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Abstract

We investigate differentiability of functions defined on regions of the real quaternion
and obtain a noncommutative version of the Cauchy–Riemann conditions. Then we stu
noncommutative analog of the Cauchy integral as well as criteria for functions of a qute
variable to be analytic. In particular, the quaternionic exponential and logarithmic functions are
considered. Main results include quaternion versions of Hurwitz’ theorem, Mittag-Leffler’s the
and Weierstrass’ theorem.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

MSC:14A22; 16S38; 30G35; 32C11

Keywords:Quaternion function; Manifold; Noncommutative geometry superanalysis

1. Introduction

Since the time of the investigation of quaternions by Hamilton [17,40] there were a
attempts to develop an analysis of functions of quaternion variables (see, for exam
8,12–15,30,31,34,38] and references therein), but they have operated with narrow
of regular in some sense functions of quaternion variables and instead of line in
they have used an integration over three-dimensional surfaces, that does not pe
get such well properties as in the complex case. Hamilton itself had tried to de
such theory, but in his time mathematical analysis of real and complex variable
been much less developed, general and algebraic topologies had not been existi
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moreover, he had died soon after the invention of quaternions. In his lectures [17,
had outlined a way for such activity: differentiation of functions of quaternion varia
along real straight lines and then definition of differentiation by quaternion variable
the base of it, a line integral of differentials of differentiable in such a way funct
of quaternion variables. But this way was abandoned in works of his followers. Th
was a development of the theory of Clifford algebras generalizing quaternions (se
example, [25,34] and references therein). There was not a great advance in a deve
of theory of functions of quaternion variables, because even formulas for calcul
of roots of polynomials of quaternion variables are not quite well developed [20
physics and geometry mainly algebraic properties of quaternions were used, funct
quaternion variables were treated by means of a tool of functions of real and co
variables (see, for example, [4,10,25] and references therein). There are a lot of wo
quaternion manifolds, but strictly speaking they are complex manifolds with an addi
structure in the tangent bundle (see, for example, [32,41] and references therein). Us
definition of quaternion holomorphic functions and results on them below we can say,
manifold modelled on a quaternion Banach space with quaternion holomorphic conn
functions of charts is a quaternion manifold. Each complex manifold can be embedd
a corresponding quaternion manifold, moreover, each quaternion manifold defined
in the literature can be presented as a quotient of a corresponding quaternion man
our sense.

Our research of functions of quaternion variables differ from that of preceding au
and permit to work with larger families of functions. Then we have defined the quate
line integral on a space of continuous functions resembling the main properties ana
to that of the Cauchy complex line integral and we have obtained many specific prop
of functions of quaternion variables. We believe that our results can be applied in m
physical theories. In mathematics they can be applied to develop a theory of quat
manifolds, operator theory, etc.

The noncommutativity of the quaternion fieldH obstructs the immediate applicatio
of the theory of analytic and meromoprhic complex functions to functions of quate
arguments. The latter may be thought of as functions of two noncommuting com
variables, but we shall adopt matrix notation representing the standard genera
the quaternions by their Pauli-matrices. This allows a rather elegant introducti
differentiable functions of a quaternion variable, integrals of functions along curvesH,
residues of a function, . . . . The new results contained in this paper providenoncommutative
analogs of the Cauchy–Riemann conditions for superdifferentiable functions as w
basic properties of the related noncommutative integrals, the argument principl
. . . . The quaternionic residue theory depends on the definition and description of the
exponential and logarithm functions of quaternion variables. An explicit description o
exponential is obtained in Proposition 3.2 allowing to view it as an epimorphism from
of imaginary quaternions to the three dimensional quaternionic unit sphere. The re
between the quaternion version of holomorphicity and local analyticity is investigate
particular we obtain in Theorem 3.10 that for a continuous function on an open s
U of H, the property of being locally analytic follows from the integral holomorphic
Section 3 also contains the quaternionic version of the classical theorems of C
Liouville and Morera. Although the analytic theory of functions of a quaternion varia
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or more general of functions of noncommuting variables with suitable “commuta
rules, has an interest in its own right, we were more motivated by the connection
noncommutative geometry, the analytic structure induced onH modulo aZ-lattice, and
the quaternionic version of arithmetical functions like the zeta-function. We hope to r
to these applications in forthcoming work.

Though some results in noncommutative geometry are concerned with fun
families [3,7,9,22,33] they are rather general and do not take into account the par
quaternion case and its specific features. It is necessary to note, that we use a
superdifferentiability condition, compared to, for example, [3,9,22]. Traditionally
uses the condition, that a right derivative is right superlinear on a superalgebra,
causes severe restrictions on these classes of functions (see Theorems I.1.4 a
in [22]). This is too restrictive in the particular quaternion case as it does not perm
describe anH-algebra of quaternion holomorphic functions on an open subsetU in Hn

extending that of complex holomorphic functions. We have withdrawn the cond
of right superlinearity of a superderivative on a superalgebra, supposing only t
is additive onHn and R-homogeneous. Nevertheless, it also satisfies distributivity
associativity laws relative to the multiplication from the right on (scalar) quaternionsλ ∈H
and there are also distributivity and associativity laws relative to a left multiplica
on λ ∈ H (see §2.1). That is, we have considered Frechét differentiable function
the Euclidean spaceR4n with some additional conditions on increments of functio
taking into account a superalgebra structure. This permits to encompass classe
analytic functions on a region inHn, in particular, all polynomial functions. Moreover, th
approach permits to investigate an analog of functions having Laurent series expa
We have proved, that for each complex holomorphic functionf on a regionV open
in Cn there exists a quaternion holomorphic functionF on a suitable regionU in Hn

such that a restriction ofF on V coincides withf . The theory of complex holomorph
functions turns out to be rather different from a theory of quaternion holomo
functions. The quaternion fieldH has nontrivial algebraic structure and identities,
there are different ways to define not only function spaces, but also their differentia
A differentiation is not only analytic, it also has algebraic properties. In some sens
notion of the family of all quaternion holomorphic functions unifies together com
holomorphic and antiholomorphic functions. On the other hand, weaker differentia
for example, “pointwise” as defined in the classical case by Gatô [23] yields a
poor algebraic structure of function spaces not taking into account the gradatio
superalgebra.

In previous works [26–29] the first author investigated loop and diffeomorphism gr
of complex manifolfds and quasi-invariant measures and stochastic processes on
Complex manifolds also have the structure of supermanifolds, since the fieldC can be
considered as a graded algebra overR. The graded structure of the quaternion field over
reals is more complicated. Conceivably, the investigations in this work allow to con
this work for quaternion manifolds, loop and diffeomorphism groups of these mani
quasi-invariant measures and stochastic processes on them, as well as their as
representations including irreducible ones.
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2. Differentiability of functions of quaternion variables

To avoid misunderstandings we first introduce notations. We writeH for the skewfield
of quaternions over the real fieldR. This skewfield can be represented as a subring o
ring M2(C) of all 2× 2 complex matrices by representing the classical quaternion ba
i, j , k, by the Pauli-matricesI , J , K, L defined as follows:

I =
(

1 0
0 1

)
; J =

(
i 0
0 −i

)
; K =

(
0 1
−1 0

)
; L=

(
0 i

i 0

)
,

wherei = (−1)1/2. Hence, each quaternionz is written as a 2× 2 matrix overC having
matrix elementsz1,1= z̄2,2=: t , z1,2=−z̄2,1=: u, wheret andu ∈C such thatt = v+ iw

andu= x + iy, v, w, x andy are in the fieldR of real numbers. The quaternion skewfie
H has an anti-automorphismη of order two induced inH by the Hermite conjugation in
M2(C), that is,η : z 
→ z̃, wherez̃1,1 = t̄ and z̃1,2 = −u. There is a norm inH such that
|z| = (|t|2 + |u|2)1/2, hence det(z) = |z|2 and z̃ = |z|2z−1. The noncommutative fieldH
is theZ2-gradedR-algebraH = H0 +H1, where elements ofH0 areevenand elements
of H1 areodd(see, for example, [6,24,40]).

In view of noncommutativity ofH a polynomial functionP :U →H may have severa
different representations

P̆ (z, z̃)=
∑
k

bk,1ẑ
k1 . . . bk,mẑkm,

wherebk,j ∈ H are constants,k = (k1, . . . , km), m ∈ N, kj = (kj,1, . . . , kj,2n), kj,l ∈ Z,
ẑkj := 1zkj,11z̃kj,n+1 . . . nzkj,n nz̃kj,2n , lz0 := 1, l z̃0 = 1, U is an open subset ofHn. Each
term bk,1ẑ

k1 . . . bk,mẑkm =: ω(bk, z, z̃) �= 0 we consider as a word of lengthξ(ω) =∑
j,l δ(kj,l) +

∑
j κ(bk,j ), whereδ(kj,l) = 0 for kj,l = 0 andδ(kj,l) = 1 for kj,l �= 0,

κ(bk,j ) = j for bk,j = 1, κ(bk,j ) = j + 1 for bk,j ∈ H \ {0,1}. A polynomial P is
considered as a phrasĕP of a lengthξ(P̆ ) :=∑

k ξ(ω(bk, z, z̃)). Using multiplication
of constants inH, commutativity ofvI with each lz and l z̃, and lza lzb = lza+b and
l z̃a l z̃b = l z̃a+b, lz l z̃ = l z̃ lz, it is possible to consider representations ofP as phrases̆P
of a minimal lengthξ(P̆ ). We choose one such̆P of a minimal length. Iff :U → H
is a function presented by a convergent byz and z̃ seriesf (z, z̃) =∑n Pn(z, z̃), where
Pn(vz, vz̃)= vnPn(z, z̃) for eachv ∈ R is a R-homogeneous polynomial,n ∈ Z, then we
consider among all representations off such for whichξ(P̆n) is minimal for eachn ∈ Z.
We may use this convention separately for families of functionsf having (a) z-series
decompositions,(b) z̃-series decompositions,(c) (z, z̃)-series decompositions (that is,
indicated variables). The corresponding families of locally analytic functions onU are
denoted byCω

z (U,H), Cω
z̃
(U,H), Cω

z,z̃
(U,H). If eachPn for f has a decomposition of

particular left type

P̆ (z, z̃)=
∑
k,p

bk,pz
kz̃p,

where 0� k, p ∈ Z, bk,p ∈ H, then the space of all such locally analytic functio
on U is denoted bylC

ω
z,z̃

(U,H), for z-series or z̃-series decompositions only th
corresponding spaces are denoted bylC

ω
z (U,H) and lC

ω
z̃
(U,H) respectively. They ar
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proper subspaces of that of given above. Spaces of locally analytic functionsf having
right type decompositions for eachPn

P̆ (z, z̃)=
∑
k,p

zkz̃pbk,p

are denoted byrCω
z,z̃

(U,H), etc.

2.1. Definition. Consider an open regionU in Hn, then-fold product of copies ofH, and
let f :U → H be a function. Thenf is said to be (right) superdifferentiable at a po
(1z, . . . , nz) = e1

1z + · · · + en
nz ∈ U (with respect to a chosen (right)H-basis forHn,

{e1, . . . , en}), if it can be written in the form

f (z+ h)= f (z)+
n∑

j=1

Aj
jh+ ε(h)|h|

for eachh ∈Hn such thatz+ h ∈ U , whereAj is anH-valued additiveR-homogeneou
operator ofh-variable, in general it is non-linear for eachj = 1, . . . , n andAj is denoted
by ∂f (z)/∂ j z, that is, there exists a (right) derivativef ′(z) such that a (right) differentia
is given by

Dzf (z).h := f ′(z).h :=
n∑

j=1

(
∂f (z)/∂ j z

)
jh,

whereε(h) is a function continuous at zero such thatε(0)= 0, ej = (0, . . . ,0,1,0, . . . ,0)
is the vector inHn with 1 onj th place,

Dzf (z).h=: (Df )(z;h)
such that(Df )(z;h) is additive inh andR-homogeneous, that is,

(Df )(z;h1+ h2)= (Df )(h1)+ (Df )(h2) and (Df )(z; vh)= v(Df )(z;h)
for eachh1, h2 andh ∈Hn, v ∈R. There are imposed conditions:

Dz̃z= 0, Dzz̃= 0, (Dzz).h= h, Dz1= 0, (Dz̃z̃).h= h, Dz̃1= 0,

also
(
Dz(fg)

)
.h= ((Dzf ).h

)
g+ f (Dzg).h

for a product of two superdifferentiable functionsf andg and eachh ∈Hn. We also have
distributivity and associativity laws relative to multiplication from the right by (sca
quaternionsλ ∈H:(

D(f + g)
)
(z;hλ)= (Df )(z;hλ)+ (Dg)(z;hλ),

(Df )
(
z;h(λ1+ λ2)

)= (Df )(z;hλ1)+ (Df )(z;hλ2),

(Df )
(
z; (hλ1)λ2

)= (Df )
(
z;h(λ1λ2)

)
for each superdifferentiable functionsf andg at z and eachλ, λ1 andλ2 ∈H. There are
also left distributive and associative laws:(

Dλ(f + g)
)
(z;h)= λ(Df )(z;h)+ λ(Dg)(z;h),
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(
D(λ1+ λ2)f

)
(z;h)= λ1(Df )(z;h)+ λ2(Df )(z;h),(

D(λ1λ2)f
)
(z;h)= λ1(Dλ2f )(z;h).

That is, we consider Frechét differentiable functions on the Euclidean spaceR4n with
some additional conditions on increments of functions, taking into account a supera
structure. Quite analogously we defined the notion of (right) superdifferentiability byz̃ and
by their pair(z, z̃).

Notation.We write f as a 2× 2 complex matrix with entriesfi,j such thatfi,j =
gi,j + ihi,j andgi,j , hi,j being real-valued functions. Forn= 1 we also write1z without
its superscript. We may write a functionf (z, z̃) in variables(v,w,x, y) asF(v,w,x, y)=
f ◦ σ(v,w,x, y), whereσ( lv, lw, lx, ly)= ( lz, l z̃) is a bijective mapping.

2.2. Proposition. A functionf :U → H is (right) superdifferentiable at a pointa ∈ U if
and only ifF is Frechét differentiable ata and

Dz̃f (z)|z=a = 0. (2.1)

If in addition f ′(a) is right superlinear on the superalgebraHn, thenf is superdiffer-
entiable ata if and only if F is Frechét differentiable ata and satisfies the followin
equations:

∂G1,1/∂
jv = ∂H1,1/∂

jw, ∂G1,1/∂
jw=−∂H1,1/∂

jv,

∂G1,2/∂
jv =−∂H1,2/∂

jw, ∂G1,2/∂
jw= ∂H1,2/∂

jv,

∂G1,1/∂
jw =−∂H1,2/∂

j x, ∂G1,1/∂
j x = ∂H1,2/∂

jw,

∂G1,2/∂
jw =−∂H1,1/∂

j x, ∂G1,2/∂
j x = ∂H1,1/∂

jw,

∂G1,1/∂
jx =−∂H1,1/∂

j y, ∂G1,1/∂
j y = ∂H1,1/∂

jx,

∂G1,2/∂
jx = ∂H1,2/∂

jy, ∂G1,2/∂
j y =−∂H1,2/∂

jx, (2.2)

or shortly in matrix notation:

∂F/∂ jv = (∂F/∂ jw)J−1= (∂F/∂ jx)K−1= (∂F/∂ jy)L−1 (2.3)

for eachj = 1, . . . , n.

Proof. Verify thatz andz̃ are independent variables. Suppose contrary that there exisγ ∈
H such thatz+γ z̃= 0 for eachz ∈H. This is equivalent to a system of two linear equatio
γ1,1t̄ − γ1,2u=−t andγ1,1ū+ γ1,2t =−u. If z �= 0, thenγ1,1=−(t2+ u2)/(|t|2+ |u|2)
andγ1,2 = (tū − t̄u)/(|t|2 + |u|2), hence∂γ /∂t �= 0 and∂γ /∂u �= 0. Therefore, there i
not anyγ ∈H such thatz+ γ z̃= 0 for eachz ∈H.

For each canonical closed compact setU in H the set of all polynomial byz and z̃

functions is dense in the space of all continuous onU Frechét differentiable function
on Int(U). In particular functions of the form of seriesf =∑ l1f . . . lnf converging on
U together with its superdifferential on Int(U) such that eachlf is (right) superlinearly
superdifferentiable on Int(U) relative to the superalgebraHn is dense in theR-linear
space of (right) superdifferentiable functions. From conditions of §2.1 it follows, tha
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superdifferentiability conditions are defined uniquely on space of polynomials. Suc
the superdifferentiability of a polynomialP onU means that it is expressible through a s
of products ofj z and constants fromH, that is, without terms containing̃z. Suppose tha
f is superdifferentiable at a pointa. To eachf ′(z) there corresponds aR-linear operator
on the Euclidean spaceR4n. Moreover, we have the distributivity and associativity la
for (Df )(z;h) relative to the right multiplication on quaternionsλ ∈ H (see §2.1). Then
f (a+h)−f (a)=Daf (a, ã).h+Dãf (a, ã).h̃+ε(h)|h| =Daf (a, ã).h+ε(h)|h|, where
ε(h) is continuous byh and ε(0) = 0, therefore,Dãf = 0. Vice versa, ifF is Frechét
differentiable, then expressingvI , wJ , xK andyL through linear combinations ofz and
z̃ with constant coefficients we get the increment off as above which is independent ofh̃

if and only if Dãf = 0.
Consider now the particular case, whenf ′ is right superlinear on the superalgebraHn.

In this casef ′(a) is right H-linear. Using the definition of the right superderivat
and that there is a bijective correspondence betweenz and (v,w,x, y) we consider a
function f = f (z, z̃) = F(v,w,x, y) (right) superdifferentiable byz and z̃, hence it is
also differentiable by(v,w,x, y)= (b1, . . . , b4) and we obtain the expressions:

∂F/∂ jbl = (∂F/∂ j z).∂ j z/∂ jbl + (∂F/∂ j z̃).∂ j z̃/∂ jbl,

since∂ j z/∂ kbl = 0 and∂ j z̃/∂ kbl = 0 for eachk �= l. FromDz̃f = 0 and∂ j z/∂ jv = I ,
∂ j z/∂ jw = J , ∂ j z/∂ j x =K, ∂ j z/∂ jy = L we get Eqs. (2.3). SubstitutingJ−1 for the
equation with pair of variables(v,w) in (2.3) we get∂F1,1/∂

jv = −i∂F1,1/∂
jw and

∂F1,2/∂
j v = i∂F1,2/∂

jw, substitutingK−1J = L for Eq. (2.3) with the pair of variable
(w,x) we get:∂F1,1/∂

jw = i∂F1,2/∂
jx and ∂F1,1/∂

jx = −i∂F1,2/∂
jw, substituting

L−1K = J for Eq. (2.3) with pair of variables(x, y) we get∂F1,1/∂
jx = i∂F1,1/∂

jy and
∂F1,2/∂

j x =−i∂F1,2/∂
jy. Using the equalityFl,j =Gl,j + iHl,j we get Eqs. (2.2) from

the latter equations.
Let nowF be differentiable ata and letF be satisfying conditions (2.2). Then

f (z)− f (a)=
n∑

l=1

{
(∂F/∂ lv)3lv + (∂F/∂ lw)3lw+ (∂F/∂ lx)3lx

+ (∂F/∂ ly)3ly
}+ ε(z− a)|z− a|,

where3( lv, lw, lx, ly) = σ−1( lz)− σ(la) for eachl = 1, . . . , n. From conditions (2.3
equivalent to (2.2) we get

f (z)− f (a)=
n∑

l=1

{
(∂F/∂ lv)I3lv + (∂F/∂ lv)J3lw+ (∂F/∂ lv)K3lx

+ (∂F/∂ lv)L3ly
}+ ε(z− a)|z− a|

= (∂F/∂ lv)I3lz+ ε(z− a)|z− a|,
whereε is a function continuous at 0 andε(0)= 0. Therefore,f is superdifferentiable byz
ata such thatf ′(a) is right superlinear. ✷
2.3. Remark. A function f superdifferentiable at each pointa ∈ U (by eitherz or z̃ or
(z, z̃)) is called superdifferentiable inU (by eitherz or z̃ or (z, z̃) respectively). The firs
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pair of equations in (2.2) yields the usual Cauchy–Riemann conditions for complex-v
differentiable functions. On the other hand, we restrictz by

(
t 0
0 t̄

)
, then (2.1) also yields th

usual Cauchy–Riemann condition in complex formDt̄f1,1(t,0)= 0.
If a seriesf (z)=∑l1,...,ln l1f (z) . . . lnf (z) uniformly converges onU together with its

superdifferential, then

Dzf (z).h=
∑
j

∑
l1,...,ln

l1f (z) . . . lj−1f (z)
(
Dz lj f (z).h

)
lj+1f (z) . . . lnf (z),

where eachlf is supposed to be superdifferentiable. A similar equality holds forDz̃f . This
illustrates, that in general a product ofH-valued functions need not have a right superlin
superdifferential on the superalgebraHn even if eachlf has that property. Neverthele
such functionsf satisfy the superdifferentiability conditions of Definition 2.1.

2.4. Corollary. Let f be a continuously superdifferentiable function byz with a right
superlinear superdifferential on the superalgebraHn in an open subsetU in Hn and letF
be twice continuously differentiable by(v,w,x, y) in U , then certain components ofF are
harmonic functions by pairs of variables(v,w), (w,x), (x, y) and(v, y), namely:

3lv,lwG1,1= 0, 3lv,lwH1,1= 0, 3lv,lwG1,2= 0, 3lv,lwH1,2= 0,

3lw,lxG1,1= 0, 3lw,lxH1,1= 0, 3lw,lxG1,2= 0, 3lw,lxH1,2= 0,

3lx,lyG1,1= 0, 3lx,lyH1,1= 0, 3lx,lyG1,2= 0, 3lx,lyH1,2= 0,

3lv,lyG1,1= 0, 3lv,lyH1,1= 0, 3lv,lyG1,2= 0, 3lv,lyH1,2= 0 (2.4)

for eachl = 1, . . . , n, where3lv,lwG1,1 := ∂2G1,1/∂
lv2+ ∂2G1,1/∂

lw2.

Proof. From the first row of (2.2) and in view of the twice continuous differentiability oF

it follows, that ∂2G1,1/∂
lv2 = ∂2H1,1/∂

lv∂ lw = ∂2H1,1/∂
lw∂ lv = −∂2G1,1/∂

lw2.
Analogously, from the remaining rows of (2.2) we deduce the other equations in
The latter equations follow from3lv,ly =3lv,lw −3lw,lx +3lx,ly .

2.5. Note and Definition. Let U be an open subset inH and letf :U →H be a function
defined onU such that

f (z, z̃)= f 1(z, z̃) . . .f l(z, z̃), (2.5i)

where each functionf s(z, z̃) is presented by a Laurent series

f s(z, z̃)=
∞∑

n=n0

∞∑
m=m0

f s
n,m(z− ζ )n(z̃− ζ̃ )m (2.5ii)

converging onU , wheref s
n,m ∈ H, z ∈ U , ζ ∈ H is a marked point,m ∈ Z, n ∈ Z, if

min(n0,m0) < 0, thenζ /∈ U . Consider the casef s
−1,m = 0 for eachm and s. The case

with termsf s
−1,m �= 0 will be considered later.

Let [a, b] be a segment inR andγ : [a, b]→ H be a continuous function. Consider
partitioningP of [a, b], that is,P is a finite subset of[a, b] consisting of an increasin
sequence of pointsa = c0 < · · ·< ck < ck+1 < · · ·< cq = b, then the norm ofP is defined
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as |P | := maxk(xk+1 − xk) and theP -variation of γ as v(γ ;P) :=∑q−1
k=0 |γ (ck+1) −

γ (ck)|, where q = q(P ) ∈ N. The total variation (or the length) ofγ is defined as
V (γ ) = supP v(γ ;P). Suppose thatγ is rectifiable, that is,V (γ ) <∞. For f having
decomposition (2.5) withf s

−1,m = 0 for eachm ands and a rectifiable pathγ : [a, b]→ U

we define a (noncommutative) quaternion line integral by the formula:∫
γ

f (z, z̃) dz := lim
P

I (f, γ ;P), (2.6)

where

I (f, γ ;P) :=
q−1∑
k=0

f̂ (zk+1, z̃k+1).(3zk), (2.7)

f̂ (z, z̃).h := (∂g(z, z̃)/∂z).h for eachh ∈ H and eachs, where3zk := zk+1 − zk , zk :=
γ (ck) for eachk = 0, . . . , q , and where without loss of generality we suppose, thatg is a
function such that(∂g(z, z̃)/∂z).I = f (z, z̃) for eachz ∈ U . In a similar way we define∫
γ
f (z, z̃) dz̃. We may write shortly

∫
γ
f (z) dz or

∫
γ
f (z) dz̃ also for such integrals due t

the bijective correspondence betweenz andz̃.

This definition is justified by the following proposition.

2.6. Proposition. Letf be a function as in§2.5 and suppose that there are two constanr
and R such that the Laurent series(2.5) converges in the setB(a, r,R,H) := {z ∈
H: r � |z − a| � R} for eachs = 1, . . . , l, let alsoγ be a rectifiable path contained i
U ∩B(a, r ′,R′,H), wherer < r ′ <R′ <R. Then the quaternion line integral exists.

Proof. Since eachf s converges inB(a, r,R,H), then

lim
n>0, m>0

|f s
n,m|1/(n+m)R � 1, hence

‖f ‖ω :=
l∏

s=1

(
sup

n+m<0
|f s

n,m|rn+m, sup
n+m�0

|f s
n,m|Rn+m

)
<∞

and inevitably

‖f ‖1,ω,B(a,r ′,R′,H) :=
l∏

s=1

[( ∑
n+m<0

|f s
n,m|r ′n+m

)
+
( ∑

n+m>0

|f s
n,m|R′n+m

)]
<∞.

For each locally(z, z̃)-analytic functionf in U and eachz0 in U there exists a ball o
radiusr > 0 with centerz0 such thatf has a decomposition analogous to (2.5i,ii) in t
ball with all nj andmj nonnegative,j = 1, . . . , l. Consider two quaternion(z, z̃)-locally
analytic functionsf andq on U such thatf andq noncommute. Letf 0 := f , q0 := q ,
q−n := q(n), ∂(qn)/∂z=: qn−1 andq−k−1= 0 for somek ∈N, then

(i) (f q)1= f 1q − f 2q−1+ f 3q−2+ · · · + (−1)kf k+1q−k. In particular, iff = azn,
q = bzk, with n > 0, k > 0, b ∈H \RI , thenf p = [(n+ 1) . . . (n+ p)]−1azn+p for each
p ∈N, qs = (k − 1) . . . (k − s + 1)bzk−s. Also
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(ii) (f q)1 = f q1 − f−1q2 + f−2q3 + · · · + (−1)pf−pqp+1. Apply (i) for n � m

and (ii) for n < m to solve the equation(∂g(z, z̃)/∂z).I = f (z, z̃) for eachz ∈ U . If
f andq have series converging in Int(B(z0, r,H)), then these formulas show that the
exists a(z, z̃)-analytic function(f q)1 with series converging in Int(B(0, r,H)), since
limn→∞(nrn)1/n = r, where 0< r < ∞. Consider the equationBA = AC, whereA,
B andC are quaternions. Therefore, for each quaternion locally(z, z̃)-analytic function
f there exists the operator̂f . Considering a functionG of real variables correspondin
to g we get that all solutionsg differ on quaternion constants, hencef̂ is unique forf .
If A �= 0, thenC = A−1BA, hence|C| = |B|. If B �= 0, thenC = BD, whereD = B−1C

and|D| = 1. Therefore,

f s
n,m(zj+1− a)k(3zj )(zj+1− a)n−k(z̃j+1− ã)m

= f s
n,m(zj+1− a)n(z̃j+1− ã)mC(n− k,m; zj+1, zj , a)(3zj), (2.8)

whereC(p,m; zj+1, zj , a) ∈H and|C(p,m; zj+1, zj , a)| = 1 for eachzj+1 �= zj , zj+1 �=
a, for eachp andm. From Eq. (2.8) it follows, that|I (f, γ ;P)|� ‖f ‖1,ω,B(a,r ′,R′,H)v(γ ;
P), for eachP , and inevitably∣∣I (f, γ ;P)− I (f, γ ;Q)

∣∣� w(f̂ ;P)V (γ ) (2.9)

for eachQ⊃ P , where

w(f̂ ;P) := max
(z,ζ∈γ ([cj ,cj+1]))

{∥∥f̂ (z, z̃)− f̂ (ζ, ζ̃ )
∥∥: zj = γ (cj ), cj ∈ P

}
, (2.10)

‖f̂ (z, z̃)− f̂ (ζ, ζ̃ )‖ := suph�=0 |f̂ (z, z̃).h− f̂ (ζ, ζ̃ ).h|/|h|. Since limn→∞(n)1/n = 1, then

limP ω(f̂ ,P )= 0. From limP w(f̂ ;P)= 0 the existence of limP I (f, γ ;P) now follows.

2.7. Theorem. Let γ be a rectifiable path inU , then the quaternion line integral has
continuous extension on the spaceC0

b (U,H) of bounded continuous functionsf :U →H.
This integral is anR-linear and left-H-linear functional onC0

b (U,H).

Proof. Sinceγ is continuous and[a, b] is compact, then there exists a compact canon
closed subsetV in H, that is, cl(Int(V )) = V , such thatγ ([a, b]) ⊂ V ⊂ U . Let f ∈
C0

b (U,H), then in view of the Stone–Weierstrass theorem for a functionF(v,w,x, y) =
f ◦ σ(v,w,x, y) and eachδ > 0 there exists a polynomialT such that‖F − T ‖0 < δ,
where‖f ‖0 := supz∈U |f (z)|. This polynomial takes values inH, hence it has the form

T1,1 = �T2,2 = α
1,1
i1,i2,i3,i4

vi1wi2xi3yi4 and T1,2 = −�T2,1 = α
1,2
i1,i2,i3,i4

vi1wi2xi3yi4, where
summation is accomplished by repeated upper and lower indices. There are relation

J 2=K2= L2=−I, JK =−KJ = L,

KL=−LK = J, LJ =−JL=K,

consequently,

zJ = vJ −wI − xL+ yK, zK = vK +wL− xI − yJ,

zL= vL−wK + xJ − yI,
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wherez= vI +wJ + xK + yL is in H, v,w, x andy are inR. Therefore,

z̃= vI −wJ − xK − yL, J z̃= vJ +wI − xL+ yK,

Kz̃= vK +wL+ xI − yJ, Lz̃= vL−wK + xJ + yI,

hence

(z+ z̃)/2= vI, (J z̃− zJ )/2=wI,

(Kz̃− zK)/2= xI, (Lz̃− zL)/2= yI.

From this it follows, thatT can be expressed inz andz̃ such that

T = [Re
(
α

1,1
i1,i2,i3,i4

)
I + Im

(
α

1,1
i1,i2,i3,i4

)
J +Re

(
α

1,2
i1,i2,i3,i4

)
K + Im

(
α

1,1
i1,i2,i3,i4

)
L
]

× [(z+ z̃)/2
]i1[(J z̃− zJ )/2

]i2[(Kz̃− zK)/2
]i3[(Lz̃− zL)/2

]i4.
This polynomial can be rewritten in a form similar tof in §2.5 (see formulas (2.5i,ii))
sincez and z̃ commute. Two variables(z + z̃)/2= vI and(z − z̃)/2= wJ + xK + yL

commute for eachz ∈ H. Therefore, theR-linear space of functions onU having
decomposition (2.5i,ii) is dense inC0

b(U,H).
Consider a functiong(z, z̃) onU , suppose thatq(z, ζ̃ ) is another function onU2 such

that q(z, ζ̃ )|z=ζ = g(z, z̃). Let q(z, ζ̃ ) be superdifferentiable byz for a fixed ζ ∈ U ,
then ∂q(z, ζ̃ )/∂z for z = ζ is denoted by∂g(z, z̃)/∂z. Consider a space of all suc
that g on U for which (∂g(z, z̃)/∂z).S is a bounded continuous function onU for each
S ∈ {I, J,K,L}, it is denoted byC1

b (U,H)= C
1,0
b (U,H) and it is supplied with the norm

‖g‖C1
b
:= ‖g‖C0

b
+∑S∈{I,J,K,L} ‖(∂g(z, z̃)/∂z).S‖C0

b
, where‖g‖C0

b
:= supz∈U |g(z)|. In

view of Proposition 2.2 for eachg ∈ C1
b (U,H) the corresponding functionQ(z, ζ )

satisfies condition (2.1) byz. This entails, that∂Q/∂v, ∂Q/∂w, ∂Q/∂x and ∂Q/∂y

are in C0
b (U

2,H) (see §2.1). Consequently, imposing the conditionz = ζ : (∂g/∂z).J ,
(∂g/∂z).K and (∂g/∂z).L are also continuous bounded functions, hence(∂g/∂z).h ∈
C0

b (U × B(0,0,1,H),H), where h ∈ B(0,0,1,H). Therefore, there exists a positi
constantC such that

sup
h�=0

∣∣(∂g/∂z).h∣∣/|h|� C
∑

S∈{I,J,K,L}

∥∥(∂g/∂z).S∥∥
C0

b
, (2.11)

since h = vhI + whJ + xhK + yhL for each h ∈ H and (∂g/∂z) is R-linear and
(∂g/∂z).(h1 + h2) = (∂g/∂z).h1 + (∂g/∂z).h2 for eachh1 andh2 ∈ H, wherevh, wh,
xh andyh are real numbers,G(v,w,x, y) := g ◦ σ(v,w,x, y) is Frechét differentiable o
an open subsetUσ ⊂R4 such thatσ(Uσ )=U .

In §2.6 it was shown that the equation(∂g(z, z̃)/∂z).I = f (z, z̃) has a solution in a
class of quaternion locally(z, z̃)-analytic functions onU . The subsetCω

(z,z̃)
(U,H) is dense

in the uniform spaceC0
b (U,H).

If g = g1 . . . gl is a product of functionsgs ∈ C
1,0
b (U,H), then (∂g/∂z).h =∑l

s=1g
1(z, z̃) . . . gs−1(z, z̃)[(∂gs/∂z).h]gs+1(z, z̃) . . . gl(z, z̃) for eachh ∈ H. Consider

the spacêC 0
b (U,H) := {((∂g/∂z).I, (∂g/∂z).J, (∂g/∂z).K, (∂g/∂z).L): g ∈ C

1,0
b (U,H)}.

It has an embeddingξ into C0
b(U,H) and‖g‖

C
1,0 �

∑
S∈{I,J,K,L} ‖(∂g/∂z).S‖C0. In view
b b
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of inequality (2.11) the completion of̂C 0
b (U,H) relative to‖ ∗ ‖C0

b (U,H) coinsides with

C0
b (U,H).
Let {f j : j ∈N} be a sequence of functions having decomposition (2.5) and conve

to f in C0
b (U,H) relative to the metricρ(f, q) := supz∈U |f (z, z̃)− q(z, z̃)| such that

f j = ξ
(
(∂gj /∂z).I, (∂gj /∂z).J, (∂gj /∂z).K, (∂gj /∂z).L

)
for somegj ∈ C

1,0
b (U,H). Relative to this metricC0

b (U,H) is complete. We have th
equality

∂

( s∫
0

F(v0+ φhv,w0+ φhw,x0+ φhx, y0+ φhy) dφ

)/
∂s = F(v,w,x, y)

for each continuous functionF on Uσ , where v = v0 + shv , w = w0 + shw , x =
x0 + shx and y = y0 + shy , (v0,w0, x0, y0) + φ(hv,hw,hx,hy) ∈ Uσ for eachφ ∈ R
with 0 � φ � s, hv , hw, hx andhy ∈ R4. Let z0 be a marked point inV . There exists
R > 0 such thatγ is contained in the interior of the parallelepipedV := {z ∈ H: z =
vI +wJ + xK + yL, |v− v0|� R, |w−w0|� R, |x − x0|� R, |y − y0|� R}.

If V is not contained inU consider a continuous extension of a continuous functioF

from V ∩ U0 on V , whereU0 is a closed subset inU such that Int(U0) ⊃ γ (about the
theorem of a continuous extension see [11]). Therefore, suppose thatF is given onV .
Then the functionF1(v,w,x, y) := ∫ v

v0

∫ w

w0

∫ x

x0

∫ y

y0
F(v1,w1, x1, y1) dv1dw1dx1dy1 is in

C1(V ,H) (with one sided derivatives on∂V from insideV ). Consider a foliation ofV by
three dimensionalC0-manifoldsΥz such thatΥz∩Υz1 = ∅ for eachz �= z1, wherez, z1 ∈ γ ,⋃

z∈γ Υz = V1, V1 is a canonical closed subset inH such thatγ ⊂ V1 ⊂ V . Choose this
foliation such that to have decomposition of a Lebesgue measuredV into the product
of measuresdν(z) alongγ anddΥz for eachz ∈ γ . In view of the Fubini theorem ther
exists

∫
V f (v1, . . . , y1) dV = ∫γ (∫Υz

f (z, z̃) dΥz) dν(z). If γ is a straight line segment the∫
γ
f (z, z̃) dz is in L1(Υ,H). LetUR be a real region inR4 corresponding toU in H.

Consider the Sobolev spaceWs
2(UR,R4) of functionsh :UR → R4 for which Dαh ∈

L2(UR,R4) for each|α|� s, where 0� s ∈ Z. In view of Theorem 18.1.24 [19] (see al
the notation there) ifA ∈ Ψm is a properly supported pseudodifferential elliptic opera
of orderm in the sence that the principal symbola ∈ Sm(T ∗(X))/Sm−1(T ∗(X)) has an
inverse inS−m(T ∗(X))/S−m−1(T ∗(X)), then one can findB ∈ Ψ−m properly supported
such thatBA − I ∈ Ψ−∞, AB − I ∈ Ψ−∞. One callsB a parametrix forA. In view
of Proposition 18.1.21 [19] eachA ∈ Ψm can be written as a sumA = A1 + A0, where
A1 ∈ Ψm is properly supported and the kernel ofA0 is in C∞. In particular we can take
pseudodifferential operator with the principal symbola(x, ξ)= (b+ |ξ |2)s/2, whereb > 0
is a constant ands ∈ Z, which corresponds tob +3 for s = 1 up to minor terms, wher
3= ∇2 is the Laplacian (see also Theorem 3.2.13 [16] about its parametrix family)
estimates of a solution there may be also applied Theorem 3.3.2 and Corollary 3.3
concerning parabolic pseudodifferential equations for our particular case correspon
(∂g/∂z).I = f rewritten in real variables.

Due to the Sobolev theorem (see [36,37]) there exists an embedding of the S
spaceW3

2 (V ,H) into C0(V ,H) such that‖g‖C0 � C‖g‖W3 for eachg ∈ W3
2 , whereC
2
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is a positive constant independent ofg. If h ∈ Wk+1
2 (V ,H), then ∂h/∂bj ∈ Wk

2 (V ,H)

for eachk ∈ N and in particular fork = 3 and eachj = 1, . . . ,4 (see [36]). On the othe
hand‖h‖L2(V ,H) � ‖h‖C0(V ,H)(2R)2 for eachh ∈L2(V ,H). Therefore,‖A−kh‖Wk

2 (V ,H) �
C‖h‖C0(V ,H)(2R)k+2 for eachk ∈ N, whereC = const> 0, A is an elliptic pseudodiffer
ential operator such thatA2 corresponds to(1+3). From Eqs. (2.6), (2.7) and inequa
ity (2.11) it follows, that∣∣I (f − q, γ ;P)

∣∣� ρ(f, q)V (γ )C1 exp
(
C2R

6) (2.12)

for each partitioningP , whereC1 andC2 are positive constants independent ofR, f and
q (for this estimate the Gronwall Lemma is used, see, for example, Section 3.3.1
In view of formulas (2.9), (2.10){∫

γ
f j (z, z̃) dz: j ∈ N} is a Cauchy sequence inH and

the latter is complete as the metric space. Therefore, there exists limj limP I (f j , γ ;P)=
limj

∫
γ f j (z, z̃) dz, which we denote by

∫
γ f (z, z̃) dz. As in §2.6 we get that all solution

g differ on quaternion constants on each connected component ofU , consequently, the
functional

∫
γ

is uniquely defined onC0
b (U,H). The functional

∫
γ

:C0
b (U,H) → H is

continuous due to formula (2.12) and evidently it isR-linear, sinceλz= zλ for eachλ ∈R
and eachz ∈H, that is,∫

γ

(
λ1f1(z, z̃)+ λ2f2(z, z̃)

)
dz=

∫
γ

(
f1(z, z̃)λ1+ f2(z, z̃)λ2

)
dz

= λ1

∫
γ

f1(z, z̃) dz+ λ2

∫
γ

f2(z, z̃) dz

for eachλ1 andλ2 ∈R, f1 andf2 ∈ C0
b (U,H). Moreover, it is left-H-linear, that is,∫

γ

(
λ1f1(z, z̃)+ λ2f2(z, z̃)

)
dz= λ1

∫
γ

f1(z, z̃) dz+ λ2

∫
γ

f2(z, z̃) dz

for eachλ1 andλ2 ∈H, f1 andf2 ∈C0
b (U,H), sinceI (f, γ ;P) is left-H-linear.

2.8. Remark. Let η be a differential form on open subsetU of the Euclidean spaceR4m

with values inH, then it can be written as

η=
∑
Υ

ηΥ db∧Υ , (2.13)

whereb = ( 1b, . . . , mb) ∈R4m, j b = ( j b1, . . . ,
j b4), j bi ∈R, ηΥ = ηΥ (b) : R4m→H are

s times continuously differentiableH-valued functions withs ∈N,Υ = (Υ (1), . . . ,Υ (m)),
Υ (j) = (Υ (j,1), . . . ,Υ (j,4)) ∈ N4 for eachj , db∧Υ = d1b∧Υ (1) ∧ · · · ∧ dmb∧Υ (m),
djb∧Υ (j) = djb

Υ (j,1)
1 ∧ · · · ∧ djb

Υ (j,4)
4 , wheredjb0

i = 1, djb1
i = djbi , djbk

i = 0 for each
k > 1. If s � 1, then there is defined an (external) differential

dη=
∑

Υ,(j,i)

(∂ηΥ /∂ jbi)(−1)α(j,i)db∧(Υ+e(j,i)),
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wheree(j, i)= (0, . . . ,0,1,0, . . . ,0) with 1 on the 4(j − 1)+ ith place,

α(j, i)=
(

j−1∑
l=1

4∑
k=1

Υ (l, k)

)
+

i−1∑
k=1

Υ (j, k).

These differential forms have matrix structure themselves. Consider basic matriceS =
( 1S, . . . , mS) and their ordered productS→Υ := 1S→Υ (1) . . .mS→Υ (m), where j S =
( jS1, . . . ,

j S4)= (I, J,K,L), j S→Υ (j) = JΥ (j,2)KΥ (j,3)LΥ (j,4), S0= I . Then Eq. (2.13)
can be rewritten in the form:

η=
∑
Υ

ξΥ d(Sb)∧Υ , (2.14)

where Sb = ( 1S1
1b1, . . . ,

mSm
mbm) ∈ H4m, djSk

j bk = j Skd
jbk, ξΥ := ηΥ (S→Υ )−1.

Relative to the external productIdjb1 anticommutes with others basic differential 1-for
j Skd

jbk; for k = 2,3,4 these forms commute with each other relative to the exte
product. This means that the algebra of quaternion differential forms is graded re
to the external product.

From §2.7 it follows, that(dz + dz̃)/2= I dv, J dw = −(dz̃ + J (dz)J )/2, K dx =
−(dz̃+K(dz)K)/2, Ldy = −(dz̃ + L(dz)L)/2. Therefore, the right side of Eq. (2.1
can be rewritten withdj z, dj z̃, J dj z J , K djzK andLdjzL on the right side. From th
latter 5 differential 1-forms 4 linearly independent ones can be chosen, since sum
these forms we have:dz = −2dz̃− J dzJ −K dzK − LdzL, henceLdzL =−(dz+
2dz̃+ J dzJ +K dzK). These 1-forms do neither commute nor anticommute, since
are not pure elements of the graded algebra. For example,

(dz∧ dz)1,1= (dz∧ dz)2,2=−du∧ dū,

(dz∧ dz)1,2=−(dz∧ dz)2,1= dt ∧ du− dt̄ ∧ du;
(dz∧ dz̃)1,1= (dz∧ dz̃)2,2= dt ∧ dt̄ + du∧ dū,

(dz∧ dz̃)1,2=−(dz∧ dz̃)2,1=−2dt ∧ du;
(dz̃∧ dz)1,1= (dz̃∧ dz)2,2= dt̄ ∧ dt + du∧ dū,

(dz̃∧ dz)1,2=−(dz̃∧ dz)2,1= 2dt̄ ∧ du;
(dz∧ J dzJ )1,1= (dz∧ J dzJ )2,2=−du∧ dū,

(dz∧ J dzJ )1,2=−(dz∧ J dzJ )2,1= dt ∧ du+ dt̄ ∧ du;
(J dzJ ∧ dz)1,1= (J dzJ ∧ dz)2,2=−du∧ dū,

(J dzJ ∧ dz)1,2=−(J dzJ ∧ dz)2,1=−dt ∧ du− dt̄ ∧ du;
(dz∧K dzK)1,1= (dz∧K dzK)2,2=−dt ∧ dt̄,

(dz∧K dzK)1,2=−(dz∧K dzK)2,1=−dt ∧ dū+ dt ∧ du;
(K dzK ∧ dz)1,1= (K dzK ∧ dz)2,2= dt ∧ dt̄,

(K dzK ∧ dz)1,2=−(K dzK ∧ dz)2,1=−dt̄ ∧ du+ dt̄ ∧ dū.
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On the other hand Eq. (2.13) can be rewritten using the identities:(dz + dz̃)/2= I dv,
I dw = (J dz̃− dzJ )/2, I dx = (K dz̃− dzK)/2, I dy = (Ldz̃− dzL)/2, wheredz =(

dt du
−dū dt̄

)
in 2× 2 complex matrix notation.

Consider aC1-functionf onU with values inH, then

DA j z̃f =
(
∂f/∂(Aj z̃)

)
.Aj z̃= (∂f/∂ j z̃).(A−1Aj z̃)=Dj z̃f

for eachA ∈H, also

DjzAf =
(
∂f/∂( j zA)

)
.j zA= (∂f/∂ j z).( j z)AA−1=Djzf

for eachA ∈H, whereDhf := (∂f/∂h).h. We apply this also in particular toIv, wJ , xK
andyL.

There is the standard embedding of the algebra of complexn× n matricesA into the
algebra of real 2n×2n matricesB such that in its block formB1,1=Re(A),B2,2=Re(A),
B1,2 = Im(A), B2,1 = −Im(A), whereBi,j are n × n blocks. Therefore, quaternio
differential forms can be embedded into the algebra of differential forms over the alge
real 4× 4 matrices. This shows, that the exterior differentiation operatorHd for H-valued
differential forms overH and that of for their real matrix realizationRd coincide and their
common operator is denoted byd . Consider the equality

(∂ηΥ /∂ j bl) jbl ∧ dbΥ = [(∂ηΥ /∂ j z).(∂ j z/∂ j bl)
]
j bl ∧ dbΥ

+ [(∂ηΥ /∂ j z̃).(∂ j z̃/∂ j bl)
]
j bl ∧ dbΥ .

Applying it to l = 1, . . . ,4 and summing left anf right parts of these equalities we
dη(z, z̃)= ((∂η/∂z).djz)∧dbΥ +((∂η/∂z̃).dj z̃)∧dbΥ , hence the external differentiatio
can be presented in the form

d = ∂z + ∂z̃, (2.15)

where∂z and∂z̃ are external differentiations by variablesz andz̃ respectively.
Certainly for an external productη1 ∧ η2 there is not (in general) anλ ∈ H such that

λη2∧ η1= η1∧ η2, if η1 andη2 are not pure elements (even or odd) of the graded alge

2.9. Definition. A Hausdorff topological spaceX is said to ben-connected forn � 0 if
each continuous mapf :Sk → X from thek-dimensional real unit sphere intoX has a
continuous extension overRk+1 for eachk � n. A 1-connected space is also said to
simply connected.

2.10. Remark. In accordance with Theorem 1.6.7 [35] a spaceX is n-connected if and
only if it is path connected andπk(X,x) is trivial for every base pointx ∈ X and eachk
such that 1� k � n.

Denote by Int(U) an interior of a subsetU in a topological spaceX, by cl(U) = �U a
closure ofU in X. For a subsetU in H, let π1,t (U) := {u: z ∈ U, wherez1,1 = z̄2,2 =
t, z1,2=−z̄2,1= u} for a givent ∈C; π2,u(U) := {t : z ∈ U, wherez1,1= z̄2,2= t, z1,2=
−z̄2,1= u} for a givenu ∈C, that is, geometricallyπ1,t (U) andπ2,u(U) are projections on
complex planesC2 andC1 of intersections ofU with planesπ̃1,t "

(
t 0
0 t̄

)
andπ̃2,u "

( 0 u
−ū 0

)
parallel toC2 andC1 respectively.
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2.11. Theorem. Let U be a domain inH such that∅ �= Int(U) ⊂ U ⊂ cl(Int(U)) andU

is 3-connected; π1,t (U) andπ2,u(U) are simply connected inC for eacht andu ∈ C for
which there existsz ∈ U . Let f be a bounded continuous function fromU into H which
satisfies condition(2.1)on an open domainW such thatW ⊃U . Then for each rectifiable
closed pathγ in U a quaternion line integral

∫
γ
f (z) dz= 0 is equal to zero.

Proof. For a pathγ there exists a compact canonical closed subset inH: W ⊂ Int(U)

such thatγ ([0,1]) ⊂ W , sinceγ is rectifiable andH is locally compact. In view o
Theorem 2.7 for each sequence of functionsfn ∈ C1,1(U,H) converging tof in C0

b (U,H)

such thatfn(z) = (∂gn(z, z̃)/∂z̃).I with gn ∈ C2,1(U,H) and each sequence of pat
γn : [0,1] → U C3-continuously differentiable and converging toγ relative to the tota
variationV (γ − γn) there exists limn

∫
γn

fn(z) dz=
∫
γ
f (z) dz. Therefore, it is sufficien

to consider the case off ∈ C1,1(U,H) such thatf (z) = (∂g(z, z̃)/∂z̃).I on U , and
continuously differentiableγ . Denote the integral

∫
γ
f (z) dz by Q, thenQ = 0 if and

only if QQ̃ = 0. On the other hand,̃Q = limP Ĩ (f, γ ;P) andQ = ∫γ (∂g(z, z̃)/∂z).dz,

henceQ̃ = ∫
γ
dz̃(∂Lg̃(z, z̃)/∂z̃) =

∫
γ̃
dz(∂Lg̃(z, z̃)/∂z), where(∂Lq(z, z̃)/∂z) is the left

derivative,q̃(z, z̃) := ã, wherea = q(z, z̃). We can write this integral in the formQ =∫ 1
0 (∂g(z, z̃)/∂z).γ ′(t) dt . Denoting components of(∂g(z, z̃)/∂z) as the complex 2× 2

matrix with entriesf̂i,j with i andj ∈ {1,2}, we get

Q1,1= �Q2,2=
1∫

0

f̂1,1
(
t (θ), u(θ)

)
γ ′1,1(θ) dθ −

1∫
0

f̂1,2
(
t (θ), u(θ)

)
γ̄ ′1,2(θ) dθ;

Q1,2=−�Q2,1=
1∫

0

f̂1,1
(
t (θ), u(θ)

)
γ ′1,2(θ) dθ +

1∫
0

f̂1,2
(
t (θ), u(θ)

)
γ̄ ′1,1(θ) dθ,

wheret (θ)= γ1,1(θ), u(θ)= γ1,2(θ). Evidentlyγ (1)= γ (0) if and only if two equalities
are satisfiedγ1,1(1)= γ1,1(0) andγ1,2(1)= γ1,2(0). That is, pathsγ1,1 andγ1,2 are closed
in the corresponding complex planesC1=C andC2=C embedded intoH. In view of the
conditions of the theorem,γ1,1 for eachu andγ1,2 for eacht corresponding toz ∈H are
contained in subsetsπ2,u(U) andπ1,t (U) respectively which are simply connected. Hen
subsetsΩ1,1 andΩ1,2 exist in C1 and in C2 such that∂Ω1,1 = γ1,1 and ∂Ω1,2 = γ1,2
andΩ1,1 ⊂ π2,u(U) andΩ1,2 ⊂ π1,t (U) for eacht andu corresponding toz ∈ U such
thatΩ1,1 andΩ1,2 are simply connected inC1 and inC2 respectively. It may easily b
seen, taking into account §2.8, that this integral can be considered as the integr
real differential 1-form along the pathγ in R4. To these integralsQ andQ̃ the classica
(generalized) Stokes theorem can be applied (see Theorem V.1.1 [39]). In view
Hurewicz isomorphism theorem (see §7.5.4 [35])Hq(U,x)= 0 for eachx ∈ U and each
q < 4, henceHl(U,x)= 0 for eachl � 1.

If f :Y → V is continuous, thenr ◦ f :Y → Ω is continuous, iff is ontoV , then
r ◦ f is ontoΩ , wherer :V → Ω is a retraction,V , Y andΩ are topological space
The topological spaceU is metrizable, hence for each closed subsetΩ in U there exists
a canonical closed subsetV ⊂ U such thatV ⊃ Ω andΩ is a retraction ofV , that is,
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there exists a continuous mappingr :V → Ω , r(z) = z for eachz ∈ Ω (see [11] and
Theorem 7.1 [21]). Therefore, ifV is a 3-connected canonical closed subset ofU and
Ω is a two dimensionalC0-manifold such thatΩ is a retraction ofV , thenΩ is simply
connected, since each continuous mappingf :Sk → Ω with k � 1 has a continuou
extensionf : Rk+1→ V andr ◦f : Rk+1→Ω is also a continuous extension off fromSk

on Rk+1.
From 3-connectedness ofU it follows, that there are two dimensional real differentia

manifoldsΩj contained inU such that∂Ωj = γ . This may be lightly seen by considerin
partitions Zn of U by Sn

l,k ∩ U and takingn → ∞, where Sn
l,k are parallelepiped

in H with ribs of lengthn−1, l, k and n ∈ N, two dimensional faces1Sn
l and 2S

n
k of

Sn
l,k = 1S

n
l × 2S

n
k are parallel toC1 or C2 respectively such that there exists a seque

of paths γn converging toγ relative to | ∗ |H and a sequence of (continuous) tw
dimensionalC0-manifoldsΩn

j with ∂Ωn
j = γ n, Ωn

j ⊂
⋃

l,k[(∂ 1S
n
l ) × (∂ 2S

n
k )]. Choose

Ω1 and Ω2 orientable and of classC3 as Riemann manifolds such that taking th
projections onC1 andC2 the corresponding pathsγ1,1, γ1,2 and regionsΩj

1,1 andΩ
j

1,2
in C1 and in C2 satisfy the conditions mentioned above in this proof, wherej = 1
or j = 2 for Ω1 or Ω2 respectively. In this situation the abstract Stokes theore
applicable. In view of the Fubini theorem we obtainQQ̃ = ∫

Ω1×Ω2
η(z1, z̃1) ∧ η̃(z2, z̃2),

whereη = d((∂g(z, z̃)/∂z).dz) is the 2-differential form,z1 ∈Ω1, z2 ∈Ω2. The function
g is in C2,1(U,H) and pp̃ = p̃p for eachp ∈ H, hence(∂2g(z, z̃)/∂z∂z̃).(h1, h2) :=
(∂[(∂g(z, z̃)/∂z).h1]/∂z̃).h2 = (∂2g(z, z̃)/∂z̃∂z).(h2, h1) for eachh1 and h2 in H, in
particular forh1 = h2 = I . Due to condition (2.1) there is the equality(∂f (z, z̃)/∂z̃)= 0,
hence(∂2g(z, z̃)/∂z∂z̃) = (∂2g(z, z̃)/∂z̃∂z) = 0 and inevitablyg = p(z) + q(z̃), where
functionsp and q are of classC2,1 such that∂p/∂z̃ = 0 and ∂q(z̃)/∂z = 0. This is
evident in the class of polynomial functions, that is dense inC2,1(W,H) for each compac
canonical closed setW contained inH such thatW ⊂ U . Hence it is true inC2,1 also.
Therefore,∂zg(z, z̃) = ∂zp(z). This means, that∂zg(z, z̃) = dp(z), since∂z̃p = 0 (see
Eq. (2.15)). Thenη= d2(p)= 0, sinced = Rd andd2= 0. Therefore,Q= 0.

2.12. Definitions. A continuous function on a domainU in H such that∅ �= Int(U) ⊂
U ⊂ cl(Int(U)) and

∫
γ
f dz = 0 for each rectifiable closed pathγ in U , thenf is called

quaternion integral holomorphic (onU ).
If f is a superdifferentiable function onU such that it satisfies condition (2.1), then

is called quaternion holomorphic (onU ).
Let B(a,0,R,H) be a disk inHn, then the completion of the space of all functio

having decomposition (2.5i,ii) with respect toz only, and withn0 � 0 relative to the
norm‖ ∗ ‖ω from §2.6, is denoted byCω

z (B(a,0,R,H),H). It is R-linear. ThenCω
z (U,H)

denotes the space of all continuous functionsf onU with values inH such that for each
a ∈ U there areR = R(f ) > 0 andg ∈Cω

z (B(a,0,R,H),H) with the restrictiong|U = f .
If f ∈Cω

z (U,H), then it is called quaternion locallyz-analytic (onU ).

2.13. Corollary. Let f be a quaternion holomorphic function on an open3-connected
domainU in H such thatπ1,t (U) andπ2,u(U) are simply connected inC1 for eacht and
u ∈C for which there existsz ∈ U , thenf is quaternion integral holomorphic.
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This follows immediately from Theorem 2.11.

2.14. Definition. Let U be a subset ofH andγ0 : [0,1] → H andγ1 : [0,1] → H be two
continuous paths. Thenγ0 and γ1 are called homotopic relative toU , if there exists a
continuous mappingγ : [0,1]2 → U such thatγ ([0,1], [0,1]) ⊂ U and γ (t,0) = γ0(t)

andγ (t,1)= γ1(t) for eacht ∈ [0,1].

2.15. Theorem. LetW be an open subset inH andf be a quaternion holomorphic functio
on W with values inH. Suppose that there are two rectifiable pathsγ0 andγ1 in W with
common initial and final points(γ0(0) = γ1(0) and γ0(1) = γ1(1)) homotopic relative
to U , whereU is a 3-connected subset inW such thatπ1,t (U) andπ2,u(U) are simply
connected inC for eacht andu ∈C for which there existsz ∈U. Then

∫
γ0

f dz= ∫
γ1

f dz.

Proof. A homotopy of γ0 with γ1 realtive to U implies homotopies of(γ0)1,j with
(γ1)1,j relative toπ1,t (U) andπ2,u(U) in C for j = 1 andj = 2 respectively for eacht
andu ∈ C for which there existsz ∈ U . Consider a pathζ such thatζ(t) = γ0(2t) for
each 0� t � 1/2 andζ(t) = γ1(2− 2t) for each 1/2 � t � 1. Thenζ is a closed path
contained in aU . In view of Theorem 2.11

∫
ζ
(z) dz= 0. On the other hand,

∫
ζ
f (z) dz=∫

γ0
f (z) dz− ∫γ1

f (z) dz, consequently,
∫
γ0

f (z) dz= ∫γ1
f (z) dz.

2.16. Theorem. Let f be a quaternion locallyz-analytic function on an open domainU
in Hn, thenf is quaternion holomorphic onU .

Proof. From the definition of the superdifferential we get(∂zn/∂z).h=∑n−1
k=0 zkhzn−k−1

and∂zn/∂z̃= 0. Using the formula of the superdifferential for a product of functions, f
§2.7 we obtain, that eachf of the form (2.5i, ii) is superdifferentiable byz whenn0 � 0
andm= 0 in (2.5ii) and hence satisfies condition (2.1). Using the norm‖∗‖ω-convergence
of series with respect toz for a givenf ∈ Cω(U,H) we obtain for eacha ∈ U , that there
exists its neighbourhoodW , wheref is quaternion holomorphic, hencef is quaternion
holomorphic onU .

2.17. Note. In the next section it is shown that a quaternion holomorphic function is infi
differentiable; furthermore, under suitable conditions equivalences between the pro
of quaternion holomorphicity, quaternion integral holomorphicity and quaternion
z-analyticity, will be proved there too. Integral (2.6) may be generalized for a contin
functionq :U →H such thatV (q ◦ γ ) <∞. Substituting3zk onq(zk+1)− q(zk)=:3qk
in (2.7) we get∫

γ

f (z, z̃) dq(z) := lim
P

I (f, q ◦ γ ;P), (2.6′)

where

I (f, q ◦ γ ;P)=
q−1∑

f̂ (zk+1, z̃k+1).(3qk). (2.7′)

k=0
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In particular, ifγ ∈ C1 andq is quaternion holomorphic onU , alsof (z, z̃)= (∂g/∂z).I ,
whereg ∈ C1,0(U,H), then∫

γ

f (z, z̃) dq(z)=
1∫

0

(∂g/∂z).
(
(Dzq(z)|z=γ(s)).γ

′(s)
)
ds

andV (γ ) �
∫ 1

0 |γ ′(s)|ds.
Let f :U → H, where U is an open subset ofHn. If there exists a quaternio

holomorphic functiong :U →H such thatg′(z).I = f (z) for eachz ∈ U , theng is called
a primitive off .

2.18. Proposition. Let U be an open connected subset ofHn and g be a primitive off
onU , then a set of all primitives off is: {h: h= g+C, C = const∈H}.

Proof. Supposeh′(z) = 0 for eachz ∈ U , then considerq(s) := h((1− s)a + sz) for
each s ∈ [0, r], where a is a marked point inU and B(a, r,H) is a ball contained
in U , r > 0, z ∈ B(a, r,H). Then q is correctly defined andq(0) = q(1). Therefore,
the setV := {z ∈ U : h(z) = h(a)} is open inU , since with each pointa it contains its
neighbourhood. On the other hand, it is closed due continuity ofh, henceV =U , sinceU
is connected, consequently,h= const onU .

3. Meromorphic functions and their residues

At first we define and describe the exponential and the logarithmic function
quaternion variables and then apply them to the investigation of quaternionic residu

3.1. Note and Definition. Let z ∈H, then

exp(z) :=
∞∑
n=0

zn/n!. (3.1)

This definition is correct, since real numbers commute with quaternions. If|z|� R <∞,
then the series (3.1) converges, since|exp(z)|�∑∞

n=0 |zn/n!|� exp(R) <∞. Therefore,
exp is the function defined onH with values inH. The restriction of exp on the subs
Qd := {z: z ∈ H, z = (

t 0
0 t̄

)
, t ∈ C} is commutative, but in general two quaternionsz1

and z2 do not commute and onH2 the function exp(z1 + z2) does not coincide with
exp(z1)exp(z2).

3.2. Proposition. Let z ∈H be written in the formz= vI + s(wJ + xK + yL) with real
v,w,x, y ands with w2+ x2+ y2 �= 0, then

exp(z)= exp(v)

{
cos(sφ)I + i

(
sin(sφ)/φ

)( w (y − ix)

(y + ix) −w

)}
, (3.2)

whereφ := (w2+ x2+ y2)1/2.
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Proof. Since the unit matrixI commutes withJ,K and L, then exp(vI + z) =
exp(v)exp(z) for eachv ∈ R and eachz ∈ H. Considerz = s(w,J + xK + yL) with
reals,w,x andy such thatw2+ x2+ y2= 1, then

z= is

(
w (y − ix)

(y + ix) −w

)
,

wherei = (−1)1/2. Denotey − ix =:m, then(
w m

m̄ −w

)2k

= (w2+ |m|2)kI
for eachk ∈N. On the other hand|m|2= x2+ y2, hencew2+ |m|2= 1, consequently,

∞∑
k=0

zk/k! =
∞∑
k=0

(−1)ks2kI/(2k)! + i

∞∑
k=0

(−1)ks2k+1
(
w m

m̄ −w

)
/(2k + 1)!

= cos(s)I + i sin(s)

(
w m

m̄ −w

)
.

The particular cases = 0 corresponds to exp(0)= 1. From this formula (3.2) follows.

3.3. Corollary. If z ∈H is written in the formz = vI +wJ + xK + yL with real v,w,x

andy, then|exp(z)| = exp(v).

Proof. If w2 + x2 + y2 = 0 this is evident. Supposew2 + x2 + y2 �= 0. In view of
formula (3.2)

exp(z)= exp(v)A, where

A=
(
(cos(φ)+ i sin(φ)w) sin(φ)(x + iy)

sin(φ)(−x + iy) (cos(φ)− i sin(φ)w)

)
. (3.3)

SinceA ∈H, then|A|2= det(A)= 1 and inevitably|exp(z)| = exp(v).

3.4. Corollary. The functionexp(z) on the setHi := {z: z ∈H, Re(z1,1)= 0} is periodic
with three generators of periodsJ,K andL such thatexp(z(1+ 2πn/|z|))= exp(z) for
each0 �= z ∈ Hi and each integer numbern. If z ∈ H is written in the formz = 2πsM,
whereM = wJ + xK + yL, with real w,x and y such thatw2 + x2 + y2 = 1, then
exp(z)= 1 if and only ifs ∈ Z.

Proof. In view of formula (3.2) exp(z)= 1 for a givenz ∈Hi if and only if cos(sφ)= 1
and sin(sφ) = 0, that is equivalent tos ∈ {2πn: n ∈ Z}, sinceφ = 1 by the hypothesi
of this corollary. The particular cases of formula (3.2) are eitherw �= 0, x = y = 0; or
w = y = 0 andx �= 0; orw = x = 0 andy �= 0, henceJ,K andL are the three generato
for the periods of exp.

3.5. Corollary. The functionexp is the epimorphism fromHi on the three-dimensiona
quaternion unit sphereS3(0,1,H) := {z: z ∈H, |z| = 1}.
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Proof. In view of Corollary 3.3 the image exp(Hi ) is contained inS3(0,1,H). The
sphereS3(0,1,H) is characterized by the conditionv2

1 + w2
1 + x2

1 + y2
1 = 1. In view of

formula (3.2) we havev1 = cos(s), w1 = sin(s)w, x1 = sin(s)x andy1 = sin(s)y, where
s ∈ R and w2 + x2 + y2 = 1. Vice versa letz1 ∈ S3(0,1,H). For eachv1 ∈ [−1,1]
there existss = arcsin(v1) such thatv1 = cos(s) andw2

1 + x2
1 + y2

1 = sin2(s). The case
sin(s)= 0 corresponds tov1= 1 and others coordinates equal to zero, hencez1= exp(0).
If sin(s) �= 0 there arew = w1/sin(s), x = x1/sin(s) andy = y1/sin(s), consequently
exp(z)= z1 in this case too. Therefore, exp is an epimorphism ofHi onS3(0,1,H).

3.6. Corollary. Each quaternion has a polar decomposition

z= ρ exp
(
2π(φ1J + φ2K + φ3L)

)
, (3.4)

whereφj ∈ [−1,1] for eachj = 1,2,3, φ2
1 + φ2

2 + φ2
3 = 1, ρ := |z|.

Proof. This follows from formula (3.2) and Corollary 3.5.

3.7. Note. In the noncommutative quaternion case there is the following relation for
and its (right) derivative:

exp(z)′.h=
∞∑
n=1

n−1∑
k=0

zkhzn−k−1/n!, (3.5)

wherez andh ∈H. In particular,

exp(z)′.vI = v exp(z) (3.6)

for eachv ∈ R, but generally not for allh ∈ H. In view of §2.6 the derivative (3.5
reduces to the form of the definition of superdifferentiability given in §2.1. The func
exp is periodic onH, hence the inverse function denoted by Ln is defined only loc
Consider the spaceR3 of all variablesw,x andy for which exp is periodic onH. The
conditionw2 + x2 + y2 = 1 defines inR3 the unit sphereS2. The latter has a centra
symmetry elementC for the transformationC(w,x, y) = (−w,−x,−y). Consider a
subsetP =⋃4

k=1Pk of S2 of all points characterized by the conditions:P1 := {(w,x, y) ∈
S2: w � 0, x � 0, y � 0}, P2 := {(w,x, y) ∈ S2: w � 0, x � 0, y � 0}, P3 :=
{(w,x, y) ∈ S2: w � 0, x � 0, y � 0}, P4 := {(w,x, y) ∈ S2: w � 0, x � 0, y � 0},
thenP ∪CP = S2 and the intersectionP ∩CP is one dimensional overR. This sphereS2

corresponds to the embeddingθ1 : (w,x, y) ↪→ (0,w,x, y) ∈R4. Consider the embeddin
of R4 into H given by θ2 : (v,w,x, y) ↪→ vI + wJ + xK + yL ∈ H. This yields the
embeddingθ := θ2 ◦ θ1 of S2 in H. Each unit circle with the center 0 inH intersects
the equatorθ(S2) of the unit sphereS3(0,1,H). Join each point(wJ + xK + yL)

on θ(S2) with the zero point inH by a line {s(wJ + xK + yL): s ∈ �R+}, where
�R+ := {s ∈ R: s � 0}. This line crosses a circle embedded intoS3(0,1,H), which is
a trace of a circle{exp(2πs(wJ + xK + yL)): s ∈ [0,1]} of radius 1 inH. Therefore,
ψ(s) := exp(vI + 2πs(wJ + xK + yL)) as a function of(v, s) for fixed (w,x, y) ∈ S2

defines a bijection of the domainX\{s(wJ + xK + yL): s ∈ �R+} onto its image, where
X is R2 embedded as(v, s) ↪→ (vI + s(wJ + xK + yL)) ∈ H. This means, that Ln(z)
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is correctly defined on each subsetX\{s(wJ + xK + yL): s ∈ �R+} in H. The union⋃
(w,x,y)∈P {s(wJ + xK + yL): s ∈ �R+} produces the three dimensional (overR) subset

Q := ⋃4
k=1Qk , whereQk := θ(Sk), S1 := {(w,x, y) ∈ R3}: w � 0, x � 0, y � 0},

S2 := {(w,x, y) ∈ R3: w � 0, x � 0, y � 0}, S3 := {(w,x, y) ∈ R3: w � 0, x �
0, y � 0}, S4 := {(w,x, y) ∈ R3: w � 0, x � 0, y � 0}, �R+ := [0,∞). Then, on the
domainH\Q, the function exp(z) defines a bijection with image exp(H\Q) and its inverse
function Ln(z) is correctly defined onH\exp(Q). By rotatingH\Q one may produce
other domains on which Ln can be defined as the univalued function (that is, Ln(z) is
one point inH), but not on the entireH. This means that Ln(z) is a locally bijective
function. We have elementary identities cos(2π−φ)= cos(φ) and sin(2π−φ)=−sin(φ)
for eachφ ∈R. If 0 < φ < 2π , thenw1 sin(φ)/φ =w2 sin(2π−φ)/(2π−φ) if and only if
w1=−φw2/(2π − φ). To exclude this ambiguity we put in formula (3.2)φ � 0 such that
φ = (w2+ x2+ y2)1/2 is the nonegative (arithmetical) branch of the square root func
on�R+ andw � 0. Therefore, Ln(exp(z))= z on H\Q, hence using formulas (3.3), (3.
we obtain the multivalued function

Ln(z)= ln(|z|)+Arg(z), where Arg(z) := arg(z)+ 2πsM (3.7)

on H\{0}, where ln is the usual real logarithm on(0,∞), s ∈ Z,

|z|exp
(
2π arg(z)

)= z, arg(z) :=wzJ + xzK + yzL, (wz, xz, yz) ∈R3,

w2
z + x2

z + y2
z < 1,wz � 0,M =wJ + xK + yL is any unit vector (that is,|M| = 1) in H

commuting with arg(z) ∈H, arg(z) is uniquely defined by such restriction on(wz, xz, yz),
for example,M = ζ arg(z) for anyζ ∈R, when arg(z) �= 0.

For each fixedM = wJ + xK + yL exp(sM) is a one-parameter family of speci
unitary transformations (that is, det(exp(sM)) = 1) of H (that induces rotations of th
Euclidean spaceR4), that is, exp(sM)η ∈H for eachη ∈ H, whereH as the linear spac
overR is isomorphic withR4. On the other hand, there are special unitary transforma
of H for which s = π/2 + πk, but M is variable with |M| = 1, wherek ∈ Z, then
exp(z) = (−1)kA, whereA = ( iw (x+iy)

(−x+iy) −iw

)
(see formula (3.3)). To each closed cur

γ in H there corresponds a closed curvePξ (γ ) in aR-linear subspaceξ " 0, wherePξ is a
projection onξ , for example,

PRI⊕RJ (z)= (z− JzJ )/2= vI +wJ

for ξ =RI ⊕RJ ,

PRI⊕RK(z)= (z−KzK)/2= vI + xK,

PRI⊕RL(z)= (z−LzL)/2= vI + yL,

PRJ⊕RK(z)= (z+LzL)/2=wJ + xK,

PRJ⊕RL(z)= (z+KzK)/2=wJ + yL,

PRK⊕RL(z)= (z+ JzJ )/2= xK + yL,

PRJ⊕RK⊕RL(z)= (3z+ JzJ +KzK +LzL)/4=wJ + xK + yL

for ξ = RJ ⊕ RK ⊕ RL, etc. Particular cases of special unitary transformations
correspond tow = 0 or x = 0 or y = 0 for M �= 0. To each closed curveγ in H and
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each quaternionsa and b with ab �= 0 there corresponds a closed curveaγ b in H, for
example, fora = J andb =K there is the identityJzK = vL−wK − xJ + yI for each
z= vI +wJ + xK + yL in H.

Instead of the Riemann two dimensional surface of the complex logarithm functio
get the four dimensional manifoldW , that is, a subset ofYℵ0 :=∏i∈Z Yi , whereYi = Y

for eachi, such that eachY is a copy ofH embedded intoH × R3 and cut by a three
dimensional submanifoldQ and with diffeomorphic bending of a neighbourhood ofQ

such that two three dimensional edgesQ1 andQ2 of Y diffeomorphic toQ do not intersec
outside zero,Q1∩Q2= {0}, that is, the boundary∂Q is also cut everywhere outside ze
We have∂Q= ∂Qw ∪ ∂Qx ∪ ∂Qy , where

∂Qw :=
{
θ(w,x, y): w = 0, (w,x, y) ∈

4⋃
k=1

Sk

}
,

∂Qx :=
{
θ(w,x, y): x = 0, (w,x, y) ∈

4⋃
k=1

Sk

}
and

∂Qy :=
{
θ(w,x, y): y = 0, (w,x, y) ∈

4⋃
k=1

Sk

}
.

This means, that∂Qw = {z = xK + yL: (x, y) ∈ R2, x andy are not simultaneousl
positive}. Similarly for ∂Qx and ∂Qy with z = wJ + yL and z = wJ + xK instead
of z = xK + yL respectively. To exclude rotations in each subspacevI + s(aK + bL)

isomorphic withR2 and embedded intoRI + ∂Qw and similarly forvI + s(aJ + bL)

andvI + s(aJ + bK) we have cut∂Q, wherev, s ∈R are variables anda, b are two real
constants such thatab � 0,a2+b2 > 0. Then inH×R3 two copiesYi , andYi+1 are glued
by the equivalence relation ofQ2,i with Q1,i via the segments{sl,i(wJ +xK+yL): sl,i ∈�R+} such thats1,i+1 = s2,i for eachsl,i ∈ �R+ and each given real(w,x, y) ∈ P with
w2+ x2+ y2= 1. This defines the four dimensional manifoldW embedded intoH×R3

and Ln :H\{0}→W is the univalued function, that is, Ln(z) is a singleton inW for each
z ∈H\{0}.

3.8. Theorem. The functionLn is quaternion holomorphic on any domainU in H obtained
by a quaternion holomorphic diffeomorphism ofH\Q ontoU . Each pathγ in H such that
γ (s)= r exp(2πsn(wJ + xK + yL)) with s ∈ [0,1], n ∈ �R+, w2+ x2+ y2= 1 is closed
in H if and only ifn ∈N, wherer > 0. In this case∫

γ

z−1dz=
∫
γ

d(Ln z)= 2πn(wJ + xK + yL). (3.8)

Proof. If U andV are two open subsets inH andg :V → U is a quaternion holomorphi
diffeomorphism ofV onto U and f is a quaternion holomorphic function onV , then
f ◦ g−1 is quaternion holomorphic function onU , since

(f ◦ g−1)′(z).h= (f ′(ζ ))∣∣
ζ=g−1(z)

.
(
g−1(z)

)′
.h
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for eachz ∈ U and eachh ∈H and

∂
(
f ◦ g−1(z)

)
/∂z̃= (∂f (ζ )/∂ζ̃

)∣∣
ζ=g−1(z)

.
(
∂g̃−1(z)/∂z̃

)
+ (∂f (ζ )/∂ζ

)∣∣
ζ=g−1(z)

.
(
∂g−1(z)/∂z̃

)= 0.

Since exp is the diffeomorphism fromH\Q ontoH\exp(Q), we have that Ln is quaternio
holomorphic onH\Q and on each of its quaternion holomorphic images after choos
definite branch of the multivalued function Ln(z) (see formula (3.7)).

A pathγ is defined for eachs ∈R not only fors ∈ [0,1] due to the existence of exp.
view of formula (3.2) a pathγ is closed (that is,γ (s0)= γ (s0+ 1) for eachs0 ∈R) if and
only if cos(2πn)= cos(0)= 1 and sin(2πn)= 0, that is,n ∈N.

From the definition of the line integral we get the equality:∫
γ

d(Lnz)=
1∫

0

(Ln z)′.γ ′(s) ds.

Considering integral sums by partitionsP of [0,1] and taking the limit by the family o
all P we get, that

∫
γ
d(Ln z)= Arg(γ (1))−Arg(γ (0)) for a chosen branch of the functio

Arg(z) (see formula (3.7)). Therefore,
∫
γ d(Ln z)= 2πn(wJ + xK + yL).

Sincez commutes with itself, we have: exp(z)′.z= exp(z)z. Therefore,

exp
(
Ln(z)

)′
.I = (∂ exp(η)/∂η

)∣∣
η=Ln(z).

(
Ln(z)

)′
.I = exp

(
Ln(z)

)(
Ln(z)

)′
.I,

consequently,(Ln(z))′.I = exp(−Ln(z))= z−1 and inevitably

lim
P

I (z−1, γ ;P)= lim
P

∑
l

ẑ−1
l 3zl = lim

P
3Ln(zl)=

∫
γ

d Ln(z),

hence
∫
γ
z−1 dz = ∫

γ
d Ln(z). That is,

∫
γ
d Ln(z) can be considered as the definition∫

γ
z−1 dz.

3.9. Theorem. Let f be a continuous quaternion holomorphic function on an o
domainU in H. If (γ + z0) andψ are presented as piecewise unions of pathsγj + z0 and
ψj with respect to parameters ∈ [aj , bj ] and s ∈ [cj , dj ] respectively withaj < bj and
cj < dj for eachj = 1, . . . , n and

⋃
j [aj , bj ] =

⋃
j [cj , dj ] = [0,1] homotopic relative

to Uj\{z0}, whereUj\{z0} is a 3-connected open domain inH such thatπ1,t (Uj\{z0})
and π2,u(Uj\{z0}) are simply connected inC for each t and u ∈ C for which there
existsz ∈ H for eachj . If (γ + z0) and ψ are closed rectifiable paths inU such that
γ (s) = r exp(2πs(wJ + xK + yL)) with s ∈ [0,1] andw2 + x2 + y2 = 1 and z0 /∈ ψ .
Then

f (z)= (2π)−1
(∫

ψ

f (ζ )(ζ − z)−1dζ

)
(wJ + xK + yL)−1 (3.9)

for eachz ∈U such that|z− z0|< infζ∈ψ([0,1]) |ζ − z0|.
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Proof. Join γ and ψ by a rectifiable pathω such thatz0 /∈ ω, which is going in one
direction and the opposite direction, denotedω−, such thatωj ∪ ψj ∪ γj ∪ ωj+1 is
homotopic to a point relative toUj\{z0} for suitableωj andωj+1, whereωj joins γ (aj )

with ψ(cj ) andωj+1 joins ψ(dj ) with γ (bj ) such thatz andz0 /∈ ωj for eachj . Then∫
ωj

f (ζ )(ζ − z)−1 dζ = − ∫ω−j f (ζ )(ζ − z)−1dζ for eachj . In view of Theorem 2.15

there is the equality− ∫
γ−+z

f (ζ )(ζ − z)−1 dζ = ∫
ψ
f (ζ )(ζ − z)−1 dζ . Sinceγ + z is a

circle aroundz its radiusr > 0 can be chosen so small, thatf (ζ )= f (z)+ α(ζ, z), where
α is a continuous function onU2 such that limζ→z α(ζ, z)= 0, then∫

γ+z

f (ζ )(ζ − z)−1dζ =
∫

γ+z

f (z)(ζ − z)−1dζ + δ(r)

= 2πf (z)(wJ + xK + yL)+ δ(r),

where∣∣δ(r)∣∣� ∣∣∣∣ ∫
γ

α(ζ, z)(ζ − z)−1dζ

∣∣∣∣� 2π sup
ζ∈γ

∣∣α(ζ, z)∣∣C1 exp(C2r
6),

where C1 and C2 are positive constants (see inequality (2.12)), hence there e
limr→0, r>0 δ(r) = 0. Taking the limit whiler > 0 tends to zero yields the conclusi
of this theorem.

3.9.1. Corollary. Letf,U,ψ, z andz0 be as in Theorem3.9, then∣∣f (z)
∣∣� sup

(ζ∈ψ,h∈H, |h|�1)

∣∣ĥ(ζ ).h∣∣.
3.10. Theorem. Let f be a continuous function on an open subsetU of H. If f is
quaternion integral holomorphic onU , thenf is quaternion locallyz-analytic onU .

Proof. Let z0 ∈ U be a marked point and letΓ denotes the family of all rectifiable path
γ : [0,1] → U such thatγ (0) = z0, thenU0 = {γ (1): γ ∈ Γ } is a connected compone
of z0 in U . Therefore,g = {γ (1),

∫
γ
f (z) dz} is the function with the domainU0. Let

X be a compact metric space andF be a function continuous onU × X with values
in H and for eachp ∈ X let fp(z) := F(z,p) be quaternion holomorphic onU by
z ∈ U . DefineG on U2 × X by G(z,w,p) := [F(z,p) − F(w,p)](w − z)−1, w �= z.
ThenG(z, z,p) = (∂fp(z)/∂z).I . It can be seen with the help of formula (3.9) thatG is
continuous onU2×X, since

G(b, c, q)−G(a,a,p)=
∫
γ

[(
∂fq(z)/∂z

)− (∂fp(a)/∂a
)]
.dz.(c− b)−1,

whereγ is a rectifiable curve such thatγ (0) = b, γ (1) = c. Moreover,G is uniformly
continuous onV 2 × X for each compact canonical closed subsetV in H such that
V ⊂ U . As in §2.15 it can be proved, thatF(z) := ∫

γ f (z) dz, for each rectifiableγ
in U , depends only on initial and final points. This integral is finite, sinceγ ([0,1]) is
contained in a compact canonical closed subsetW ⊂U on whichf is bounded. Therefore
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∫ z

z0
f (ζ ) dζ/∂z).h = f̂ (z).h for eachz ∈ U and h ∈ H, (∂

∫ z

z0
f (ζ ) dζ/∂z̃) = 0 for

eachz ∈ U and h ∈ H, wherez0 is a marked point inU such thatz and z0 are in
one connected component ofU . In particular,f̂ (z).I = f (z) for eachz ∈ U . Here f̂

is correctly defined for eachf ∈ C1,0(U,H) by continuity of the differentiable integra
functional onC0(U,H). In particular,f̂ (z).I = f (z) for eachz ∈ U . For a givenz ∈ U
choose a neighbourhoodW satisfying the conditions of Theorem 3.9. Then there exis
rectifiable pathψ ⊂W such thatF(z) is presented by formula (3.9). The latter integra
infinite differentiable byz such that(

∂kF (z)/∂zk
)= k!

2π

(∫
ψ

f (ζ )(ζ − z)−k−1 dζ

)
(w0J + x0K + y0L)−1, (3.10)

wherew0, x0 andy0 ∈ R are fixed andw2
0 + x2

0 + y2
0 = 1. In particular, we may choos

a ballW = B(a,R,H) := {ξ ∈ H: |ξ − a|� R} ⊂ U for a sufficiently smallR > 0 and
ψ = γ + a, whereγ (s) = r exp(2πs(w0J + x0K + y0L)) with s ∈ [0,1], 0< r < R. If
we prove thatF(z) is quaternion locallyz-analytic, then evidently itsz-derivativef (z)

will also be quaternion locallyz-analytic. Considerz ∈ B(a, r ′,H) with 0 < r ′ < r, then
|z− a|< |ζ − a| for eachζ ∈ψ and(ζ − a− (z− a))−1= (1− (ζ − a)−1(z− a))−1(ζ −
a)−1=∑∞

k=0((ζ − a)−1(z− a))k(ζ − a)−1, where 0/∈ψ . Therefore,

F(z)= (2π)−1
∞∑
k=0

φk(z), (3.11)

where

φk(z) :=
(∫

ψ

f (ζ )
(
(ζ − a)−1(z− a)

)k
(ζ − a)−1dζ

)
(w0J + x0K + y0L)−1.

Thus |φk(z)| � supζ∈ψ |f (ζ )|(r ′/r)−k for each z ∈ B(a, r ′,H) and series (3.11
converges uniformly onB(a, r ′,H). Each functionφk(z) is evidently quaternion locally
z-analytic onB(a, r ′,H), henceF(z) is such too. Since for eacha ∈ U there is anr ′ > 0,
for which the foregoing holds, it follows thatf (z) is the quaternion locallyz-analytic
function.

3.11. Note. Theorems 2.11, 2.15, 2.16, 3.10 and Corollary 2.13 establish the equivale
notions of quaternion holomorphic, quaternion integral holomorphic and quaternion lo
z-analytic classes of functions on domains satisfying definite conditions. Before, the n
of quaternion holomorphicity was defined relative to a right superdifferentiation, sim
it can be defined relative to a left superdifferentiation.Quaternion localz-analyticity shows,
that a function is quaternion holomorphic relative to a right superdifferentiation if and
if it is quaternion holomorphic relative to a left superdifferentiation.

In particular, iff ∈ lC
ω(U,H), then evidentlyF(z) := ∫ z

z0
f (ζ ) dζ and(∂f (ζ )/∂ζ ).I

belong tolC
ω(U,H), wherez andz0 ∈ U0, ζ ∈ U , U0 is a connected component ofU

open inH, since(bnζ̂ n).3ζ = bn(∂ζ
n+1/∂ζ ).3ζ for eachζ ∈H, 3ζ ∈H, n ∈N, bn ∈H.

3.11.1. Definitions. Let U be an open subset inH andf ∈ C0(U,H), then we say tha
f possesses a primitiveg ∈ C1(U,H) if g′(z).I = f (z) for eachz ∈ U . A regionU in H
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is said to be quaternion holomorphically simply connected if every function quate
holomorphic on it possesses a primitive.

From §3.10 we get.

3.11.2. Theorem. If f ∈ Cω(U,H), whereU is 3-connected; π1,t (U) and π2,u(U) are
simply connected inC for eacht andu ∈ C for which there existsz ∈ U , U is an open
subset inH, then there existsg ∈Cω(U,H) such thatg′(z).I = f (z) for eachz ∈U .

3.11.3. Theorem. Let U andV be quaternion holomorphically simply connected regio
in H with U ∩ V �= ∅ connected. ThenU ∪ V is quaternion holomorphically simpl
connected.

3.12. Corollary. Let U be an open subset inHn, then the family of all quaternio
holomorphic functionsf :U →H has a structure of anH-algebra.

Proof. If f1(z) = αg(z)β + γ h(z)δ or f2(z) = g(z)h(z) for eachz ∈ U , whereα,β, γ
and δ ∈ H are constants,g andh are quaternion holomorphic functions onU , thenF1
andF2 are Frechét differentiate onU by (v,w,x, y) (see §2.1 and §2.2) andDz̃f1(z)=
α(Dz̃g)β + γ (Dz̃h)δ = 0 andDz̃f2(z)= (Dz̃g)h+ g(Dz̃h)= 0, hencef1 andf2 are also
quaternion holomorphic onU .

3.13. Proposition. For each complex holomorphic functionf in a neighbourhood
B(t0, r,C) of a point t0 ∈ C there exists a quaternionz-analytic functiong on a
neighbourhoodB(a, r,H) of a ∈H such thata1,1= t0 (or a1,2= t0) andg1,1(t, u0)= f (t)

(or g1,2(u0, t)= f (t) respectively) onB(t0, r,C), whereB(x, r,X) := {y ∈X: ρX(x, y) �
r} is the ball in a spaceX with a metricρ, r > 0, u0= a1,2 (or u0= a1,1 correspondingly).

Proof. Write conditions (2.2) for a right superlinearly superdifferentiable function in
complex form. This yields:

∂f1,1/∂t̄ = 0, ∂f1,2/∂t = 0, ∂f1,1/∂u= 0, ∂f1,2/∂ū= 0. (3.12)

There are also skew conditions:

∂(g1,1+ ih1,2)/∂(w+ ix)= 0, ∂(g1,2+ ih1,1)/∂(w+ ix)= 0. (3.13)

Other conditions derive from these. For example, for the pair of variables(v, y) using the
matrixL we get

∂g1,1/∂v = ∂h1,2/∂y, ∂h1,2/∂v =−∂g1,1/∂y, (3.14)

∂g1,2/∂v = ∂h1,1/∂y, ∂h1,1/∂v =−∂g1,2/∂y, (3.15)

which in complex form is the following:

∂(g1,1+ ih1,2)/∂(v − iy)= 0, ∂(g1,2+ ih1,1)/∂(v − iy)= 0. (3.16)

Eqs. (3.13) and (3.16) are equivalent to:

∂(f1,1+ f1,2)/∂(w+ ix)= 0, ∂(f̄1,1− f̄1,2)/∂(w+ ix)= 0, (3.13′)
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∂(f1,1+ f1,2)/∂(v − iy)= 0, ∂(f̄1,1− f̄1,2)/∂(v − iy)= 0, (3.16′)

that is, there are two functionsp and q holomorphic in complex variablesw − ix

and v + iy such thatf1,1(z) = p(w − ix, v + iy) + q(w − ix, v + iy) and f1,2(z) =
p(w− ix, v+ iy)− q(w− ix, v+ iy).

Consider first an extension in the class of quaternion holomorphic functions w
right superdifferential not necessarily right superlinear on the superalgebraHn. Sincef is
holomorphic inB(t0, r,C), it has a decompositionf (t)=∑∞

n=0fn(t− t0)
n, wherefn ∈C.

Consider its extension inB
(( t0 0

0 t̄0

)
, r,H

)
such that

f (z)=
∞∑
n=0

(
fn 0
0 f̄n

)(
z−

(
t0 0

0 t̄0

))n

.

Evidently this series converges for eachz ∈ B
(( t0 0

0 t̄0

)
, r,H

)
and this extension off is

quaternion holomorphic, since
( fn 0

0 f̄n

) ∈H for eachn and
( t0 0

0 t̄0

) ∈H, that is,∂f/∂z̃= 0. If

z= ( t u
−ū t̄

)
andu= 0, then

f (z)=
∞∑
n=0

(
f (t) 0

0 f̄ (t)

)
.

Another type of a solution is:

f (z)=
∞∑
n=0

(
fn 0

0 f̄n

)(
(z− JzJ )/2−

(
t0 0

0 t̄0

))n

,

since
(
t 0
0 t̄

)= (z− JzJ )/2 for eachz= ( t u
−ū t̄

)
.

Consider now more narrow class of quaternion holomorphic functions with a
superlinear superdifferential on the superalgebraHn. There is another way to constru
f on B

(( t0 0
0 t̄0

)
, r,H

)
, because due to Theorems 2.15 and 3.10 a quaternion holomo

function in interior of this ball is quaternionz-analytic in it. The construction off1,1(t, u)

satisfying the conditions above and such thatf1,1(t,0) = f (t) in B(t0, r,C) then comes
down to findingf1,2(t, u) with partial differential skew conditions arising from those
f1,1 and specific conditions onf1,2 such thatf1,1 is holomorphic int and antiholomorphic
in u, f1,2 is holomorphic inu and antiholomorphic int (where antiholomorphic mean
holomorphic in the complex conjugate variableū or t̄ respectively).

The second type of extension can be obtained from the first by applying
multiplication byK̃ on the right, that is,

f (z) 
→ f (z)K̃ =
(
f1,2 −f1,1

f̄1,1 f̄1,2

)
.

3.14. Proposition. If f is a quaternion holomorphic function on an open subsetU in H,
wheref ′(z) �= 0 and f ′(z) is right superlinear, then it is a conformal mapping in ea
pointz ∈ U , that is preserving angles between differentiable curves.
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Proof. Let z ∈ U , then f is differentiable atz and there existsλ = f ′(z) ∈ H. Each
quaternionh= ( ht hu

−h̄u h̄t

) ∈H can be considered as vector(ht , hu) in C2. Consider a scala

product inC2: (h, k) := ht k̄t + huk̄u. On the other hand, ifλ �= 0, thenλ = |λ|ζ , where
|ζ | = 1. Rows and columns of the 2× 2 complex matrixζ are orthonormal, hence it
unitary and(ζh, ζ k)= (h, k) for eachh andk in C2 or for the corresponding quaternio
in H. Therefore, for each vectorsh �= 0 andk �= 0 in H

(λh,λk)/
(|λh||λk|)= (h, k)/

(|h||k|). (3.17)

If ψ andφ : (−1,1)→ U are two differentiable curves crossing in a pointz ∈ U , then we
have two vectorsψ ′(0) =: h andφ′(0) = k, whereψ(0) = φ(0) = z. Thenf (ψ(s))′ =
f ′(z)|z=ψ(s).ψ

′(s). From formula (3.17) it follows, thatf preserves the angleα between
curvesψ and φ, where cos(α) = Re(ψ ′(0),φ′(0))/(|ψ ′(0)||φ′(0)|) for ψ ′(0) �= 0 and
φ′(0) �= 0.

3.15. Theorem. Let f be a quaternion holomorphic function on an open subsetU in H
such thatsupz∈U,h∈B(0,1,H) |[f (z)(ζ − z)−2]·̂.h|� C/|ζ − z|2 for eachζ ∈H\cl(U). Then
|f ′(z)|� C/d(z) for eachz ∈U , whered(z) := infζ∈H\U |ζ − z|; |f (ξ)−f (z)|/|ξ − z|�
2C/r for eachξ andz ∈ B(a, r/2,H)⊂ Int(B(a, r,H))⊂ U , wherer > 0. In particular,
if f is a quaternion holomorphic function with bounded[f (z)(ζ − z)−2]·̂.h|ζ − z|2 on
H2×B(0,1,H) with |ζ |� 2|z|, that is,

sup
ζ,z∈H, |ζ |�2|z|, h∈B(0,1,H)

∣∣[f (z)(ζ − z)−2]·̂.h∣∣|ζ − z|2 <∞,

thenf is constant.

Proof. In view of Theorem 3.9 there exists a rectifiable pathγ in U such that(
∂kf (z)/∂zk

)= k!(2π)−1
( ∫
γ+z0

f (ζ )(ζ − z)−k−1dζ

)
(wJ + xK + yL)−1, (3.18)

whereγ (s) = r ′ exp(2πs(wJ + xK + yL)) with s ∈ [0,1], 0< r ′. Therefore,|f ′(z)| �
C/d(z). Since

∫ z

ζ
df (z)= f (z)− f (ζ ), then∣∣f (ξ)− f (z)
∣∣/|ξ − z|� sup

z∈B(a,r/2,H)

[
C/d(z)

]
� 2C/r,

where r ′ < r/2, ξ and z ∈ B(a, r/2,H) ⊂ Int(B(a, r,H)) ⊂ U . Taking r tending to
infinity, if f is quaternion holomorphic with bounded[f (z)(ζ − z)−2]·̂.h|ζ − z|2 on
H2×B(0,1,H) for |ζ |� 2|z|, thenf ′(z)= 0 for eachz ∈H, sincef is locally z-analytic
and

sup
ζ,z∈U, |ζ |�2|z|, h∈B(0,1,H)

∣∣[f (z)(ζ − z)−2]·̂.h∣∣|ζ − z|2 <∞

is bounded, hencef is constant onH.

3.16. Remark. Theorems 3.9, 3.10 and 3.15 are the quaternion analogs of the Ca
Morera and Liouville theorems correspondingly. Evidently, Theorem 3.15 is also tru
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right superlinearf̂ (z) on H for eachz ∈ U and with boundedf̂ (z).h on U × B(0,1,H)

instead of[f (z)((ζ − z)−2]·̂.h|ζ − z|2. In particular, iff is quaternion holomorphic onH
andf̂ (z) is right superlinear onH for eachz ∈H andf̂ (z).h is bounded onU×B(0,1,H),
thenF is constant.

3.17. Theorem. Let P(z) be a polynomial onH such thatP(z) = zn+1∑n
η(k)=0(Ak, z

k),
whereAk = (a1,k, . . . , as,k), aj,l ∈H, k = (k1, . . . , ks), 0 � kj ∈ Z, η(k)= k1+ · · · + ks ,
0 � s = s(k) ∈ Z, s(k) � η(k)+ 1, (Ak, z

k) := a1,kz
k1 . . . as,kz

ks , z0 := 1. ThenP(z) has
a root in H.

Proof. Consider a polynomialQ(z) := zn+1 + ∑n
η(k)=0(z

k, Ãk), where (zk, Ãk) :=
zk1ã1,k . . . z

ks ãs,k. ThenPQ is a quaternion holomorphic function onH. Suppose tha
P(z) �= 0 for eachz ∈ H . Consider a rectifiable pathγR in H such thatγR([0,1])∩H=
[−R,R] and outside[−R,R]: γR(s) = R exp(2πsM), whereM is a unit vector inHi .
Since lim|z|→∞P(z)z−n−1= 1, then due to Theorem 2.11

lim
R→∞

∫
γR

(PQ)−1(z) dz=
R∫

−R

(PQ)−1(v) dv =
R∫

−R

∣∣P(v)
∣∣−2

dv � 0.

The latter integral is equal to zero if and only if|P(v)|−2 = 0 for eachv ∈ R. This
contradicts our supposition, hence there exists a rootz0 ∈H, that is,P(z0)= 0.

3.17.1. Note. Consider, for example, the polynomialP(z) = (z − a)2 + J (z − a)K

on H, then there does not exist limz→a, z �=a f (z)(z − a)−1 and there also does not ex
limz→a, z �=a(z − a)−1f (z), thoughf (a) = 0. This makes an obstacle for a quatern
analog of the Gauss theorem about zeros of a derivative of a complex polynomial
in a particular case, when a polynomial has a decompositionf (z)= (z− a1) . . . (z− am),
wherea1, . . . , am ∈H, then

f (z)−1f ′(z).h
=
∑
j

(z− am)−1 . . . (z− aj+1)
−1(z− aj )

−1h(z− aj+1) . . . (z− am),

consequently,(
f (z)−1f ′(z).I

)·̃ =∑
j

λj (z− aj )λ
−1
j /|z− aj |2,

whereλj = [(z − aj+1) . . . (z − am)]·̃. Hencez
∑

j cj |z − aj |−2 =∑
j λj ajλ

−1
j , where

λj z=: zcjλj , cj ∈H, |cj | = 1, z is a root off ′(z).I . In the case of pairwise commutin
a1, . . . , am this formula simplifies, but in generala1, . . . , am need not be commuting.

3.17.2. Remark. The noncommutative geometry in terms of a scheme theory
associative algebras depends heavily on sheaf theory own a Zariski topology
a noncommutative version thereof [33]. In this theory, instead of starting fro
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noncommutative algebra and dealing with its geometry as being “virtual” we now
consider concretely defined geometrical objects, but defined over a noncomm
field H. The noncommutativeH-algebras that appear are the rings of locally anal
functions in an open setU for the real topology, i.e.Cω

(z,z̃)
(U,H). This obviously leads

to the possibility to define presheaves and sheaves on the objects embedded intoHn and
endowed with the induced real topology; it also applies toH-analytic objects like the fou
dimensional manifoldW constructed before Theorem 3.8, and indeed to any quate
version of a general manifold, that is a “manifold” with a localHn-structure generalizin
in the obvious way the localRm-structure. In later work we aim to study the quatern
version of sheaf cohomology and Cartan Theorems A and B, as well as noncomm
Stein manifolds, i.e. the quaternion version of holomorphy domains.

3.18. Theorem. Let f be a quaternion holomorphic function on an open subseU

in H. Suppose thatε > 0 and K is a compact subset ofU . Then there exists a functio
g(z)= P∞(z)+∑ν

k=1Pk[(z− ak)
−1], z ∈H\{a1, . . . , aν], ν ∈N, whereP∞ andPj are

polynomials,aj ∈ Fr(U), Fr(U) denotes a topological boundary ofU in H, such that
|f (z)− g(z)|< ε for eachz ∈ K.

Proof is analogous to the proof of Runge’s theorem (see [18]) due to Theore
and considering four dimensional cubesSj,k = 1Sj × 2Sk with ribs of lengthn−1 in H
instead of two dimensional cubes inC and puttingS :=⋃j,k Sj,k such thatK ⊂ Int(S),
wheren ∈ N tends to infinity,1Sj and 2Sk are two dimensional cubes inC1 and C2
which are two copies ofC embedded orthogonally inH as RI ⊕ RJ and RK ⊕ RL

correspondingly. Sincef is quaternion holomorphic andK is compact, we may appl
formula (3.9) to eachBj,k = γ such thatγ = ( γ1,1 γ1,2

−γ̄1,2 γ̄1,1

)
, γ1,1 = ∂ 1Sj , γ1,2 = ∂ 2Sk ,

it can be seen, thatf can be approximated uniformly onK by a sum of the form∑µ
k=1(a1,k(ζk−z)−1a2,k), whereaj,k ∈H, ζk ∈ Fr(S). For a givenn ∈N if b ∈ Fr(S), then

there existsa ∈ Fr(U) ∪ ∂B(0, r,H) such that|b− a|� n−1. If z ∈ K and|z− a|� n−1,
then the series(z− b)−1= (

∑∞
k=0[(z− a)−1(b− a)]k)(z− a)−1 converges uniformly on

K and it is clear thatf can be approximated uniformly onK by a function of the indicated
form (see also §3.17).

3.19. Note and Definitions. Consider a one-point (Alexandroff) compactification̂H of
the locally compact topological spaceH. It is homeomorphic to a unit four dimension
sphereS4 in the Euclidean spaceR5. If ζ is a point inS4 different from (1,0,0,0,0),
then the straight line containing(1,0,0,0,0) andζ crossesπS in a finite pointz, where
πS is the four dimensional plane orthogonal to the vector(1,0,0,0,0) and tangent toS4

at the south pole(−1,0,0,0,0). This defines the bijective continuous mapping fr
S4\{(1,0,0,0,0)} onto πS such that(1,0,0,0,0) corresponds to the point of infinity
Therefore each function on a subsetU of H as a topological space can be conside
on the homeomorphic subsetV in S4. If U is a locally compact subset ofH and
limz∈U, |z|→∞ f (z) exists, thenf has an extension on̂U .

Let z0 ∈ Ĥ be a marked point. If a functionf is defined and quaternion holomorph
on V \{z0}, whereV is a neighbourhood ofz0, thenz0 is called a point of an isolate
singularity off .
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Suppose thatf is a quaternion holomorphic function inB(a,0, r,H)\{a} for some
r > 0. Then we say thatf has an isolated singularity ata. Let B(∞, r,H) := {z ∈
Ĥ such thatr−1 < |z| �∞}. The we say thatf has an isolated singularity at∞ if it is
quaternion holomorphic in someB(∞, r,H).

Let f :U →H be a function, whereU is a neighbourhood ofz ∈ Ĥ. Thenf is said to
be meromorphic atz if f has an isolated singularity atz. If U is an open subset in̂H, then
f is called meromorphic inU if f is meromorphic at each pointz ∈ U . If U is a domain
of f andf is meromorphic inU , thenf is called meromorphic onU . Denote byM(U)

the set of all meromorphic functions onU . Let f be meromorphic on a regionU in Ĥ.
A point c ∈⋂V⊂U,V is compact cl(f (U\V )) is called a cluster value off .

3.20. Proposition. Letf be a quaternion holomorphic function with a rightH-superlinear
superdifferential on an open connected subsetU ⊂ Ĥ and suppose that there exists
sequence of pointszn ∈ U having a cluster pointz ∈ U such thatf (zn) = 0 for each
n ∈N, thenf = 0 everywhere onU .

Proof follows from the localz-analyticity of f and the factf (k)(z) = 0 for each
0 � k ∈ Z (see Theorems 2.11 and 3.10), whenf ′(z) is right H-superlinear onU , since

f (k)(z)= lim
n+m→∞

(
f (k−1)(ζn)− f (k−1)(ζm)

)
(ζn − ζm)−1,

whereζn is a subsequence of{zn :n} of pairwise distinct points converging toz. Therefore,
f is equal to zero on a neighbourhood ofz. The maximal subset ofU on whichf is equal
to zero is open inU . On the other hand it is closed, sincef is continuous, hencef is equal
to zero onU , sinceU is connected.

3.21. Note. Without the condition of rightH-superlinearity off ′(z) onU Proposition 3.20
is not true in general, sincef1(z) := azb andf2(z) := abz coincide onRI , but not on any
neighbourhood of zero, whena andb are noncommuting fixed quaternions,z ∈H.

Consider a functionf (z) = z−1az on H\{0}, where 0�= z ∈ H and a ∈ H. If a �=
vI , then there exists 0�= h ∈ H such thath−1ah =: b �= a. For z = sh there exists
limz=sh, s �=0, s→0f (z) = b, for z = sI limz=sI, s �=0, s→0f (z) = a. Therefore, ifa �= vI

for somev ∈ R, then there does not exist a limit off (z) for z tending to zero. This
makes clear, that for the quaternion field it is important to consider an analog of a La
series of a function quaternion holomorphic onU\{0} not only in termsazk, but also in
a1z

k1 . . . anz
kn , wherekj are integers,z0 := 1.

3.22. Theorem. Let A denote the family of all functionsf such thatf is quaternion
holomorphic onU := Int(B(a, r,R,H)), wherea is a marked point inH, 0 � r < R <∞
are fixed. LetS denote a subset ofZN such that for eachk ∈ S there existsm(k) :=
max{j : kj �= 0, ki = 0 for each i > j } ∈ N and let B be a family of finite sequence
b= (b1, . . . , bn) such thatbj ∈H for eachj = 1, . . . , n, n ∈N. Then there exists a bijectiv
correspondence betweenA andq ∈ BS such that

lim
m+η→∞ sup

z∈B(a,r1,R1,H)

∑
k, m(k)=m, η(k)=η

∣∣(bk, zk)∣∣= 0 (3.19)
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for eachr1 andR1 such thatr < r1 < R1 < R, whereη(k) := k1+ · · · + km(k), q(k)=:
bk = (bk,1, . . . , bk,m(k)), (bk, z

k) = bk,1z
k1 . . . bk,m(k)z

km(k) for eachk ∈ S, that is,f ∈ A
can be presented by a convergent series

f (z)=
∑
b∈q

(bk, z
k). (3.20)

Proof. If condition (3.19) is satisfied, then the series (3.20) converges onB(a, r ′,R′,H)

for eachr ′ andR such thatr < r ′ <R <R, sincer1 andR1 are arbitrary such thatr < r1 <

R1 < R and
∑∞

n=0p
n converges for each|p| < 1. In particular takingr1 < r ′ < R′ < R1

for p =R′/R1 or p = r1/r
′.

Therefore, from (3.19) and (3.20) it follows, thatf presented by the series (3.20)
quaternion holomorphic onU .

Vice versa let f be in A. In view of Theorems 2.11 and 3.9 there are t
rectifiable closed pathsγ1 and γ2 such thatγ2(s) = a + r ′ exp(2πsM2) and γ1(s) =
a+R′ exp(2πsM1), wheres ∈ [0,1], M1 andM2 ∈H with |M1| = 1 and|M2| = 1, where
r < r ′ < R′ < R, because as in §3.9U can be presented as a finite union of regionsUj

each of which satisfies the conditions of Theorem 2.11. Using a finite number of rect
pathswj (joiningγ1 andγ2 within Uj ) going twice in one and the opposite directions le
to the conclusion that for eachz ∈ Int(B(a, r ′,R′,H)) the functionf (z) is presented by
the integral formula:

f (z)= (2π)−1
{(∫

γ1

f (ζ )(ζ − z)−1dζ

)
M−1

1 −
(∫

γ2

f (ζ )(ζ − z)−1dζ

)
M−1

2

}
.

(3.21)

On γ1 we have the inequality:|(ζ − a)−1(z − a)| < 1, on γ2 another inequality holds
|(ζ − a)(z− a)−1|< 1. Therefore, forγ1 the series

(ζ − z)−1=
( ∞∑

k=0

(
(ζ − a)−1(z− a)

)k)
(ζ − a)−1

converges uniformly byζ ∈ B(a,R2+ ε,R1,H) andz ∈ B(a, r2,R2,H), while for γ2 the
series

(ζ − z)−1=−(z− a)−1

( ∞∑
k=0

(
(ζ − a)(z− a)−1)k)

converges uniformly byζ ∈ B(a, r1, r2,−ε,H) andz ∈ B(a, r2,R2,H) for eachr ′ < r2 <

R2 <R′ and each 0< ε < min(r2− r1,R1−R2). Consequently,

f (z)=
∞∑
k=0

(
φk(z)+ψk(z)

)
, (3.22)

where
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φk(z) := (2π)−1

{(∫
γ1

f (ζ )
(
(ζ − a)−1(z− a)

)k
(ζ − a)−1dζ

)
M−1

1

}
,

ψk(z) := (2π)−1

{(∫
γ2

f (ζ )(z− a)−1((ζ − a)(z− a)−1)k dζ)M−1
2

}
,

and whereφk(z) andψk(z) are quaternion holomorphic functions, hencef has decompo
sition (3.20) inU , since due to §§2.15 and 3.9 there existsδ > 0 such that integrals fo
φk andψk by γ1 andγ2 are the same for eachr ′ ∈ (r1, r1+ δ), R′ ∈ (R1− δ,R1). Using
the definition of the quaternion line integral we get (3.20) converging onU . Varyingz ∈ U

by |z| and Arg(z) we get that (3.20) converges absolutely onU , consequently, (3.19) i
satisfied.

3.23. Notes and Definitions. Let γ be a closed curve inH. There are natural projection
from H on complex planes:π1(z) = (v,w), π2(z) = (v, x), π3(z) = (v, y), wherez =
vI +wJ +xK+yL with realv,w,x andy. Therefore,πl(γ )=: γl are curves in comple
planesC1 isomorphic toRI ⊕ RJ , C2 isomorphic toRI ⊕ RK andC3 isomorphic to
RI⊕RL, wherel = 1,2,3 respectively. A curveγ in H is closed (a loop, in another word
if and only if γl are closed for eachl = 1,2,3, that is,γ (0) = γ (1) and γl(0) = γl(1)
correspondingly. For each pointa ∈H we have its projectionsal := πl(a). In each complex
plane there is the standard complex notion of a topological index In(al, γl) of a curveγl
at al . Therefore, there exists a vector In(a, γ ) := {In(a1, γ1), In(a2, γ2), In(a3, γ3)} which
we call the topological index ofγ at a pointa ∈ H. This topological index is invarian
relative to homotopies satisfying conditions of Theorem 3.9. Consider now a sta
closed curveγ (s) = a + r exp(2πsnM), whereM ∈ Hi with |M| = 1, n ∈ Z, r > 0,
s ∈ [0,1]. ThenÎn(a, γ ) := (2π)−1(

∫
γ d Ln(z− a))= nM is called the quaternion inde

of γ at a pointa. It is also invariant relative to homotopies satisfying the condition
Theorem 3.9. Moreover,̂In(h1ah2, h1γ h2) = În(a, γ ) for eachh1 andh2 ∈ H\{0} such
thath1Mh2=M. ForM =wJ +xK+yL there is the equalitŷIn(a, γ )= In(a1, γ1)wJ +
In(a2, γ2)xK + In(a3, γ3)yL (adopting the corresponding convention for signs of inde
in eachCj and the convention of positive directions of going along curves). In view
the properties of Ln for each curveψ in H there exists

∫
γ d Ln(z − a) = 2πqM for

someq ∈ R andM ∈ Hi with |M| = 1. For a closed curveψ up to a composition o
homotopies each of which is charaterized by homotopies inCl for l = 1,2,3 there exists a
standardγ with a generatorM for which În(a, γ )= qM, whereq ∈ Z. Therefore, we can
take as a definiton̂In(a,ψ)= În(a, γ ). Define also the residue of a meromorphic funct
with an isolated singularity at a pointa ∈H as res(a, f ) := (

∫
γ f (z) dz)(2πM)−1, where

γ (s) = a + r exp(2πsM) ⊂ V , r > 0, |M| = 1, M ∈ Hi , s ∈ [0,1], f is quaternion
holomorphic onV \{a}.

If f has an isolated singularity ata ∈ Ĥ, then coefficientsbk of its Laurent series
(see §3.22) are independent ofr > 0. The common series is called thea-Laurent series
If a = ∞, then g(z) := f (z−1) has a 0-Laurent seriesck such thatc−k = bk. Let
β := supbk �=0η(k), whereη(k) = k1+ · · · + km, m = m(k) for a =∞; β = infbk �=0η(k)

for a �= ∞. We say thatf has a removable singularity, pole, essential singularity a∞
according asβ � 0, 0< β <∞, β =+∞. In the second caseβ is called the order of the
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pole at∞. For a finitea the corresponding cases are:β � 0,−∞< β < 0, β =−∞. If f

has a pole ata, then|β| is called the order of the pole ata.
A value of a function∂f (a) := inf{η(k): bk �= 0} is called a divisor off at a �= ∞,

∂f (a) := inf{−η(k): bk �= 0} for a = ∞. Then ∂f+g(a) � min{∂f (a), ∂g(a)} for each
a ∈ dom(f ) ∩ dom(g) and ∂fg(a) = ∂f (a) + ∂g(a). For a functionf meromorphic on
an open subsetU in Ĥ the function∂f (p) by the variablep ∈U is called the divisor off .

3.24. Theorem. Let U be an open region in̂H with n distinct marked pointsp1, . . . , pn,
and letf be a quaternion holomorphic function onU\{p1, . . . , pn} =: U0 and ψ be a
rectifiable closed curve lying inU0 such thatU0 satisfies the conditions of Theorem3.9for
eachz0 ∈ {p1, . . . , pn}. Then∫

ψ

f (z) dz= 2π
n∑

j=1

În(pj ,ψ) res(pj , f ).

Proof. For eachpj consider the principal partTj of a Laurent series forf in a
neighbourhoodofpj , that is,Tj (z)=∑k,η(k)<0(bk, (z−pj )

k), whereη(k)= k1+· · ·+kn
for k = (k1, . . . , kn) (see Theorem 3.22). Therefore,h(z) := f (z)−∑j Tj (z) is a function
having a quaternion holomorphic extension onU . In view of Theorem 3.9 for a quaternio
holomorphic functiong in a neighbourhoodV of a pointp and a rectifiable closed curveζ
we have

În(p, ζ )g(p)= (2π)−1
(∫

ζ

g(z)(z− p)−1 dz

)

(see §3.23). We may consider smallζj around eachpj with În(pj , ζj ) = În(pj , γ ) for
eachj = 1, . . . , n. Then

∫
ζj

f (z) dz= ∫ζj Tj (z) dz for eachj . RepresentingU0 as a finite
union of open regionsUj and joiningζj with γ by pathswj going in one and the opposi
direction as in Theorem 3.9 we get∫

γ

f (z) dz+
∑
j

∫
ζ−j

f (z) dz= 0,

consequently,∫
γ

f (z) dz=
∑
j

∫
ζj

f (z) dz=
∑
j

2π În(pj , γ ) res(pj , f ),

whereÎn(pj , γ ) and res(pj , f ) are invariant relative to homotopies satisfying conditio
of Theorem 3.9.

3.25. Corollary. Let f and T be the same as in§3.24, thenres(pj , f ) = res(pj , Tj ) =
res(pj ,

∑
k,η(k)=−1(bk, (z− pj )

k)), in particular, res(pj , b(z− pj )
−1)= b.

3.26. Corollary. Let U be an open region in̂H with n distinct pointsp1, . . . , pn, let
also f be a quaternion holomorphic function onU\{p1, . . . , pn} =: U0, pn = ∞, and
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U0 satisfies conditions of Theorem3.9with at least oneψ,γ and eachz0 ∈ {p1, . . . , pn}.
Then

∑
pj∈U res(pj , f )= 0.

Proof. If γ is a closed curve encompassingp1, . . . , pn−1, then γ−(s) := γ (1 − s),
wheres ∈ [0,1], encompassespn =∞ with positive going byγ− relative topn. Since∫
γ f (z) dz+ ∫γ− f (z) dz= 0, we get the statement of this corollary from Theorem 3.2

3.27. Definitions. Letf be a holomorphic function on a neighbourhoodV of a pointz ∈H.
Then the infimum:n(z;f ) := inf{k: k ∈N, f (k)(z) �= 0} is called a multiplicity off at z.
Let f be a holomorphic function on an open subsetU in Ĥ. Supposew ∈ Ĥ, then the
valenceνf (w) of f at w is by the definitionνf (w) :=∞, when the set{z: f (z)= w} is
infinite, and otherwiseνf (w) :=∑z,f (z)=w η(z;f ).

3.27.1. Theorem. Let f be a meromorphic function on a regionU ⊂ Ĥ. If b ∈ Ĥ and
νf (b) < ∞, then b is not a cluster value off and the set{z: νf (z) = νf (b)} is a
neighbourhood ofb. If U �= Ĥ or f is not constant, then the converse statement ho
Nevertheless, it is false, whenf = conston Ĥ.

3.27.2. Theorem. LetU be a proper open subset of̂H, let alsof andg be two continuous
functions from�U := cl(U) into Ĥ such that on a topological boundaryFr(U) of U

they satisfy the inequality|f (z)| < |g(z)| for each z ∈ Fr(U). Supposef and g are
meromorphic functions inU andh be a unique continuous map from�U into Ĥ such that
h|E = f |E + g|E , whereE := {z: f (z) �= ∞, g(z) �= ∞}. Thenνg|U(0) − νg|U(∞) =
νh|U(0)− νh|U(∞).

Proofs of these two theorems are analogous to that of Theorems VI.4.1, 4.2 [18].

3.28. Theorem. Let U be an open subset inHn, then there exists a representation
the R-linear spaceCω

z,z̃
(U,H) of locally (z, z̃)-analytic functions onU such that it is

isomorphic to theR-linear spaceCω
z (U,H) of quaternion holomorphic functions onU .

Proof. Evidently, the proof can be reduced to the casen = 1 by induction considering
local (z, z̃)-series decompositions by( nz, nz̃) with coefficients being convergent series
( 1z, 1z̃, . . . , n−1z, n−1z̃). For eachz ∈H there are identities:JzJ =−vI−wJ +xK+yL,
KzK =−vI +wJ − xK + yL, LzL =−vI +wJ + xK − yL, wherez = vI + wJ +
xK + yL with v,w,x andy ∈R. Hence

PRI (z)= vI = (z− JzJ −KzK −LzL)/4,

PRJ (z)=wJ = (z− JzJ +KzK +LzL)/4,

PRK(z)= xK = (z+ JzJ −KzK +LzL)/4,

PRL(z)= yL= (z+ JzJ +KzK −LzL)/4
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are projection operators onRI,RJ,RK and RL respectively, whereI, J,K andL are
orthogonal vectors relative to the scalar product inC4, H " z 
→ (t, u,−ū, t̄ ) ∈ C4.
Therefore,

z̃= vI −wJ − xK − yL=−(z+ JzJ +KzK +LzL)/2

and

dz̃= (dv)I − (dw)J − (dx)K − (dy)L

=−(dz+ J (dz)J +K(dz)K +L(dz)L
)
/2.

Consequently, each polynomial in(z, z̃) is also a polynomial inz only, moreover,
each polynomial locally(z, z̃) analytic function onU is polynomial locallyz-analytic
on U . Then if a series by(z, z̃) converges in a ballB(z0, r,Hn), then its series in
the z-representation converges in a ballB(z0, r/2,Hn). Then

∫
γ
z̃ dz = −(

∫
γ
z dz +∫

γ J zJ dz+ ∫γ KzK dz+ ∫γ LzLdz)/2 and
∫
γ z̃ dz = 0 for a closed rectifiable curveγ

in H in such representation. This is not contradictory, because fromf1|γ = f2|γ it does
not follow f̂1|γ = f̂2|γ , since f̂ (z) is defined by values of a functionf on an open
neighbourhood of a pointz ∈ H, wheref,f1 andf2 ∈ C0(U,H). Therefore,

∫
γ d Lnz is

quite different in general from
∫
γ
z̃ dz (see §§2.5 and 3.8). Considering basic polynom

of any polynomial basis inCω
z,z̃

(U,H) we get (due to infinite dimensionality of this spac
a polynomial base ofCω

z (U,H). This establishes theR-linear isomorphism between the
two spaces. Moreover, in such representation of the spaceCω

z,z̃
(U,H) we can putDz̃ = 0,

yielding for differential forms∂z̃ = 0, this leads to differential calculus and integration w
respect toDz anddz only.

3.29. Notes. The latter paragraph also shows that forlC
ω
z,z̃

(U,H) and for rC
ω
z,z̃

(U,H)

operatorsDz and Dz̃ are different and neitherDz nor Dz̃ may be omitted from the
differential calculus, since automorphismsz 
→ azb of H with given quaternionsa and
b such thatab �= 0 do not leavelCω

z,z̃
(U,H) andrC

ω
z,z̃

(U,H) invariant.
Apart from the complex polynomial case in the quaternion case a polynomial

have infinite family of roots, for example,P(z) = z2 + zJ zJ + zKzK + zLzL − 1 has
a 3-dimensional overR manifold of rootsP(z)= 0, sinceP(z)=−2|z|2− 1.

Theorem 3.27.2 is the quaternion analog of the Rouché theorem.
The functionf (z) := cos(zz̃) := [exp(J zz̃) + exp(−Jzz̃)]/2 is bounded onH, but

neither the operator̂f is right superlinear, nor the operator[f (z)(ζ − z)]−2]·̂.h|ζ − z|2
is bounded onH2 × B(0,1,H) for |ζ | � 2|z|, then f (z) = cos(zz̃) can be written
in the corresponding representation as a quaternion locallyz-analytic function, since∑∞

n=1(2R)n/n! converges for each 0� R < ∞. This shows that in the last pa
of Theorem 3.15 its conditions cannot be replaced by boundedness of a qua
holomorphic functionf . An interesting analog of the Liouville theorem for real harmo
functions was investigated in [5]. Possibly the particular case of the quaternion ana
the Liouville theorem for right superlinear̂f may be deduced from [5] with the help
Eq. (2.4) of Corollary 2.4 above.

There are other ways to define superdifferentiations of algebras of quaternion fun
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(1) factorize an algebra of quaternion locally(z, z̃)-analytic functionsf : U →H by all
relations of the form[∑j Sj,1zSj,2 − z̃], whereSj,k ∈ H are fixed and

∑
j Sj,1zSj,2 = z̃

for eachz ∈H;
(2) use as a starting point superlinearly superdifferentiable functionsf : U → H and

then prolong a superdifferentiation on products of such functions with milder cond
on a superdifferential, but they lead to the same result. This approach can be gene
for general Clifford algebras overR, but some results will be weaker or take another fo
than in the case ofHn.

3.30. Theorem (Argument principle).Let f be a quaternion holomorphic function on a
open regionU satisfying conditions of§3.9 and letγ be a closed curve contained inU ,
thenÎn(0;f ◦ γ )=∑∂f (a) �=0 În(a;γ )∂f (a).

Proof. There is the equalitŷIn(0;f ◦ γ ) = ∫
ζ∈γ d Ln(f (ζ )) = ∫ 1

0 d Ln(f ◦ γ (s)) =∫
γ f−1(ζ ) df (ζ ). Let ∂f (a)= n ∈N, then

f−1(a)f ′(a).S =
∑

l,k; n1+···+nk=∂f (a), 0�nj∈Z, j=1,...,k

(z− a)n1gS,l,k,1;n1,...,nk
(z)

× (z− a)n2gS,l,k,2;n1,...,nk
(z) . . . (z− a)nkgS,l,k,k;n1,...,nk

(z),

where gS,l,p,k;n1,...,nk
(z) are quaternion holomorphic functions ofz on U such that

gS,l,p,k;n1,...,nk
(a) �= 0, S ∈ {I, J,K,L}, wherel = 1, . . . ,m,1 � m � 4∂f (a) (see §§2.8

3.7, 3.22, 3.28), since each termξ(z)(v − v0)
n1(w − w0)

n2(x − x0)
n3(y − y0)

n4 with
n1 + · · · + n4 � ∂f (a), nj � 0, has such decomposition, whereξ(z) is a quaternion
holomorphic function on a neighbourhood ofa such thatξ(a) �= 0. Supposeψ is a closed
curve such that̂In(p,ψ) = 2πnM, |M| = 1, M ∈ Hi , 0 �= n ∈ Z. Then we can define
curveψ1/n =: ω as a closed curve for whicĥIn(p,ω)= 2πM andω([0,1])⊂ ψ([0,1]).
Then we callωn = ψ . That is, În(p,ψ1/n) = Î (p,ψ)/n. The latter formula allows a
interpretation also when̂In(p,ψ)/n is equal to 2πqM, where 0�= q ∈Q. That is, a curve
ψ1/n can be defined for each 0�= n ∈ Z. This means thatγ can be presented as union
curvesωj for each of which there existsnj ∈ N such thatω

nj

j is a closed curve. Usin
Theorem 3.9 for eacha ∈U with ∂f (a) �= 0, also using the series given above we can
a finite family ofωj for which one of the terms in the series is not less, than any o
term. We may also use small homotopic deformations ofωj satisfying the conditions o
Theorem 3.9 such that in the series one of the terms is greater than any other for alm
points onωj . Such deformation is permitted, since otherwise two terms would coincid
an open subset ofU , that is impossible. Considering such series, formulas (2.6), (2.7
using Theorem 3.27.2 we get the statement of this theorem.

3.31. Theorem. If f has an essential singularity ata, then cl(f (V )) = Ĥ for each
V ⊂ dom(f ), V =U\{a}, whereU is a neighbourhood ofa.

Proof. Suppose that the statement of this theorem is false, then there would existr > 0
and m > 0 and a quaternionA ∈ H such thatf is z-analytic in B(a,0, r,H)\{a} and
|f (z)− A| � m for eachz such that 0< |z− a|< r. If ∞ /∈ cl(f (V )), then there exist
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R > 0 such thatA /∈ cl(f (V )) for each|A| > R. Therefore, the function[f (z) − A]−1

is quaternion holomorphic inB(a,0, r,H)\{a}. Hence[f (z)−A]−1=∑k(pk, (z− a)k),
where in this sumk = (k1, . . . , km(k)) with kj � 0 for eachj = 1, . . . ,m(k) ∈ N, pk are
finite sequences of coefficients for[f (z)−A]−1 as in §3.22. IfDn

z ([f (z)−A]−1)|z=a = 0
for eachn � 0, then[f (z)−A]−1= 0 in a neighbourhood ofa. Therefore,[f (z)−A]−1=∑

n1+···+nl=n g1z
n1 . . . glz

nl for somen such that 0� n ∈N, nj � 0 for eachj = 1, . . . , l ∈
N, eachgj is a quaternion holomorphic function (ofz). Consequently, taking inverses
both sides[f (z)−A] and(

∑
n1+···+nl=n g1z

n1 . . . glz
nl )−1 and comparing their expansio

series we see that finite sequencesbk of expansion coefficients forf have the property
bk = 0 for eachη(k) <−n. This contradicts the hypothesis and proves the theorem.

3.32. Definition. Let a andb be two points inH andθ be a stereographic mapping of t
unit four dimensional real sphereS4 on Ĥ. Thenχ(a, b) := |φ(a)− φ(b)|R5 is called the
chordal metric, whereφ := θ−1 : Ĥ→ S4, S4 is embedded inR5 and|∗ |R5 is the Euclidean
distance inR5.

3.32.1. Theorem. Let U be an open region in̂H, {fn: n ∈ N} be a sequence of function
meromorphic onU tending uniformly inU to f relative to the chordal metric. Then eith
f is the constant∞ or elsef is meromorphic onU .

3.32.2. Theorem. Let {fk : k ∈ N} be a sequence of meromorphic functions on an o
subsetU in Ĥ, which tends uniformly in the sence of the chordal metric inU to f ,
f �= const. If f (a) = b and r > 0 are such thatB(a, r,H) ⊂ U and f (z) �= b for each
z ∈ B(a, r,H)\{a}, then there existsm ∈N such that the value of the valence offk|B(a,r,H)

at b is n(b;f )= n(a;f ) for eachk � m.

3.32.3. Note. The proofs of these theorems are formally similar to the proofs of VI
and 4.4 [18]. Theorem 3.32.2 is the quaternion analog of the Hurwitz theorem. The
also the following quaternion analogs of the Mittag-Leffler and Weierstrass theorems
proofs are similar to those for Theorems VIII. 1.1 and 1.2 respectively. Neverthele
second part of the Weierstrass theorem is not true in general because of noncommu
of H, that is, a functionh ∈M(U) with ∂h = ∂ is not necessarily representable ash= fg,
whereg is quaternion holomorphic onU andf is another marked functionf ∈M(U) such
that∂f = ∂ . In the proofs ordered products of more elementary polynomial functions
in particular linear terms(z− bk) have to be considered as in §3.28, using Theorems
and 3.22. Theorem 3.33.2 is not true in general without condition of right superline
(or left superlinearity) of the superdifferential, for example, the functionf (z)= xK serves
as a counterexample, wherez= vI +wJ + xK + yL,v,w,x andy ∈R, z ∈H.

3.33. Theorem. Let U be a nonempty proper open subset ofĤ, let A⊂ U not containing
any cluster point inU . Let there be a functiongb ∈M(Ĥ) for eachb ∈A having a pole atb
and no other. Then there existsf ∈ M(U) quaternion holomorphic onU\B and having
the same principal part atb asgb. If f is such a function, then each other such functio
the functionf + g, whereg is quaternion holomorphic onU .
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3.33.1. Theorem. Let U be a proper nonempty open subset ofĤ. Let ∂ :U → Z be
a function such that{∂(z) �= 0} does not have a cluster point inU . Then there exist
f ∈M(U) such that∂f = ∂ .

3.33.2. Theorem. Let U be an open region inH and f be a function quaternion
holomorphic onU with a right superlinear superdifferential onU . Supposef is not
constant andB(a, r,H)⊂ U , where0 < r <∞. Thenf (B(a, r,H)) is a neighbourhood
of f (a) in H.

3.34. Remarks. For calculating expansion coefficientsbk of a functionf quaternion
holomorphic onU\{z0}, where U is open in H, it is possible to use the residu
res[(f (z)(z − z0)

l)(n).(Sj1, . . . , Sjn)], whereSj ∈ {I, J,K,L}, 0 � l ∈ Z, 0 � n ∈ Z.
But the system of equations for eachbk = (bk,1, . . . , bk,m) is nonlinear in general. Th
calculation of a residue of a term(bk, zk) along the closed curveγ (s) = r exp(2πsM)

(or ψ homotopic to it and satisfying conditions of Theorem 3.9) with|M| = 1, M ∈
Hi , s ∈ [0,1], reduces to a calculation of aR-linear combination of integrals of th
form

∫ 1
0 exp(2πsn1M1) . . .exp(2πsnlMl) dsA, wheren1, . . . , nl ∈ Z, n1 + · · · + nl = 0,

Mj := S̃jMSj , Sj ∈ {I, J,K,L} for eachj = 1, . . . , l,A ∈ {J,K,L}. The case off ∈
lC

ω(U,H) is trivial due to Corollary 3.25.
For several quaternion variables a multiple quaternion line integral

I :=
∫
γn

(
. . .

(∫
γ1

f ( 1z, . . . , nz) d 1z

)
. . .

)
d nz

may be naturally considered for rectifiable curvesγ1, . . . , γn in H. If γj = rj exp(2πsjMj )

with 0 < rj <∞, sj ∈ [0,1] and [Mk,Mj ] = 0 commute for eachk, j = 1, . . . , n, then
this integralI does not depend on the order of integration forf ∈ C0(U,H), whereU is
an open subset in̂Hn andγj ⊂ jU for eachj , U = 1U × · · · × nU , jU is an open subse
in H. Therefore, there is the natural generalization of Theorem 3.9 for several quat
variables:

(2π)nf (z0)=
(∫
ψn

(
. . .

(∫
ψ1

f ( 1ζ, . . . , nζ )( 1ζ − 1z0)
−1d 1ζ

)
M−1

1 . . .

)

× ( nζ − nz0)
−1 d nζ

)
M−1

n (3.9′)

for the correspondingU =1 U × · · · × nU , whereψj and jU satisfy conditions of
Theorem 3.9 for eachj andf is a continuous quaternion holomorphic function onU .
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