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Abstract

Louchard, G., B. Randrianarimanana and R. Schott, Dynamic algorithms in D.E. Knuth’s model:
a probabilistic analysis, Theoretical Computer Science 93 (1992) 201 -225.

By dynamic algorithms we mean algorithms that operate on dynamically varying data structures
(dictionaries, priority queues, linear lists) subject to insertions I, deletions D, positive (negative)
queries Q* (Q 7). Let us remember that dictionaries are implementable by unsorted or sorted lists,
binary search trees, priority queues by sorted lists, binary search trees, binary tournaments, pagodas,
binomial queues and linear lists by sorted or unsorted lists, etc. At this point the following question is
very natural in computer science: for a given data structure, which representation is the most
efficient? In comparing the space or time costs of two data organizations A and B for the same
operations, we cannot merely compare the costs of individual operations for data of given sizes:
A may be better than B on some data, and vice versa on others. A reasonable way to measure the
efficiency of a data organization is to consider sequences of operations on the structure. Frangon
(1978, 1979) Knuth (1977) discovered that the number of possibilities for the ith insertion or negative
query is equal to i, but that for deletions and positive queries this number depends on the size of the
data structure. Answering the questions raised by Frangon and Knuth is the main object of this
paper. More precisely, we show
e how to obtain limiting processes;
e how to compute explicitly the average costs:
e how to obtain variance estimates:
o that the costs converge as n— x to random variables, either Gaussian or depending on Brownian
excursion functionals (the limiting distributions are, therefore, completely described).
To our knowledge such a complete analysis has never been done before for dynamic algorithms in
Knuth's model. »
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under contract number 3075 (Alcom project) and by the P.R.C. *Mathématiques et Informatique”.
** A preliminary version of our results was included in the proceedings of ICALP '89 conference [20].
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1. Introduction

The difficulty of analyzing dynamic algorithms. even if the universe of keys is finite,
has been explained by Jonassen and Knuth in [10], where random insertions and
deletions are performed on trees whose size never exceeds three. It was shown by
Frangon [6. 7] and Flajolet et al. [4, 5] that several list and tree organizations can be
analyzed in a dynamic context. Integrated costs for these dynamic structures were
defined as averages of costs taken over the set of all possible evolutions of the
structure, considered up to order isomorphism. Using a method of continued fractions
and orthogonal polynomials Flajolet ¢t al. obtained explicit expressions for the
expected costs and in some cases for the variances but with Markovian model, which
is briefly described in Section 2. The asymptotic distributions were obtained by
Louchard [19] with a probabilistic analysis. Taking account of the remarks made by
Frangon and Knuth. a more natural modcl has been introduced in [8, 9. 217: the
number of possibilities for the ith insertion or negative query is equal to i, but if after
some operations the structure contains Ak rccords, the number of possibilities for
a deletion or positive query is a lincar function of k. Since we have to work with two
indices (i and k). the analysis of dynamic algorithms is more difficult in this model.
The purpose of the present paper is to give the limiting distributions of cost functions
of the linear lists, priority qucues and dictionaries. This paper is organized as follows.
Section 2 describes the two models. Section 3 provides the set of necessary definitions
for dynamic data structures. Section 4.1 is devoted to the linear lists. In Section 4.2 we
analyze priority queues and in Section 4.3 the dictionaries. Section S provides the
main steps of the proofs. Section 6 concludes the paper. An appendix gives some more
technical proofs for the dictionary model.

2. The two models

Knuth [13] considers the following operations on a data structure containing
k keys (or numbers}):

(i) D,,standing for random deletion, in the sense that if k keys are present, each is
chosen for deletion with probability 1 k:

(i} D,. standing for priority queue deletion. i.e. deletion of the smallest key:

(iii) 1,. standing for insertion of a random number by order, in the sense that the
new number is cqually likely to fall into any of the k + 1 intervals defined by the
k numbers still present as keys after previous insertions and deletions: this is
to be indepcndent of the history by which these k numbers were actually
obtained:

I, standing for inscrtion of a random recal number from the uniform distribution

-—

(iv
in the interval [0.1]. Each random number inserted is assumed to have the
same distribution, and it is to be independent of all previously inserted
numbers. Thus. if we look at n such random numbers. the #! possible orderings
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(of these numbers) are equally likely, and the particular distribution involved
has no effect on the behaviour of the data organization (i.e. the class of data
structures together with the associated algorithms for operating on these
structures).

Knott [11] has shown that 1, is a concept different from I (see also [4, Section
6.2.2]): this result has stimulated further research, notably [8,9,21] and the present
work. In this paper. consideration of only the I (I,) kind of insertion is called Knuth’s
(K) model (Markovian (M) model). As an example, consider a priority queue imple-
mented as a sorted list. Let us analyze the following set of operations (key values are
indicated): 1(2.5). 1{7.4), Dmin, 1(1.0), Dmin, 1(3.5), Dmin, Dmin.

In the Markovian model the first key has order 0, the second key has order 1, the
suppression is related to order 0, etc.

In Knuth's model the first three operations are identical to the M model. We then
have three intervals defined by the first two keys: (— oz, 2.5), (2.5,7.4), (7.4, +c). The
fourth operation 1(1.0) is done in the first interval (order 0) among 3 possible intervals.
The sixth operation 1(3.5) is done in the third interval (order 3) among the 4 possible
intervals defined by 1.0<2.5<74, etc.

The Markovian model has been introduced and studied by combinatorial methods
in [6. 7]: Flajolet [3] has shown how the theory of continued fractions and ortho-
gonal polynomials remarkably fits this model; further developments appear in [4, 51:
distributions of costs and average costs have been calculated for some sequences of
operations for various data types. including priority queues and linear lists. The
asymptotic distributions of the costs functions have been obtained by Louchard [19].

The foliowing questions were raised in [7]: how to compute the corresponding
costs in Knuth's model and are the costs sensitive to the model? The first answers for
linear lists and priority queues were given in [8, 22], after reducing the calculations in
Knuth's model to calculations in the Markovian model (we will denote by = the
combinatorial equivalence given in [8]).

In [9] an algebraic method has been developed which permits to reproduce all the
results of [8] and to treat the dictionary case. In this paper we present a probabilistic
analysis of linear lists, priority queues and dictionaries in this model and characterize
the corresponding limiting distributions. The first step is to express the problem in
a combinatorial way. Following [10], let us consider the sequence of operations
I11(DD)*, the initial data structure being empty: let x < y <z be the three keys inserted
during the sequence 111; let us consider a linear list, i.e. x or y or z is deleted with equal
probability: let w be the key inserted by the fourth 1 of this sequence; then all four
cases w< X< y<, x<w<y<zI, x<y<w<z, x<y<z<wdo occur with equal prob-
ability whatever the deleted keys. More generaily, let us consider a sequence of
operations 0,0,;...0;, the initial data structure being empty; any data type may be
considered: linear list, priority queue, dictionary; assume O; is the ith I of the
sequence; let x; <x,<---<x;-; be the keys inserted during the sequence 0,0,
...0;_, and let w be the jth inserted key. Then, all the cases w<x; <x;<---<X;_ 1,
XWXy <o KXy s ens X <X, <-o-<x;_ | <w are equally likely, whatever the
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deleted keys. Put into combinatorial language: after j operations in a linear list, out of
which, say, i are I's, and, thus, j —i are D’s, the size of the data structure is k= 2i—j; the
keys of the data structure can be considered as a subset of k distinct objects of a set of
size i, any of the (}) possible subsets being equally likely.

We say that the number of possibilities of the ith 1 (in a sequence of operations) is

atever the size of the data when this ingcertion occurg
Cve SIZC O6 U1C Wi inis i Curs.

ual to i (for Knuth's model) wh
it SEiutil 51 J W HiaiCyorl il 5id 1 Uala ivil i 5LV OU

qualtoi{for Kn nodel u
On the contrary, in the Markovian model we say that the number of possibilities of an
I, operation is k+ 1 iff & is the size of the data structure when this insertion occurs,
whatever the history of the sequence and of the data structure. A similar proof can be
given for QF and Q (see [9] for more details). The possibility functions in Knuth’s
model are given in Table 1 (Section 3).

3. Basic definitions

(1} Following Flajolet et al. [5], we define a schema (or path) Y(.), of length 2n as
aword 2:=0,0,...0,,e!1.D,Q ", Q" ! * such that for all j, 1 <j<2n

10,0,...0;,210,0 ... Op. (0)

A schema is to be interpreted as a sequence of 2n requests (the keys operated on not
being represented) where I,D,Q" and Q™ represent, respectively. an insertion, a
deletion, a positive (successful) query (or search) and a negative (unsuccessful) query
(or search). (0) means that the size of the structure is always >0.

In the case of linear lists (LL) and priority queues (PQ), only insertions and
deletions are performed. A structure history is a sequence of the form
h:=0,(r,)0:(r3)...05,(r3,), where 2=0,0,...0;, is a schema, and
e r;is the rank (or order) of the key operated upon at step j,
® %,(Q):=|0,0,...0;|,—10,0,...0,|p 1s the size (level) of the structure at step j.

We only consider schemas and histories with initial and final level O (the general case
can be treated with similar techniques). The possibility function pos (defined for each
request) is given in Table I, where k denotes the size of the structure.

Let us return to the example given in Section 2. In terms of ranks, the history for the
Markovian model can thus be derived as

1(0) I(1) D(0) [{0) D(0} 1(0) D{O) D(0).

Table 1

Data type pos(ith I) pos{D, k) pos(Q 7, k) pos(ith Q™)
Linear list (LL) i k 0 Q

Priority queue (PQ) i ! 0 0

Dictionary (D) i k k i
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Table 2
(h)
SL UL
LL Y osith) Y si(h)
je(l+D) Jjeb
PQ
Y sith) Y oth)
jel JjeD
D
Y s(h) Y osih+ Y ah)
Jje(l+D+Q* +Q ™) Jje(D+Q*) jeD~™

In Knuth’s model, the history can be written as
1(0) I(1) D(0) 1(0) D(0) I(3) D(0) D(0).

For any structure, let N,, be the (finite) set of histories of length 2n and let
N,, be the number of such histories (see [5]). For instance, N,, is n? for MPQ
(n?7:=1-3-5---(2n—1)).

(i1) To any history h, we will associate cost functions C(h). Two cost functions are
considered in this paper: the storage cost function a(h):=Y ;2 ,a;(h) and the time cost
function t(h). The latter function depends on the implementation of our lists’ struc-
tures. We will use three implementations: the sorted list (SL), the unsorted list (UL) and
the binary tournament (BT).

The time cost functions are summarized in Table 2, where s; denotes the position of
each key among all existing keys at time j. Let us explain the origin of these cost
functions. For instance, for PQ in sorted list implementation (SL), we always delete
the first (smallest) key: this costs just nothing. But, when we insert a key, we must first
find its correct position: this costs s; inspections.

As another example, let us consider D in unsorted list implementation (UL).
Insertion obviously costs nothing: we just put the key in front of the list. Deletion and
positive search require finding the position s; of the key. An unsuccessful query needs
to go through the entire list: this costs «; inspections.

For the BT implementation, we only know the mean of an insertion:
H[aj(h)+1]—1%, and for a deletion: 2[ H[a;(h)]—2+1/a;(h)] in a classical BT.
(H(k) is the kth harmonic number.) Assume, for simplicity, that this remains true in
Knuth’s model (see the conjecture in Section 4.2.2).

Remark 1. For LL and PQ, we note that to each insertion at some level I, corresponds
one deletion at level [—1.
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With any cost function C(/), we assoctate a random variable C* defined as follows:
card [ h: C(hy=r. heN,,|

P C*: | =
r{ K] R

2n

Expectation and variance of any event related to C* are denoted by E* and 1'*.
Following [19], we associate with each path ¥(.) a classical random walk (each step
affected by the same probability} of length 2a. from 0 to 0. with weight given by the
possibility functions of Table 1.

Each trajectory will thus be affected by u total measure, which is the product of
probability measures (related to large deviations) and a weight depending on the data
type we consider. The weighted random walk corresponding to some path Y(.) is
denoted by Y*(.).

The next two sections are devoted to the characterization of the limiting distribu-
tion corresponding to each dynamic data structure (LL. PQ and D). These sections
involve some diflicult probabilistic tools. For the reader not familiar with these
techniques. let us roughly explain the spirit of the method:

First we have to prove a kind of central limit theorem for the process }*: this

means that we have to find a centering term Cent( Y#) and a normalizing term

Nor( ¥) such that [ ¥, —Cent( ¥'¥)]: Nor{ Y'¥) converges {weakly, as n— + x) to

a random process X.

- Then we must find the mean. the covariance and the distribution of X. Some results
obtained previously by Louchard [ 197} are helpful here.

4. Limiting distributions

This section 15 organized in the following way: we only list the results for linear lists
{LL) (Section 4.1), priority queues (PQ) (Section 4.2) and dictionaries (D) (Section 4.3)
with a few direct derivations. The main steps of the proofs are given in Section 5. Some
lemmas and theorems for D need very advanced techniques: the interested reader
shall find them in the appendix.

4.1. The linear list in Knuth's model (K L1)

By [8] we see that KLL is combinatorially equivalent to the priority queue in
Markovian model (MPQ), which we denote by KLL=MPQ.

By [19, Theorem 5.3] we know that. for MPQ,
~l’*([m*])fn.\‘(z')

"

X, (v): = X(r), re[0,2]. {1}

N\
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where y(r)=r(2—1r)/2, X(.) is a Markovian Gaussian process with mean 0 and
covariance y(x)7(2—x2) (x; <x,), with y(v):= ©2/2, and = represents a weak conver-
gence of random functions in the space of all right continuous functions having left
limits and endowed with the Skorohod metric (see [1, Ch. IIT1]). Also, it is proved in
[19, Section 5.2] that

2 2 2
vlsz‘[ y{r)yde=2/3, \'2::E|:[J X(Lf)dl‘ril :|=8/45,
0 0

2

\'3::f yi(r)yde=4/15.
0

Storage and time cost functions are now analyzed by three theorems which exhibit

Gaussian properties.

4.1.1. Storage cost o,
The storage cost o, is identical to afipg. By [19, Theorem 5.4] this gives the
following theorem, where ~ represents convergence in distribution (for n—x0) and

A(M, V) is the normal (or Gaussian) random variable with mean M and variance V.

Theorem 1.

oéL;-nj:'I :ahgr—znf‘?x' C0.1).
(n3v,)!?2 (8n’/45)"=

4.1.2. Time cost T¥L
The time cost depends on the implementation.
For the SL implementation, we have the following theorem.

Theorem 2.

* 2
TKLL.sL—H /3

THIE L

For the UL implementation, we derive the following result.

Theorem 3.

* 2
T¥LL.uL—n~/6

e O,

4.2. The priority queue in Knuth's model (KPQ)

By [8] we know that KPQ is combinatorially equivalent to a Markov stack (MS):
KPQ=MS. The number of histories N,, is C,, for MS [5], where C,,:=the nth
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Catalan number =(3")/(n+ 1). The Markovian stack has been analyzed in [15 17]: it
appears that

YH([2n0])' 2n=X *(r). 2)
where X ' (r) is the standard Brownian excursion (BE) {sec [2] for details on this

process). Let us now proceed to the cost analysis, which yields the BE functionals.

4.2.1. Storage cost Ofpg
The storage cost o {pg 1s identical to oy, This has been analyzed in [17. Theorem
97 this gives the following theorem.

Theorem 4.

1
OEpo 2 * ~ ':J X +(l‘)dl‘:| (Brownian excursion area).
0
For instance.
E(ctpo)~ mn?2, E(o¥so)~ 1017 /3. (3)

Numerical distribution and moments of [J‘(l) X T(r)de] are given in [16].
4.2.2. Time cost tfpg

For the SL implementation we assume, for simplification, that for large structure
size an inserted key is uniformly distributed among all existing keys. This assumption
is presently under investigation. We then have the following limiting distribution.

Theorem 5.

&’Pﬁ\1 1/\’+(l‘)dl‘
2yt 4 o '

For the UL implementation we derive, by Table 2 and Remark |I. that
TEpo. uL ~ 3 0o hence, we have the following theorem.

Theorem 6.

Car
TﬁpQ_UL,(z’])J-\')[J‘ X*(l‘)dr].
“~ 0

For the BT implementation, we denote by ¢; and y; the random variables related to
an inscrtion or a deletion in a BT of size Y *(i). We conjecture that, in Knuth’s model
and for large Y*(i),

E()~H(YF) E(n)~2H(YF).
Wl S =0[log(Y*(iN*2],  wn)=0Llog(Y*(iN**]. (4)
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where 1, (Z) is the kth centered moment of Z. (This is proved in [18] for a classical
binary search tree.)
With (4), we can deduce that

* . -7/ !
t¥r.nr— 3n[log(n ,)J/kU 1og[x+<u>]dv] )

3n 0

The moments of [j"é X *(r)dr] have been given in [16]. Conjecture (4) and the
moments of functional (5) will be analyzed in a forthcoming report.

4.3. The dictionary in Knuth’s model (KD)

4.3.1. Limit Theorems

To obtain a formula like (1), we must first put a weight and a probability measure
on the trajectory y(.) (see [19] for details). The probability is deduced from [19, Eq.
(38)]. The dominant term is given by

2 (0
exp[—n[ [log(l—y’(v)z)—{—y’(v)log<1+)/,(L;)>]dv] (6)
0 1—y'(v)

According to [9], the weight is given by

(S))lexp[Z], Si=[#D+#(Q7)]), Z:= Z log<ny<%>>. (7
ie(D+Q*)

This weight is more intricate than the classical ones used in [19]. The determination of
y(.)1s first solved by the following theorem.

Theorem 7. E*[ Y*([ no])]~ny(v), where y(.) is given by the implicit equation

‘ vr—1 when v<l
Y TN ey o ’
( \/;} ) V3 l—v when v>1.

The explicit solution is
y(vy=[ \/r%(2 cos(@/3)—1)/2]1Y2, @=arccos[2v0(2—v)—1]. (8)

We must now analyze the limiting process X (.). This is given by the following
lemma.

Lemma 8. X(.)is a Markovian Gaussian process, with mean 0 and covariance
* ,
CT2(x1, X2)=7(x1)7(2—x3), x;<x,,

where y(x)=[3+y(x)][y'(x)—1]3/8.

We finally derive the complete limiting process, which is a superposition of two
distinct Gaussian processes.



210 G. Louchard et al.

Theorem 9. For KD,

Y*([ ne ] —ny(ce))
I 1717)7 =X(v)+pulr)
N

where

® v(.}is given by (8);

® X(.)is a Gaussian Markovian process with mean O and covariance C¥, yiven by

Lemma §;

o u(x)y=[2(x. o)y s VdB(e) where sty )y:=[1—y" 218 and W(x.v) is given by
Lemma 16 (see Section 5) and B(.) represents a classical Brownian motion. This
stochastic integral shows that p(x) is a Gaussian (non-Markovian) process with
covariance

Cu(x,.x,)= [: YN ehp(xs, eys(yde.
)

(

Y

We can now analyze storage and time cost functions. which lead to Gaussian
variables.

4.3.2. Stroruge cost o
We obtain the following thcorem.

Theorem 10.

* 2,
Orp— 7V

[’T( vy ] he

~. 170, 1),

where vy = 18/35, v, =1656/13475. and v, is given by (9} helow.

Proof. The result is deduced from Theorem 9 with

Yl::j_ viryde,
(8]

du, C¥ituy . us), (9)

V=2 Jk dx, J~ dx, Cu(xy, x5)
O Xy

I
(3
= t
e
—

v
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4.3.3. Time cost T§p
For the SL implementation, we have by Table 2

E*(t¥p s )~5n?v, =9n%/35.

Proceeding now as in Section 1.2, we readily obtain
V¥(t¥p.su)~tzn’va+in’(va+vy),

with vy:= [ y?(v)dv=12/77.

The Gaussian property of 1§, is checked as in [19, Theorem 4.12]. We finally
obtain the following Theorem.

Theorem 11.

TfléD. SL_9n2/35 N
[n3(v3/124 (v, +v,)/4]'%

1700, 1.

For the UL implementation, we derive the following result.

Theorem 12.

TﬁD. uL — 17]’12,'/70

V*(tkp, UL)“2

~.47(0, 1).

Remark 2. It appears that the limiting distributions are mostly Gaussian; this is not
an obvious (or trivial) fact since the classical results using central limit theorems are
not directly applicable here. In addition, the limiting distributions for KPQ are not
Gaussian: they depend on Brownian excursion functionals.

5. Main proofs’ steps

5.1. Proof of Theorems 2 and 3 for KLL

For the SL implementation, we have from Table 2

20-1 ¥Y*() /
E*(TI’ELL,SL)“[ Z Z |:Z j1,/Y*(i):|:|/n?

y*a\?ln i=1 Jji=1
2n—1 Y* i /
SRR
Y*GNI,, i=1 !

2

=1E*(of)=3nv,=n?/3,
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Y*(1 Y*(2n—1)
V*(TﬁLl“Sl_’\[ Z Z Z
X -

#o N, T Jono1 71

n—1 2 :
[ ) (jng*(Y*(i))/z):i 1 Y*U)],‘ n?

i=1

YA YR 2n— 1) 2n-1
~[ Sy % [zu, Lye(i]

yres, =1 i
2n -1 2 .
+5 Y [YHO—EX Y*m»]} i Y*(l)] in?
1 . 1 !
and by standard variance analysis (see the details in [19. Section 4.6.3])
n—1
s~ E*[ i _S: Yﬁ(”}*i V*oli)
i=1 -

3 3 .
~ Sntvs+intvs=nt1s,

Repeating mutatis mutandis the proof of [19. Theorem 4.12]. onc finally obtains
Theorem 2. 1]

For the UL implementation. we have from Table 2

) Y*(i)
E*(TELLJL)N[ Z Z [ Z di YR :H
YHeN,, ieD ‘

=iE(of) (by Remark 1)—’—%’12"1:'12,"6~

g

Y*i
l'*(ffu‘.u,)*l: > Z >
)'**fzu

[Z/, EIF* )*(1))} [T Y*h ]

ieD i=1 ©teD

2n—1 2
*Hz Y*(i) =3 Y E*(Y*(inﬂ
ieD i=1

3 ,
~ Zl.l novy -+ 116”3"2 = ll},'45

The proof of [19. Theorem 3.6} can now be adapted: this leads to Theorem 3. L
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5.2. Proof of Theorem 5 for KPQ

For the SL implementation, we have from Table 2 (with our simplifying
assumption)

E*(T?((PQ.SL)NI: Z Zh_:l//CZ"

Y*eN,, i€l

1E|:2nJ X ( dv} [by (2) and Remark 1]

~4y/nn? [by 3)1.
Y*() 2n—-1
V*(tpo.s) [ Z 2 - Z[(Zh—i X Y*(i))

11 1 iel

2n-1 /
+%<Z ye(i)-1 ¥ E*(Yx( ﬂ 1+ qu

iel i= I lel
1 1
~34(2n)? [f X*(v)zdv} +(2)*(2n)° [J X*(v)dv},
0 0

where V'(Z) denotes the classical variance of Z.
From [14, p. 238],

1 x
E[J X*(v)zdv:lzj x?-4xe” P dx=1. (11)
0 0

We finally derive (the second term is dominant in (10))

1
V*(T?EPQ.SL)~(%)2(2")3 VliJ X +(l’)dU:|~
0

More generally,

ﬂk[szQ. sL]= E*[T?EPQ.SL_E*(TtPQ. SL)]k

k . 32N\Nk-r
~y (k)(&nz)'"zu,[w(o,lﬂ<(2") >
r=0 \ ¥ 4
1
xpk_,[J X*(v)dvil. (12)
6]

Clearly, the dominant term of (12) is obtained with r=0. This gives

3/2\k 1
(Q"l )m“ X*(v)dv}
0

hence, Theorem 5. [
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Our proof shows that, if the inserted key is not uniformly distributed among all
existing keys, only the numerical coefficient 1/4 will be changed in Theorem 5.
For the BT implementation, we obtain from Table 2 [and noting that H, ~log(k}]

E*(rzpo.m{ > <Zlog(Y*m>+Z 2log(Y*m>] Ca,

YreN,, Niel ieD

~

13|

! -
E(an log{\/ 2nX +(z‘)]dl':| [by Remark [ and (2}]
~ (

)

1

()

N

fﬂ(log2+logn)+3nb‘[[

- [§]

log[ X *(l‘)]dl‘:|

3 ' .
:#{log2+logn)+3n [ logx-dxe = dx
- ¢l

W

=3nlog(n/2)—3yn/2, [by (1]

V*(szo.m)‘[ E |:[ Z (&—log{ Y*(iy)+ Y. (n;—2logl Y*(,‘))):|
Y*eN .,

iel ieD

+[ Y log(Y*(in+2 ) log(Y*(i)

iel ieD

3 2
,E*(log(Y*(i)))H } Cay, {13)

where E is the expectation conditioned on Y*. Then (13) becomes [conditioned on
Conjecture (4)]

3 2 1
1"'*(rﬁpo.m~)*<,'3n> I[J log[ X *(r)]dt}.
-~ 8]

More gencrally, we check that

1

[ TEpo.wr]/(30) ~;1k|:J log[ X "(v)] dvil and hence, (5).
)

(

5.3. Proofs of main lemmas and theorems for dictionaries

The D case is more difficult to analyze:; we have only given the main steps and a few
proofs. More technical proofs are given in the appendix. To derive Theorem 7. we
must first establish thc probability of various steps dalong ny(r). Let
p(l, 0):= P[step[ nr}el] and similarly for D, Q~, Q. We shall use the following
lemma.
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Lemma 13.

1
n

p(L 0)y=3[1 +2}"(1‘)+_1"(l')2]+O< >

p(D,v)=%[1 —2}"(L')+,\'/(l‘)z]+O<l>,

n

1
P . 0)=plQ". v1=i[1—y'm2]+0<>'

n

The mean of this distribution is, of course, y'(v)+O(1/n).

The proof of Lemma 13 is given in the appendix.
We now need the total asymptotic measure along a path. We derive the following
result.

Lemma 14. The dominant term in the logarithm of the asymptotic total measure along
ny(.}is given by

: SIS Lo W P
2nlogn—n+n —log(l —y"*)—y log 1 +§(1—y Ylogy |dv
—y

0

5

=2nlogn—n+n th(y, y')de, say. (14)

0

The proof is also given in the appendix. We can now turn to the determination of y(.).

Proof of Theorem 7. Maximizing (14) is a variational problem, which can be solved as
in [19, Section 4.4]. This gives the equation

1—y2=C, 'y, (15)
the implicit solution of which is

, , +C hen y'>0
(=8/3CE—dy'23C)(1-C,y2yz=y DR MY (16)
—C,—v when y' <0.
The constraints y(0)=y(2)=0lead to C,=2(2/3)!2, C, = — 1. The explicit form (8) is
given by the suitable solution of the cubic equation corresponding to (16). [

Proof of Lemma 8. To find the distribution of X (x) [see (1)], we must first include the

contribution from (14). Letting 6:= X,,(x)/'\//;l. this can be deduced from [19, Lemma
4.77; it amounts to

92 X 2
n f [fzi+2 22+ (29 ]1de +n J [symmetric term] do,
0 x
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where z(v) is given by (16) with
o u=y(x)+0.

e (0)=0, z(x)=u, (rn

oz , 8:1
® - = . .:1.:':'~.
CU Jy=y(x) ol

The detailed techniques to obtain z,z,.z| can be found in [19, Sections 4.5.1 and
4.5.2].
Actually. we will not use the complicated expression (8). All integrations will be

performed with respect to a new variable h=(1—2./2/3v"2)""?_ which, by (15) is
nothing but [y']. The first integral leads to

Performing this integration and adding the term from |7 leads to (3’ =y"(x))

—nl)?
5

64/[(—1+y V(" =30+ DYy +3)]

which shows that X (x)is a Gaussian variable with mean 0 and variance
PH(x)=7(x)72=x) H)=[3+3(x)][y'(x)—1]7/8.
The covariance can be obtained by similar computation (we omit the details).

Proof of Theorem 9. Lct the (normalized) trajectory be

s(ey=ye) (el (700)=7(2)=0).
We must now determine the contribution of y, y" arising from (7). This is given by the

following lemma, where we obtain stochastic integrals on Brownian motion.

Lemma 1S5. The linear contribution to y, ' from log[(S,)!]-Z is asymptotically
given by

X(z-)MdB([ﬂ)_}_Z,(p)M:s/dB(U)
y(r) 2050
=y(e)dh(v)+ ' (vydhs(v), say, (18)

where B(.) is a classical Brownian motion and s(y'):=[1—1"]/8.

The proof is given in the appendix. Lemma 15 (which gives the contribution of (7) to
our process density) tells us that we must transform our expression for X (.} into
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X (v):=y(v)—u(v) and we must determine p(.). This is given by the following lemma,
the proof of which is also given in the appendix.

Lemma 16. p(v)=pu(v)+p2(v), where

2 t

y(uydhy (u), (19)

v 0

m(v)="/(v)f 7’(2—u)dh1(u)+v(2—v)j

2 v
2 (v)= —",'(v)J }"(2—u)dhz(u)+v(2~v)f 7 (u)dhy(u), (20)
v 0
and h, (), hy(.) are given by Lemma 15. As expected, 11(0)=u(2)=0. For further use, let
us write u(v) as {o ¥ (v, u) /s(y")dB(u).

Collecting now the results from (8) and Lemmas 8, 15 and 16, we readily obtain
Theorem 9.

6. Conclusion

We have analyzed asymptotic distributions of linear lists, priority queues, and
dictionaries, histories and cost functions in Knuth’s model. It appears that the limiting
cost distributions are either Gaussian random variables or Brownian excursion
functionals. The limiting processes are Gaussian Markovian, Brownian excursion and
Gaussian (non-Markovian) stochastic integrals. As further work, we intend to con-
sider the symbol table in both Markovian and Knuth’s model.

Appendix for KD

This appendix contains the detailed technical proofs of some lemmas and theorems
related to KD.

Proof of Lemma 13. By [19, Lemma 4.1] (adapted to the case of dictionaries), we
obtain by the theory of large deviations

x2 —(nt+1/2) 1+X/[ - nx \/;ldX
P[Y(nt)endx]~[<l—t—2> <1—x/t> :|ﬁ\ﬂ

= @(x,t)dx, say,

where Y(.)is the classical random walk related to dictionaries. Hence,

Pstep[l]e!] Y(nt)endx]~£|:1+<<p<x——%,t—%> —(p(x,t)> /(p(x,t)].

{
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After some tedious but simple manipulations, this gives
1 %
in +2.\~/1+(.\“1)-]+O< : )
n
and, similarly. for D,Q ", Q. One could also prove these formulas by starting directly
from the dictionary large deviation generating function (see [ 19, (9)]). Proceeding now
as in [19, Section 4.4], the lemma 1s casily proved.
Proof of Lemma 14. Let
Nah
ply ) =pl.e)+p(Q .o)=1I +A1'/(l')]+0(;).
8!
g ) =1—p(")=p(D.0)+p(Q ' . r)=1[1 y’(z*)]+0(”>. (21)

We see that the dominant term of S, along ny(r) is given by

R Jk pLy)yde=n+O(1)
(

)
and

Z~n f_ (v log[nvir)]de
(

}

log : 1\
—nl:logn+0{ O’é’”J+j ﬁ(l»1"((‘))10g1.\'(z‘))dz'+O(>J (23)
_ 0 n

By Stirling’s formula. the dominant cariable [in y(.)] part of (7} is immediately
deduced from (22) and (23); this gives only

o

cxp[nﬁJull ~'\")10g.\‘dz"] (24)
0

{(dropping the (r) to simplify formulas). Collecting the results from (6) and (24) we
obtain Lemma 14.

To prove Lemma 15, we must take into account the stochastic part of (7). This is a new
problem that we did not encounter in the more classical structures of [197]: only
dominant terms like (14) were necessary there. To solve this problem, we first establish
the joined distribution of S, and Z in the following lemma.

Lemma 17. S| und Z along nz(.} are asymptotically Gaussian, with

E(S))=nx,. E{Z)Y=nu;.
" ony,  —hxs
cov(Sl.,Z):< - ) )

— s gy
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where = =:z'(¢), and
A= hp(:’)dv=1+0<—>
Jo n
"2 1
%=1 r(z')dr, r(:’):=s(:’)+0<>. s(z)=[1-z"%2}/8,
JO h
Ay= ) q(z"Ylog[nz]de,
Jo
o= h r(z')log?[nz]de,
Jo
r2
as:=| r(z")log[nz]der.
Jo

Proof. Let us divide the 2 steps into 2n/m groups of m steps, where m is large and
m=o(n). (25)

In each group, we must study the asymptotic distribution of S| and S,:=m—§,. This
can be done as follows. To fix a group, let t,,t,€[0,2], t,=t,+4, z;=z(t,),
z,=z(t,), and m=nA.

If we do not constrain the random walk z(.) associated with the dictionary to follow,
we can usc the probabilities given by Lemma 13 to obtain, in [nt,, nt,],

# (D) ~mp)+n0). n(I)=.110.mp(I)q(D)), q(I):=1—p(l),

and, similarly, for D.Q~,Q".

We have dropped the ¢ dependence as z'(.) is asymptotically constant in [t,,1;]
by (25).

The covariance of (# (I), # (Q 7))} is easily seen to be —mp(I)p(Q ™) and, similarly,
for (I, Q*, Q~, D). The covariance matrix is obviously of rank 3, which reflects the fact
that

#(M+#D)+ #(Q7 )+ #(Q 7 )=m, ie. (D+n(Q7)+n(Q ™)+ (D)=0.
(26)

This allows us to represent all random variables as functions of [#(I),7(Q7),n(Q*}]
with covariance matrix C given by

p(1)- ¢(I) —p(M)-p(Q7) —p(D-p(Q") 1
C=m| —p(Q7)-pM)  p(Q7)qQ7) —p(Q )pQ7) | Q.
—pQ )y p(H —p Q) p(Q7)  pQ*)qQ")/ QF
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The density of [#(1),#(Q ™ ),n(Q*)}] is characterized by the matrix C~'. Now,
if we constrain the random walk Y(.) on [#nt,,nt,] to be such that Y(nt,)=nz,,
Y(nt,)=nz,, this amounts to imposing the relation

nHADM+n(Q HAHQ ) +n(Q ) AQ ™) +4(D)4(D)=0, (27)
where A(.) are the four increments, centered on their mean z'. ie. A()=1—-=z",
AQ )=4(Q")=—z", AD)=—1-=z".

Inserting (26) into (27) gives

Q" )= =2n)—n(Q").

This last equation is now inserted into C ! giving the matrix 4~ ! corresponding to
q giving p g

the density of the constrained couple (#(I), 7(Q ~)). Actually, J. Leroy has shown to us
that a suitable simple matrix transformation, applied to C, easily leads to 4. We
obtain

p 16—y /84 v /16 —1/16+ v /8— /16 1
=W .
o648yt 16 (=3 =116 ) Q-

We immediately deduce, from the distribution of n(I)+#(Q 7)) on a group, that
Si~mp(z Y+ 40, mr(z'), r(z)=(1—-2"2)/8+O(1/m),
We also have
S,=[#Q" )+ #(D)]=m-8§,.
o,0,,9%;,04 are now immediately deduced as all groups are independent by con-
straint (27). To derive a5, note that, on [nt;.nt, ], E[(S; —mp(z’ WS, —m(1 —p(z'))] =

—mr(z'); hence, a5 follows. [

Proof of Lemma 15. Let us return to the techniques we used in Lemma 17: the 2n
steps are divided into n,:=2n/m groups of m steps. In group j (j=1.....n,). let

Sp=(#,(D+ #,0Q ) =mp(z)+ [ n;()+1;(Q7)]=mp(z)) + w;. say,

where, by the proof of Lemma 17 w;=.4(0,mr(z})) and z; is the value of z’(v) on
group j [asymptotically constant on that group by (25)].
Now, from Lemma 17 again, we obtain

g fg

Si~nu+ Y w;, Z~naz+ Y, [—log(nz;)w;].
j=1

j= J=1
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It is now a classical expansion exercise to obtain the y, " term from log[(S;)!]- Z. We
first derive

log[(s1)!]-Z~[-na1+na1 log(nay )+ nas]
+|:< Zg wj>1°g(n°<1)+ i [—log(nzj)a)j]:|_

The term in the first square brackets on the right-hand side is, of course, the O(n)
contribution to (14). The term in the second square brackets, by Lemma 17, reduces to

S [—log(z))w,] (28)
j=1

Note that —w; [which can also be written as n;{D)+#;(Q ")] can be represented by
mr(zi)y &, where &;:=.47(0,1) and all ¢; are independent. Expanding (28) we derive
for the linear y, y' term

Jm [xj os ]
vV | ) e
\/Z}.;l yj\/S—J‘i‘ Og(}J)aygz\/S_] g]

where s;;=s(y}) and, similarly, for x;, x}, y;.
Setting now dv:=m/n(ve[0,2]), we formally obtain

ng X as X/‘
¥ |:J\/;j+log(yj)a—,ﬁ’ }ci Av;,
=1L Vi yJ‘Z\/s_j

where we recognize a classical Gaussian white noise: it is well known that ;. /dv; can
be written as dB(v;); hence, (18) follows. [J

Proof of Lemma 16, Let a family of Gaussian variables x =(x; ... x; } characterized by
a density exp[ —4Q(x)]/(2n)¥?{Q| !, where the quadratic form Q(x) is constructed
from the matrix Q. If we set x = p — 4, where 4 is the mean of the Gaussian family p, the
linear term (in p) of the logarithm of this density is given by p@AT. If we know that this
linear term is given by pg", we derive gT=0QA"; hence, A"=Q " 'g". But it is well
known that Q ~!=C, where C is the covariance of x, i.e. C=E[ x"x]; hence,

AT=CT (29)

In our case, we deal with continuous time processes and we must use, for the h,(.)
contribution, the correspondence relations:

x; e X(v), piexv), Aou(v), Cjierp(v)y(2—u), v<u,
gi > dhy(v).

Equation (19) 1s now immediate from (29).
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For the h,(.) contribution. we could be tempted to formally transform
fozterdhy (o) into — |2 7(x)hs(ehdr (7(0)=7(2)=0) but we cannot. of course.
differentiate the Brownian contribution to di,. So. we turn to another technique:
assume that we have a contribution ‘é y(tyw(u) du to the density for some w(.). This is
equivalent to

J_ 7 () Wiuydu, (30)
1]

where W(u)= | w(s)ds. Expression (30) can also be written as

)

j_ y'(e)ydeu), where ~ (u):= ‘ M (s)ds. (31)
( 0

But (19) gives here

,utl‘)z‘,’(r)fﬁ;'(2—14)u'(u)d1(+;'(21')J sluw(u)du,

v 0

which can be transformed into
wey=—(r) J_ 2—=wde () + (2~ 1) [ S dee ().

4]

! LY

Comparing (31) with Lemima 15, we see that here —d. (u)=dh,(u): hence, (20)
follows.

Remark 3. Another way of proving (20) is to return to Lemma §: we see that X (.) can
be written as X (¢)=7(2—r)B(7(v)/7(2—r)) for some Brownian motion B(.). We
easily deduce that

E[dX (e dX (v5)])= —7"(0 )" 2= de,de,. oy <rs. (32)
E[AX* (e ]=[y2—r) e+ 2—r (e 1 dey. (33)

But dealing now with the process d.X (¢). we have dX (r)=dy(u)—du(r). Using (29).
(30), {32) and (33). we deduce that

dp(v)=[—7"2—=0)v(e)—y"(0)7 (2 =) ] W(r)de

+[;"(2r) J ) W uydu 45 () J‘k 22— u) Vv"tu)du:|dz‘. (34)
( r

)

After a few elementary manipulations, and setting again d. (11)= W{u)du, we derive
(20) from (34).
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Proof of Theorem 12. By Table 2 and Lemma 13, we derive that

2 2
E*(t¥p, v )~n? [% J p(D. v)y(v)dv+§j pQ", v)y(v)dv]= 1712 /70.
0 0
To analyze the variance, it is more convenient to return to the Lemma 15 representa-

tion. This gives us from Table 2

g Myl EROY

V*(T;‘zo.UL)NE{ Z Z ii.j+(”:j)[mp(Q*s:;')+’7j(Qv)]}

i=1

— Z ny; m|:1( vj) (Q,y})]} , (35)

where

o —w=[nD)+nQ")].

e ¢, ; are independent, uniformly [0 . .nz;] distributed random variables
e p(Q .zj)1s given by Lemma 13 and g(.) by (21).

Using the techniques of Lemma 17, it is easily seen that

Q)= —2n(D)—n@Q").  n(l)=n(D).

'

Let o(z'):=3q(z)+p(Q .z )=3—4z"—1z"? by (21) and Lemma 13. Developing (35)
by classical variance analysis, we derive

ng my(z5)—
V*(TI’ED.UL):E{ Z I: Z éi.j_%(n:j)[’nq(z;‘)_ﬂ)j]:|
j=1 i=1
+ 2 (nz)[=3nD)=4n,(Q™)]
(36)

Hy

+ Y (nzpmlo(zh)—e(y)]
ji=1

ng 2
+y m(p(yf,-)”(ij‘."j)} :

ji=1
In the last two brackets, we have, by Theorem 9,
( — Y )'\’ /n[X #( ):] :}‘_ j ﬁ[X j)+,u( )]
\/ n

where group j is characterized by the interval [ x;, x;4, ]
Note that, by (28), u(x) is asymptotically given by

7§ v ) (DY + Q7)) 1.
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Keeping only the dominant terms in (36), we finally derive (omitting the details)

)

+ l,: fh X(l")(/)(.\")dl‘-f-j‘ X’(l’)g](’i(‘";)}'dl’:l
0 0 oy

+J- Ay )”)dv}, (37)
0 )

Fly _\"):Lizl (Ais given in the proof of Lemma 11 by A=A/m).

V*(I:D.LL)\”} |: 112J _"211(}"')(11‘
(

where

Hr)=(—=iv(r)—g(r) ixo)—g(r)),

fl(l')::[ Jh PO X)W x, z‘)d.\'ﬁLJ‘~ ((?(“ ~)l//’(.\', z*)v(.\‘)d.\'].
( .

) 0

where '(x, e)y=Cy(x,0) ¢ x. The detailed computation of v, [see (9)] and
F*(1ip.10) is under investigation. Note that (32) and (33) must be used for the middle
term of (37).

By central limit theorem techniques (we omit the details, see [ 19, Section 4.6.3]), we
can now derive Theorem 12. |}
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