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By dynamic algorithms we mean algorithms that operate on dynamically varying data structures 

(dictionaries, priority queues, linear lists) subject to insertions I, deletions D, positive (negative) 

queries Q’ (Q-j. Let us remember that dictionaries are implementable by unsorted or sorted lists, 

bmary search trees, priority qururs by sorted lists. binary search trees, binary tournaments, pagodas. 

binomial queues and linear lists by sorted or unsorted lists, etc. At this point the following question is 

very natural in computer science: for a given data structure. which representation is the most 

efficient? In comparing the space or time costs of two data organizations A and B for the same 

operations, we cannot merely compare the costs of individual operations for data of given sizes: 

A may be better than B on some data, and vice versa on others. A reasonable way to measure the 

efficiency of a data organization is to consider sequences of operations on the structure. Francon 

(1978. 1979) Knuth (1977) discovered that the number of possibilities for the ith insertion or negative 

query is equal to i. but that for deletions and positive queries this number depends on the size of the 

data structure. Answering the questions raised by Francon and Knuth is the main object of this 

paper. More precisely, we show 
. how to obtain limiting processes; 

. how to compute explicitly the average costs: 

. how to obtain variance estimates: 

l that the costs converge as n+ x. to random variables. either Gaussian or depending on Brownian 

r.wursh functionds (the limiting distributions are, therefore, completely described). 

To our knowledge such a complete analysis has never been done before for dynamic algorithms in 

Knuth’s model. 

*This research was (partially) supported by the ESPIRIT 2 Basic Research Actions Program of the EC 

under contract number 3075 (Alcom project) and by the P.R.C. “Mathematiques et Informatique”. 
** A preliminary version of our results w.a,s included in the proceedings of ICALP’89 conference 1201. 

0304-3975 ‘92,$05.00 (’ 1992-Elsevier Science Publishers B.V. All rights reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82062675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction 

The ditfculty of analy& dynamic algorithms. even if the universe of keys is finite, 

has been explained by Jonassen and Knuth in [IO]. where random insertions and 

deletions are performed on trees whose size never exceeds three. It was shown by 

Francon 16. 71 and Flajolet ct al. [4, 51 that several list and tree organizations can be 

analyzed in a dynamic context. Integrated costs for these dynamic structures were 

d&ned as averages of costs taken over the set of all possible evolutions of the 

structure, considered up to order isomorphism. llsing a method of continued fractions 

and orthogonal polynomials Elajolct ct al. obtained explicit expressions for the 

expected costs and in some cases for the variances but with Marko,cian model, which 

is briefly described in Section 2. The asymptotic distributions were obtained by 

Louchard [ 191 with a probabilistic analysis. Taking account of the remarks made bq 

FranCon and Knuth. a more natural model has been introduced in 18, 9, 211: the 

number of possibilities for the ith insertion or negative query is equal to i. but if after 

some operations the structure contains I, records, the number of possibilities for 

a deletion or positive query is a linear function of li. Since WC have to work with two 

indices (i and k). the analysis of dynamic algorithms is more diticult in this model. 

The purpose of the prcscnt paper is to give the limiting distributions of cost functions 

of the linear lists. priority q~cues and dictionaries. This paper is organized as follows. 

Section 2 describes the tlvo models. Section 3 provides the set of necessary definitions 

for dynamic data structures. Section 4. I is dcvotcd to the linear lists. In Section 4.2 we 

analyze priority queues and in Section 4.3 the dictionaries. Section 5 provides the 

main steps of the proofs. Section 6 concludes the paper. An appendix gives some more 

technical proofs for the dictionary model. 

2. The two models 

Knuth [ 131 considers the following operations on a data structure containing 

k keys (or numbers): 

(i) D,, standing for random deletion, in the sense that if I\ keys are present. each is 

chosen for deletion with probability I X: 

(ii) D,. standing for priority queue deletion. i.e. deletion of the smallest key: 

(iii) I,,. standing for insertion of ;I random number by order. in the sense that the 

new number is equally likely to fall into any of the k + I intervals defined by the 

k numbers still present as keys after prcbious insertions and deletions: this is 

to be indepcndcnt of the history bq which these IL numbers were actually 

obtained: 

(iv) I, standing for insertion ofa random real number from the uniform distribution 

in the interval [O. I], Each random number inserted is assumed to have the 

same distribution. and it is to bc indcpcndcnt of all previously inserted 

numbers. Thus. if we look at II such random numbers. the II ! possible orderings 



(of these numbers) are equally likely, and the particular distribution involved 

has no effect on the behaviour of the data organization (i.e. the class of data 

structures together with the associated algorithms for operating on these 

structures). 

Knott [l l] has shown that I, is a concept different from I (see also [4, Section 

6.2.21): this result has stimulated further research, notably [8,9,21] and the present 

work. In this paper. consideration of only the I (I,) kind of insertion is called Knuth’s 

(K) rnollel (Mnrlin~~ian (M) r~7orlel). As an example, consider a priority queue imple- 

mented as a sorted list. Let us analyze the following set of operations (key values are 

indicated): I(2.5). I(7.4). Dmin. I( l.O), Dmin, l(3.5). Dmin, Dmin. 

In the ,2/l~r/~o~irrri rnc)rlr)/ the first key has order 0, the second key has order 1, the 

suppression is related to order 0, etc. 

In K~iurh’s model the first three operations arc identical to the M model. We then 

have three intervals defined by the first two keys: (- x, 2.5). (2.5,7.4), (7.4, +‘s). The 

fourth operation I( 1 .O) is done in the first interval (order 0) among 3 possible intervals. 

The sixth operation I(3.5) is done in the third interval (order 3) among the 4 possible 

intervals defined by 1 .O < 2.5 < 7.4, etc. 

The Markovian model has been introduced and studied by combinatorial methods 

in [6. 71: Flajolet [3] has shown how the theory of continued fractions and ortho- 

gonal polynomials remarkably fits this model; further developments appear in [4, 51; 

distributions of costs and average costs have been calculated for some sequences of 

operations for various data types. including priority queues and linear lists. The 

asymptotic distributions of the costs functions have been obtained by Louchard [ 193. 

The following questions were raised in [7]: how to compute the corresponding 

costs in Knuth’s model and are the costs sensitive to the model? The first answers for 

linear lists and priority queues were given in [S, iA 771, after reducing the calculations in 

Knuth’s model to calculations in the Markovian model (we will denote by = the 

combinatorial equivalence given in [8]). 

In [9] an algebraic method has been developed which permits to reproduce all the 

results of [S] and to treat the dictionary case. In this paper we present a probabilistic 

analysis of linear lists. priority queues and dictionaries in this model and characterize 

the corresponding limiting distributions. The first step is to express the problem in 

a combinatorial way. Following [IO]. let us consider the sequence of operations 

IIl(DI)*, the initial data structure being empty: let r<j~<: be the three keys inserted 

during the sequence III; let us consider a linear list, i.e. s or y or -_ is deleted with equal 

probability; let 11‘ be the key inserted by the fourth I of this sequence; then all four 

cases i~<\-<y<:, s<,~<_t,<:, .Y<J<\v<-_, .s<~<:<ic do occur with equal prob- 

ability whatever the deleted keys. More generally, let us consider a sequen.ce of 

operations O1 O2 . ..Oj. the initial data structure being empty; any data type may be 

considered: linear list, priority queue, dictionary; assume Oj is the ith I of the 

sequence; let .x1 <.Y2 < ..’ <.Yi_ 1 be the keys inserted during the sequence OIOZ 

. ..Ojml. and let 1~ be the ith inserted key. Then, all the cases rt’<si <.Y~<...<x_~, 

S~<‘\‘<S~<‘.‘<.~j-l. . . . . s 1 < s2 < <xi , < 1%’ are equally likely, whatever the 



deleted keys. Put into combinatorial language: after j operations in a linear list, out of 

which. say, i are I’s, and, thus. j- i are D’s, the size of the data structure is li = 2 -,j; the 

keys of the data structure can be considered as a subset of k distinct objects of a set of 

size i. any of the (;) possible subsets being equally likely. 

We say that the number of possibilities of the ith I (in a sequence of operations) is 

equal to i (for Knuth’s model) whatever the size of the data when this insertion occurs. 

On the contrary, in the Markovian model we say that the number of possibilities of an 

I, operation is k+ 1 iff k is the size of the data structure when this insertion occurs, 

whatever the history of the sequence and of the data structure. A similar proof can be 

given for Q’ and Q- (see [9] for more details). The possibility functions in Knuth’s 

model are given in Table I (Section 3). 

3. Basic definitions 

(i) Following Flajolet et al. [S]. we define a schema (or path) Y(. ). of length 2n as 

a word ~:=0,02...0~,,~~I.D.Q’,Q~ 1 * such that for all j, I <,j<2n 

Io,o~...ojl,3~010~ O,l,,. (0) 

A schema is to be interpreted as a sequence of 2r1 requests (the keys operated on not 

being represented) where I, D, Q’ and Q- represent, respectively, an insertion, a 

deletion, a positive (successful) query (or search) and a negative (unsuccessful) query 

(or search). (0) means that the size of the structure is always 30. 

In the case of linear lists (LL) and priority queues (PQ). only insertions and 

deletions are performed. A stwcturc hi.story is a sequence of the form 

h:=0,(r,)02(r2)...0zrr(r2,,), where R=0,02...0,,, is a schema, and 

l rj is the rank (or order) of the key operated upon at stepj. 

l rj(S2):=IO,02...Oj1,-/010,...Oj/l, is the size (level) of the structure at stepj. 

We only consider schemas and histories with initial rrnd,finu/ /we/ 0 (the general case 

can be treated with similar techniques). The possibility function pos (defined for each 

request) is given in Table I, where k denotes the size of the structure. 

Let us return to the example given in Section 2. In terms of ranks. the history for the 

Markorim model can thus be derived as 

I(O) I(1) D(O) I(O) D(O) I(O) D(O) D(O). 

Table I 

Data type pos(ith I) pos(D,k~ pos(Q+. k) pos(ith Q-, 

Linear list (LL) i I, 0 0 

Priority queue (PQ) I I 0 0 
Dictionary (D) 1 i, k I 
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LL x s,(h) 

D 
c s,(h) c s,(h)+ x r,(h) 

,ecl+o+Q+ +u-, ,*ID+Q*) ,tD- 

In Knuth’s model, the history can be written as 

L(O) f(1) D(O) L(O) D(O) f(3) D(O) D(O). 

For any structure, let iln be the (finite) set of histories of length 2n and let 

NZn be the number of such histories (see [S]). For instance, Nz, is n? for MPQ 

(n?:=1.3.5...(2+1)). 

(ii) To any history h, we will associate cost functions C(lr). Two cost functions are 

considered in this paper: the storaye cost function a(h) := xj’! 1 xj( h) and the time cost 

function r(h). The latter function depends on the implementation of our lists’ struc- 

tures. We will use three implementations: the sorted list (SL), the unsorted list (UL) and 

the binur_y tournament (BT). 

The time cost functions are summarized in Table 2, where sj denotes the position of 

each key among all existing keys at time j. Let us explain the origin of these cost 

functions. For instance, for PQ in sorted list implementation (SL), we always delete 

the first (smallest) key: this costs just nothing. But, when we insert a key, we must first 

find its correct position: this costs sj inspections. 

As another example, let us consider D in unsorted list implementation (UL). 

Insertion obviously costs nothing: we just put the key in front of the list. Deletion and 

positive search require finding the position sj of the key. An unsuccessful query needs 

to go through the entire list: this costs ccj inspections. 

For the BT implementation, we only know the mean of an insertion: 

H[rj(h)+ 11-f, and for a deletion: 2[H[ccj(h)]-2+l/lj(h)] in a classical BT. 

(H(k) is the kth harmonic number.) Assume, for simplicity, that this remains true in 

Knuth’s model (see the conjecture in Section 4.2.2). 

Remark 1. For LL and PQ, we note that to each insertion at some level I, corresponds 

one deletion at level I - 1. 



With any cost function (‘(II ). wc nssociatc :I random variable C‘* dctined as follows: 

Expectation and variance of any event related to C* arc denoted by ,Y* and I’*. 

Following [19], we associate with each path 1’1 ) ;I classical random walk (each step 

affected by the same probability) of length 31. from 0 to 0. \vith weight given by the 

possibility functions of Table I. 

Each trajectory will thus be alt‘ccted by ;I total measure, which is the product 01 

probability measures (related to large deviations) and ;I weight depending on the data 

type WC consider. The \t~ig/ll[c~rl random walk corresponding to some path I.( ) is 

denoted by 1’*(. 1. 

The next t\vo sections arc devoted to the ch~iracteriLatio~1 of the limiting distribu- 

tion corresponding to each dynamic data structure (LL. PQ and D). These sections 

involve some ditlicult probabilistic tools. For the reader not familiar with these 

techniques. let us roughly explain the spirit of the method: 

First WC have to pro\e ;I kind of central limit theorem for the process 1.f: this 

means that wc haw to find a centering term Ccnt( 1’:) and ;I normahAng term 

Nor( 1’:) such that [ I’,,-Cent( j’,T )]. Nor( 1.:) converges (weakly. as II+ + 1) to 

;L random process .Y. 

Then we must find the mean. the covariancc and tho distribution of .Y. Some results 

obtained prebiouslq by Louchard [ 191 arc helpful hcrc. 

4. Limiting distributions 

This section is organized in the following way: Eve only list the results for linear lists 

(LL) (Section 4.1). priority queues (PQ) (Section 4.2) and dictionaria (D) (Section 4.3) 

with a few direct derivations. The main stcpa of the proofs arc pivcn in Section 5. Some 

lemmas and theorems for D need very advanced techniques: the interested reader 

shall find them in the appendix. 

By [8] we see that KLL is combinatorially equivalent to the priority queue in 

Markovian model (M PQ). which WC denote by K LL = M PQ. 

By [IO. Theorem 5.31 we know that. for MPQ. 

}‘*([/I(‘])~nl~(r) 
X,,(I>):=p 3 X ( I‘ ), rt[O. 21. (11 

\ ” 



where J,( z’)= ~(2 - 11)/2, X( ,) is a Markovian Gaussian process with mean 0 and 

covariance ~(xl)~l(2-sz) (x, 6.~~). with ;3( v):= r2/2, and * represents a weak conver- 

gence of random functions in the space of all right continuous functions having left 

limits and endowed with the Skorohod metric (see [l, Ch. III]). Also, it is proved in 

[19, Section 5.21 that 

s 2 

1’3 := _$( r) dr> = 4;’ 15. 
0 

Storage and time cost functions are now analyzed by three theorems which exhibit 

Gaussian properties. 

4.1.1. Storqr cast azLL 

The storage cost 02~~ is identical to o&o. By [19, Theorem 5.41 this gives the 

following theorem. where - represents convergence in distribution (for n+~) and 

. 1 ‘(M, V) is the normal (or Gaussian) random variable with mean M and variance V. 

Theorem 1. 

4. I .I. Tirw cost r &,_ 

The time cost depends on the implementation. 

For the SL implementation, we have the following theorem. 

Theorem 2. 

rg,,,,,-n’j3 

(t13/15)‘:2 
-. $‘(O.l). 

For the UL implementation, we derive the following result. 

Theorem 3. 

By [S] we know that KPQ is combinatorially equivalent to a Markov stack (MS): 

KPQz MS. The number of histories Nz,, is Cl,, for MS [S], where CZn:= the nth 



Catalan number =( 3:),‘( II + I). The Markovian stack has been analyzed in Cl5 171: it 

appears that 

I’“( [2rJr>] ) \ 31 * x + ( I’ ). (2) 

where A’ ’ (I.) is the standard Brownian excursion (BE) (see [2] for details on this 

process). Let us now proceed to the cost analysis. which yields the BE functionals. 

The storage cost n&_, is identical to a&. This has been analyzed in [ 17. Theorem 

91: this gives the following theorem. 

For the SL implementation WC assume, for simplification. that for large structure 

si,e an inserted key is uniformly distributed among all existing keys. This assumption 

is presently under investigation. WC then have the following limiting distribution. 

Theorem 5. 

For the LJL implementation wt: derive. by Table 2 and Remark I. that 

T&y, 111. - ! 0 &,: hence. we have the following theorem. 

For the BT implementation. WC denote by ii and qi the random variables r&ted to 

an insertion or a deletion in a BT of size Y*(i). We cor~jcc’turr that, in Knuth’s model 

and for large Y*(i), 

t‘(<,,-H( YT). E(r/i)-2H( I’?,. 

jr,,(;i)=O[log( Y*(i))“ 2], /!I()/j)=o[lo&( Y*(i))” I], (4) 
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where pk(Z) is the kth centered moment of Z. (This is proved in [18] for a classical 

binary search tree.) 

With (4), we can deduce that 

r~pQ.“T.-3nClog(n-~)1/2 
3n 

log[X+(t:)]dc 1 (5) 

The moments of [JA X ‘(I’) dc] have been given in [16]. Conjecture (4) and the 

moments of functional (5) will be analyzed in a forthcoming report. 

4.3. The dicGonar>s in KnurlI’s model (KD) 

4.3.1. Limit Theorems 

To obtain a formula like (I), we must first put a weight and a probability measure 

on the trajectory J( .) (see [ 191 for details). The probability is deduced from [19, Eq. 

(38)]. The dominant term is given by 

According to [9], the weight is given by 

(SI)!exp[Z], S,:=[#(I)+#(Q-)I, Z:= c log ny t 
it(D+Q+) ( 0) 

. (7) 

This weight is more intricate than the classical ones used in [ 191. The determination of 

y( .) is first solved by the following theorem. 

Theorem 7. E*[ Y*( rncl)] - ny( c), where y(. ) is given by the implicit equation 

The explicit solution is 

~~(t~):=[~~(2cos(cp/3)-l)j2]“~, cp=arccos[2c(2-[1)-l]. (8) 

We must now analyze the limiting process X( .). This is given by the following 

lemma. 

Lemma 8. X( .) is a Markovian Gaussian process, with mean 0 and covariance 

where y(.x):=[3+y’(.x)] [y’(x)- l13/8. 

We finally derive the complete limiting process, which is a superposition of two 

distinct Gaussian processes. 



Theorem 9. For KD. 

We can now analyze storage and time cost functions. which lead to Gaussian 

variables. 

4.32. Str.or.rr~c ~‘OS! fl;,, 

We obtain the following theorem. 

Theorem 10. 

Proof. The result is deduced from Theorem 9 with 

i‘ 
2 

I’,:= .l’(f.)df.. 
(1 
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4.3.3. Time cost t&, 

For the SL implementation, we have by Table 2 

Proceeding now as in Section 1.2, we readily obtain 

with r3:=j~~2(t’)d~= 12177. 

The Gaussian property of T& is checked as in [ 19, Theorem 4.121. We finally 

obtain the following Theorem. 

Theorem 11. 

T &,, SL - 9n2 135 

[n3(v3/12+(v2 +\1~)/4]"~ 
- < 1 ‘(0, 1). 

For the UL implementation, we derive the following result. 

Theorem 12. 

Remark 2. It appears that the limiting distributions are mostly Gaussian; this is not 

an obvious (or trivial) fact since the classical results using central limit theorems are 

not directly applicable here. In addition, the limiting distributions for KPQ are not 

Gaussian: they depend on Brownian excursion functionals. 

5. Main proofs’ steps 

5.1. Proof qf’ Theorems 2 and 3 ,for KLL 

For the SL implementation, we have from Table 2 

_ 

[ -i=l 

c ‘5’ Y;(i)]/ n? 

Y*EivL, 



+i 1 [ l’*(i)-E*( Y*(i))] 
1 

]?/ ? Y*il)]; n?, 

and by standard wriance analysis (see the details in [lg. Section 4.6.31) 

Repeating mutatis mutandis the proof of [lg. Theorem 4.121, one finally obtains 

Theorem 1. ( 1 

F-or the UL implementation. we have from Table 2 

[ 

2,1-I 

1 j-i 1 E*( Y*(i)) ’ :) n Y”(1) () fl'! 

ii I) i=l 1 /ED I' 

H 
2,,-t z +E* ; c y*(i)-; 1 E*( Y*(i)) 

it r) ,=1 11 
The proof of 119. Theorem 5.61 can now be adapted; this leads to Theorem 3. H 



5.2. Proqf qf Theorem 5,fbr KPQ 

For the SL implementation, we have from Table 2 (with our simplifying 

assumption) 

[by (2) and Remark I] 

b$J;En3’2 [by (311, 

V*(T&g.SL)+ [ C ~~..~$I’...~[ (C ji-+‘t’ Y*(i)) 
Y*&,” 

It1 
isl i=l 

i 

Zn- 1 

+t c Y*(i)-+ 1 E*( Y*(i)) 

isI i=l 

where V(Z) denotes the classical variance of Z. 

From [14, p. 2381, 

E[ jol X’(i:)‘du]=[l .xZ~4xe-‘x’d_x=~. 

We finally derive (the second term is dominant in (10)) 

More generally, 

Clearly, the dominant term of (12) is obtained with r = 0. This gives 

(11) 

(12) 

hence, Theorem 5. 0 



Our proof shows that, if the inserted key is not uniformly distributed among all 

existing keys. only the numc~ic~l cwfiicicv~t 1, 4 will be changed in Theorem 5. 

For the BT inlp[c~,,l~ntotiorl, we obtain from Table 3 [and noting that H,, - log( k)] 

+ 1 2 log( Y*(i)) ,’ Cl,, i E I) 1 
log[, 7nX +(l’)]dl 1 [by Remark 1 and (2)] 

= $ ( log 2 + log I? ) + .?!I El 
n- 

I 
log [A’ * ( I,)] df~ 

0 1 
=~(log2+log’i)+?)l 

i 

I 
logs~4\-e~ “‘d.\- 

I ‘1 

=3nlog(rl’3)-3;,r1.7, [by (II)] 

~~*(T&Q.,~)- k-?,, ir ’ C (<iplOg( Y*(i)))+ C (ITi- log( Y*(i))) itl IF II 1 
+ 1 I%( k’*(i))+3 c log( I~*(;)) 

itl I t I) 

where i is the expectation conditioned on I’*. Then (13) becomes [conditioned on 

Conjecture (4)] 

More generally. we check that 

/I~[T~~y.,~~]~(jll)‘_~(t log[ X +( I.)] dr 1 and hence. (5). 

The D case is more difficult to analyze; we have only given the main steps and a few 

proofs. More technical proofs are given in the appendix. To derive Theorem 7. WC 

must first establish the probability of various steps trlong IIJ( 1’). Let 

~(1, z~):=P[step[nr.]~I] and similarly for D, Q’, Q-. We shall use the following 

lemma. 



Lemma 13. 
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The mean of’this distrihutioll is, of‘course, J,‘( I’) + O( l/n). 

The proof of Lemma 13 is given in the appendix. 

We now need the total asymptotic measure along a path. We derive the following 

result. 

Lemma 14. The domimmt term in the loyurithm oj’thr usJ!mptotic total measure along 

ny ( . ) is gil>en hi, 

2n log II - II + I1 -log(l -_r’2)-J”log -y’)log4’ dc 
I 

J‘. 2“) dr, say. (14) 

The proof is also given in the appendix. We can now turn to the determination of y( .). 

Proof of Theorem 7. Maximizing (14) is a variational problem, which can be solved as 

in [19, Section 4.43. This gives the equation 

1 ~ _r’Z = c, ,“i, (15) 

the implicit solution of which is 

(-8,‘3C’-4~““/3C,)( ~-C’,J”‘~)~“= 
L’+cz when y’>O 

-C2-1’ when y’<O. 
(16) 

The constraints ~(0) = ~(2) = 0 lead to C, = 2(2/3) ’ 2, C2 = - 1. The explicit form (8) is 

given by the suitable solution of the cubic equation corresponding to (I 6). 0 

Proof of Lemma 8. To find the distribution of X(x) [see (l)], we must first include the 

contribution from (14). Letting fj:= X,(x)/ .,‘L, this can be deduced from [ 19, Lemma 

4.71; it amounts to 

n: 
i 

I[,f,,-:+2,1;.,,;,;‘~+,~;,,,,(-;’)]dr +n 
s 

2 

[symmetric term] dc, 
0 * 
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where Z( (1) is given by (16) with 

0 u:=y(.u)+fj. 

0 z(O)=O, z(s)=u, (17) 

The detailed techniques to obtain Z, z,. z’, can be found in 

45.21. 

[ 19. Sections 4. 5.1 and 

Actually. WC will not use the complicated expression (8). All integrations will be 

performed with respect to a new variable h =( 1 ~ 2,‘2,/3y’ ’ ) 1 ‘. which, by (15) is 

nothing but lj.‘l. The first integral leads to 

Performing this integration and adding the term from 1: leads to (j~‘-j~‘( u)) 

_1:0264;[(- 1 l ty’)“(.\.‘-3)(f+ l)“(_r’$3)], 

which shows that X(.Y) is a G~(r.ssirrrt ~rritrhlr with mean 0 and variance 

c’*(.u)=;~(\-);~(2-.\-). ;,(s)=[3+!~‘(u)][l”(.u)- 1]“:8. 

The covariance can be obtained by similar computation (we omit the details). ~ 

Proof of Theorem 9. Let the (normalized) trajectory be 

z( r):= I’( 1’) + ;/( 1.). \ I? ( %(O) = z(2) = 0). 

We must now determine the contribution of z, x’ arising from (7). This is given by the 

following lemma. where we obtain stochastic integrals on Brownian motion. 

Lemma 15. Thr lincw c~on~ihution to x, x ’ jionz log [ ( S 1 ) !] Z is ~~.symptoticull~~ 

yiwn hJ1 

(18) 

The proof is given in the appendix. Lemma I5 (which gives the contribution of (7) to 

our process density) tells us that we must transform our expression for X(.) into 
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X(v):= I( 2;) -p(v) and we must determine /J( .). This is given by the following lemma, 

the proof of which is also given in the appendix. 

Lemma 16. p(u)=p1(c)+p2(c), where 

Pl(c’)=?(L)) 
s 

’ $I-u)dhl(u)+y(2-v) 
,’ s 

“y(u)dh,(u), (19) 
0 

pz(u)= -y(v) 

s 

’ y’(2-u)dh,(u)+y(2-c) 
s 

’ g’(u)dhz(u), (20) 
L 0 

and h 1 (.), h2 (.) are given by Lemmu 15. As expected, p(O) = p(2) = 0. Forfurther use, let 

US write p(v) as ji$(u, u) mdB(u). 

Collecting now the results from (8) and Lemmas 8, 15 and 16, we readily obtain 

Theorem 9. 

6. Conclusion 

We have analyzed asymptotic distributions of linear lists, priority queues, and 

dictionaries, histories and cost functions in Knuth’s model. It appears that the limiting 

cost distributions are either Gaussian random variables or Brownian excursion 

functionals. The limiting processes are Gaussian Markovian, Brownian excursion and 

Gaussian (non-Markovian) stochastic integrals. As further work, we intend to con- 

sider the symbol table in both Markovian and Knuth’s model. 

Appendix for KD 

This appendix contains the detailed technical proofs of some lemmas and theorems 

related to KD. 

Proof of Lemma 13. By [19, Lemma 4.11 (adapted to the case of dictionaries), we 

obtain by the theory of large deviations 

=dx, t)dx, say, 

where Y( .) is the classical random walk related to dictionaries. Hence, 

P[step[l]EII Y(nt)Endx]-a l+ cp x-i t-A [ ( ( n’ J&+(X.f)]. 



After some tedious but simple manipulations, this gives 

;[1+2.Y f+(.Y f)‘]+o ,y . 
i 1 

and, similarly, for D, Q’, Q-. One could also prove these formulas by starting directly 

from the dictionary large deviation generating function (set [IO, (9)] ). Proceeding now 

as in [ 19, Section 4.41, the lemma is easily proved. 

Proof of Lemma 14. Let 

~‘(~‘)=/~(l.r)sp(Q . I~,=; [I + \“(r)]+O 

c/(~,‘,= I ~IJ(!“)=IJ(D.I.)+/J(Q'. r,=:[I -~,‘(r)]-tO ‘; 0 (21) 

We see that the dominant term of S, along r7~,( 7’) is pivcn bq 

i’ 

2 
I7 P(!,‘)dr=r7+0(1). 

0 

and 

;(I !“(r))lof(!‘(r,))dr,+O (23) 

By Stirling’s formula. the dominant rrlrirrhl~ tin )‘(.)I part of (7) is immediately 

deduced from (22) and (33); this gi\,cs only 

(24) 

(dropping the (r) to simplify formulas). Collecting the results from (6) and (24) WC 

obtain Lemma 14. 

To prove Lemma 15. we must take into account the stochastic part of (7). This is a new 

problem that WC did not encounter in the more classical structures of [19]: only 

dominant terms like ( 14) were necessary there. To solve this problem. we first establish 

the joinr~/ distrihrrior7 of’ S, rrr7rl Z in the following lemma. 



where z’ = -_‘( L’), and 
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x,:= 

s 2 

x2 := r( -_‘) dt., s(,_‘):=[l-~‘~]/8, 
0 

c 2 

33 := q(z’)log[~z~]di., 
0 

x4:= 1.( z’) log’ [K] dt>, 

s 2 

rs:= r(z’)log[nz]dr 
0 

Proof. Let us divide the 212 steps into 2nj~i groups of In steps, where rn is large and 

1n = 0 ( II ). (25) 

In each group, we must study the asymptotic distribution of Si and S2 := m - S1. This 

can be done as follows. To fix a group, let t1,t2~[0,2], t2=t1+d, z,=z(t,), 

rz=z(rz), and nz=nd. 

If we do not constrain the random walk ;( .) associated with the dictionary to follow, 

we can USC the probabilities given by Lemma 13 to obtain, in [nt,, nt2], 

#(I)-nrp(I)+q(I). II(I)=. I ‘(O,mp(l)q(I)), q(I):= 1 --p(I), 

and, similarly, for D. Q-, Q’ . 
We have dropped the 11 dependence as ;‘(.) is asymptotically constant in [ti, t2] 

by (25). 

The covariance of (# (I), #(Q’)) is easily seen to be -mp(I)p(Q+) and, similarly, 

for (I, Q+, Q-, D). The covariance matrix is obviously of rank 3, which reflects the fact 

that 

#(I)+#(D)+#(Q+)+#(Q~)= rn, i.e. q(I)+q(Q-)+~(Q+)+v (D)=O. 

(26) 

This allows us to represent all random variables as functions of [q(I), q(Q- ), q(Q’)] 

with covariance matrix C given by 

P(I). Y(I) -PU).P(Q-) 

c = m -P(Q- ).P(I) P(Q-).dQ-1 -P(Q~).P(Q+) 

-P(Q+ ).PU) -_p(Q+ ).P(Q- 1 



The density of [v(I), q(Q- 1, q(Q' )I is characterized by the matrix Cl. Now, 

if we umstruin the random walk Y(.) on [nt,,ntz] to be such that Y(nt,)=n,-,, 

Y(ntz)=nz2, this amounts to imposing the relation 

v(I)~(I)+vI(Q-)A(Q- )+v?(Q+)A(Q+ )+rl(D)d(D)=O. (27) 

where d(.) are the four increments, centered on their mean I’. i.e. d(I)= 1 -_=I, 

d(Q-)=n(Q+)= -_;I. d(D)= - 1-z’. 

Inserting (26) into (27) gives 

r?(Q+ I= -2q(I)-q(Q- I. 

This last equation is now inserted into C ’ giving the matrix A ’ corresponding to 

the density of the constrained couple (q(I), q(Q- )). Actually, J. Leroy has shown to us 

that a suitable simple matrix transformation, applied to C, easily leads to A. We 

obtain 

A = m 
i 

1/16-~3”;8+_r’4/16 - l;16+J@/‘8-_rf’;16 

- 1;16+J~‘Z!8-~‘“!16 (_~“-3)(_t”~- I).16 

We immediately deduce. from the distribution of q(I)+q(Q- ) on a group, that 

s1 -w(=‘)+. f ‘(O,mr(z’)), r(z’)=(l -:‘“);8+0(l./,H), 

We also have 

~i,c(~, xJ,rx4 are now immediately deduced as all groups are independent by con- 

straint(27).Toderiver,,notethat,on [nt,.ntz],E[(S,-mp(=‘))(Sz-m(l-p(=’))]= 

- mr( z’); hence, a5 follows. n 

Proof of Lemma 15. Let us return to the techniques we used in Lemma 17: the 2n 

steps are divided into n,:=2n/m groups of ~1 steps. In group j (,j= 1. . . . . n,). let 

s,.~:=( #,(I)+ #j(Q~))=mp(,;)+[rl,(I)+rlj(Q-)I=mP(l;)+(r,j. say* 

where, by the proof of Lemma 17 (0, = 1‘(0, mr(~;)) and Z) is the value of -_‘( ~1) on 

group j [asymptotically constant on that group by (25)]. 

Now, from Lemma 17 again, we obtain 

s, -n%, + 5 t!Jj, Z-tlXc,+ f [-10g(tlZj)(iJ,]. 
i= 1 ,=I 
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It is now a classical expansion exercise to obtain the x, x’ term from log [( S1 ) !] . 2. We 

first derive 

+ 
[( 1 

5 Wj lOg(nU,)+ g [-lOg(nZj)Wj] . 
j=l j= 1 1 

The term in the first square brackets on the right-hand side is, of course, the O(n) 

contribution to (14). The term in the second square brackets, by Lemma 17, reduces to 

2 [-lOg(Zj)Oj]. (28) 
j= 1 

Note that -wj [which can also be written as ~j( D) + rlj( Q ’ )] can be represented by 

Ja tj, where tj:= I $ ‘(0,l) and all <j are independent. Expanding (28) we derive 

for the linear x, x’ term 

where sj:= s(y)) and, similarly, for Xj, xi, yj. 

Setting now AC:= m/n (oc[O, 2]), we formally obtain 

jzl [ FJij+lOg(lj)&&]ijfi, 
J J 

where we recognize a classical Gaussian white noise: it is well known that r,Jdv, can 

be written as dB( Uj); hence, (18) follows. 0 

Proof of Lemma 16. Let a family of Gaussian variables x =( _yl . . xk) characterized by 

a density exp[-fQ(x)]/(2rr)k’2/QI-1, where the quadratic form Q(x) is constructed 

from the matrix Q. If we set x = p -A, where A is the mean of the Gaussian family p, the 

linear term (in p) of the logarithm of this density is given by pQAT. If we know that this 

linear term is given by PgT, we derive gT= QAT; hence, %T = Q-l gT. But it is well 

known that Q-l = C, where C is the covariance of x, i.e. C= E [ xTx]; hence, 

j.r= CT 9 (29) 

In our case, we deal with continuous time processes and we must use, for the h,( .) 

contribution, the correspondence relations: 

xittx(L’), PiwXtv)> AiHP1(U), Cij++“Y?/(~)Y(2-uh VdU, 

gitfdhl(v). 

Equation (19) is now immediate from (29) 
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Proof of Theorem 12. By Table 2 and Lemma 13, we derive that 

[I 

Z 

$ 

2 

E*(T&~)-~' f p(D. ~~)4’(c)dt~+$ P(Q+> L?)y(c)du 
1 

= 17n2/70. 
0 0 

To analyze the variance, it is more convenient to return to the Lemma 1.5 representa- 

tion. This gives us from Table 2 

(35) 

where 

0 -mj:=CVj(D)+Vj(Q+)lv 
l 5;. j are independent. uniformly [0 . .tri] distributed random variables 

. P(Q-,--J)’ g’ IS iven by Lemma 13 and q(.) by (21). 

Using the techniques of Lemma 17, it is easily seen that 

v(Q-I= -h(D)-rl(Q+h ~(1) = v(D). 

Let cp(z’):=iy(=‘)+p(Q-. I’)=~~$:‘~$:” by (21) and Lemma 13. Developing (35) 

by classical variance analysis, we derive 

V*(7;D,“L)=E ; 

i I 

lHq(:;l-lu, 

j= 1 

ill Si,j-t(n=j)[rlly(,-I)-wj] 

1 

+j;, (nlj)[-3rlj(D)-_)rlj(Q+)] 

+ ~ (n~j)rn[cp(=S)-_(~J)] 
j=l 

‘1, 

I 

2 

+ C VlCp(~;)tI(lj-J’j) 

j=l 

In the last two brackets, we have, by Theorem 9, 

n( “,-2’, )-\/l’lI [x(sj)+p(.sj)], 5-y; 

where group j is characterized by the interval [.Uj, Xi+ i]. 

Note that, by (28), p(x) is asymptotically given by 

(36) 



Keeping only the dominant terms in (36), we finally derive (omitting the details) 

where 

i(!..j.‘)=t.ir’ (,i is given in the proof of Lemma 11 by i=A/rn). 

q(r):= V(!“(-Y))$(-Y, r.)ds+ $‘(.Y, ~~)r(_\)d\- . 1 
where 4’/‘(r, r.):=?$(r.~$ ir. The detailed computation of \j5 [see (9)] and 

I’*(s~,~. cL) is under investigation. Note that (32) and (33) must be used for the middle 

term of (37). 

By central limit theorem techniques (we omit the details, see [ 19, Section 4.6.3]), we 

can now derive Theorem 12. ! I 
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