t Q C t C j L k n t w pξ ξ η η→ → → → = = →∞L L . (35)

 Proof. Form the first equality of (22), for fixed i,j,k, the each element of Qξ  is a continuous of the 

element of 1( ), , ,
azij nR k A AL i.e. , , 1( ( ), , )

ai j k zij nf R AQ k Aξ = L .   Substituting  ˆ ( )t
zijR k  and ˆ ( )kfA t into it 

yields the local estimators 

, , 1
ˆ ˆˆ( ) ( ( )ˆ , , )

a

t
i j k zij fij fk nt f R kQ A Aξ = L (36)

From (17) and (26), and the continuity of , ,i j kf , we have (ˆ )ijk tQ Qξ ξ→ . Then ( )ˆ tQ Qξ ξ→  holds. 

Similarly, we have ˆ ( )jk jQ t Qη η→ .

Similarly, each element of and ( 1, )w l cC lQ n= L  is a continuous of the element of 

( ), 0,1,m cR k k n= L , i.e. 

( (0), ( )), ( (0), ( ))w w m m c k k m m cf R R n C f R RQ n= =L L (37)
ˆˆ ˆ ˆ ˆ( ) ( (0), ( )),ˆ ( ) ( (0), ( ))t t t t

w w mij mij c kij k mij mij ct f R R n C t f R RQ n= =L L (38)
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From (33), we have ˆ ( ) ( )t
mij mR k R k→ . According to the continuity of wf and kf , we have 

ˆ,ˆ
wijk w kij kQ CQ C→ → . Then, from (34) we have ˆ,ˆ

w w l lQ CQ C→ → .The proof is completed. 

4. Simulation Example 

Consider the multi-dimension ARMA(2,1) signal ( )s t  as (1)--(3) with 3-sensors, and their parameters 

1 2 1, , , , , ,w jA A C b Q Q Qξ η  are all unknown. The problem is to obtain their consistent estimates of these 

unknown parameters. In the simulation we take 

1 2 1
2

1 2

1

3

0.8 0.3 0.6 0.3 0.2 0.1 1
, , , ,

0.5 0.4 0.2 0.9 0.5 0.4 2

3 0 2 0 1 0 5 0 4 0
, , , , .

0 3 0 4 0 2 0 3 0 7w

A A C b
b

Q Q Q Q Q

b

ξ η η η

− − ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  Applying the multi-dimension RELS algorithm as Theorem 1 and Theorem 2, the fusion estimates of 
the AR parameters and the sensor bias are obtained, where  curves of   information fusion estimates 

1
ˆ ( )fA t

and ˆ ( )fb t are shown in Fig 1-Fig 2. Applying the correlation method，the fused estimates of Qξ and jQη

are obtained, where curves of  ˆ ( )Q tξ 3
ˆ ( )Q tη  are shown in Fig 3 and Fig 4. The curves of the information 

fusion estimates 1
ˆ ( )fC t , ˆ ( )wQ t are shown in Fig 5--Fig 6, by the Gevers-Wouters algorithm with a dead 

band 200dT = .  Fig 1—Fig 6 verify the consistency of  parameters and noise variances estimates, where 

( , )M k r  denotes the ( , )k r th element of matrix M ,    straight lines denote the true values,  solid curves 

denote  fused estimates, and dot curves denote local  estimates. 

1 1 1
ˆ ˆ(1,1), (1,1), (1,1)f jA A A

1 1
ˆ (1, 2), (1, 2)fA A

1 1
ˆ (2, 2), (2, 2)fA A

1 1
ˆ (2,1), (2,1)fA A

1 1
ˆ ,fb b

2 2
ˆ ,fb b

Fig 1. Curves of local and fused   estimates of  A1                  Fig 2. Curves of local and fused  estimates of b

     

ˆ (2, 2), (2, 2)Q Qξ ξ

ˆ ˆ(1,1), (1,1), (1,1)ijkQ Q Qξ ξ ξ
3 3

ˆ (1,1), (1,1)Q Qη η

3 3
ˆ (2, 2), (2, 2)Q Qη η

     Fig 3. Curves of local and fused noise variances estimates of Qξ         Fig 4. Curves of fused noise variances estimates of Qη3
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1 1
ˆ (2, 2), (2,2)C C

1 1
ˆ (1, 2), (1, 2)C C

1 1
ˆ (2,1), (2,1)C C

1 1
ˆ (1,1), (1,1)C C ˆ ˆ(2,2), (2,2), (2,2)wij w wQ Q Q

Fig 5.  Curves of  fused estimates of MA parameter C1                 Fig 6. Curves of   local and fused  estimates of Qw (2,2)
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