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1. Introduction

In this work, we study systems of partial differential equations (PDEs). Such systems arise in many areas of mathematics,
engineering and physical sciences. These equations are often too complicated to be solved exactly and even if an exact
solution is obtained, the required calculations may be too complicated. Very recently, many powerful methods have
been presented, such as the Adomian decomposition method [1,2], the variational iteration method [3,4], the homotopy
perturbation method (HPM) [5-21], and the differential transform method [22-24].

The general form of a system of PDEs can be considered as the following:

ou; .
a—t’ + Ni(X1, oo X1 B U, e Up) = G(X1, X0y oo Xpm1u ), j=1,...,m, (1)

with the following initial conditions:
Uj(X1, X2, ..., Xn—1, to) = fj(X1, X2, ..., Xp—1), j=1,...,n

where Ny, ..., N, are non-linear operators, which usually depend on the functions u; and their derivatives,and g1, g2, . . ., gn
are inhomogeneous terms.

This paper is arranged as follows. In Section 2, the new modification of HPM, called NHPM, for solving systems of partial
differential equations is presented. The efficiency of the new method is verified by the numerical results for three sample
examples in Section 3. Comparisons between this method and HPM are illustrated in this section. The conclusions appear
in Section 4.
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2. The basic idea of NHPM

For solving system (1), by using NHPM, we construct the following homotopies:

aU; oU; .

1-p) at —Ujo|+D W+Nj(X1,--~,Xn—1,f,U1,---,Un)—gj =0, j=1,...,n (2)
or

ou; .

Py Uj, —p(ujo + Nj(X1, X2, ..., Xn—1, £, Uy, ..., Up) —gj), j=1,...,n (3)
Applying the inverse operator, L~! = ftf)(.)dt, to both sides of Eq. (3), we obtain

t
Ui(X1, X2, ..., X1, £) = Uj(X1, X1, ..., Xn—1, to) +/ uj,dt
to
t
—P/ (Ujo + Nj(X1, X2, ..., Xn—1, £, Uy, ..., Up) —gj)df, ji=1,...,n (4)
to
where
le(X17X27 ey Xp—1, tO) = u]'(X‘],Xz, ey Xp—1, tO)? ]: 17 R (%
Let us present the solution of the system (4) as the following:

Uy=Upo+pUn +p°Up+---, j=1,....n (5)
where U, i =1,...,n,j =0, ...,n, are functions which should be determined. Suppose that the initial approximations
of the solutions of Eqs. (1) are in the following form:

o0

Uio(X1, Xy o Xn 1 0) = Y (X1, X, X )P0, i=1,0n (6)

j=0

where a;j(X1,X2, ..., Xp—1), i = 1,...,n,j = 0,...,n, are unknown coefficients and Py(t), P1(t), P,(t), ... are specific

functions.
Substituting (5) and (6) into (4) and equating the coefficients of p with the same powers leads to

o] t
P° i Uio(xi, Xy ooy Xno1, £) = fike, Xay oo oy Xnm) + Zaij/ pi(t)dt,
j=0 to

oo t t
p': Ui,l(Xth,--.,Xn—l,f)Z—Zaij/ Pj(f)dt—/ (Ni(X1,X2,--~7Xn—1,f, U1,0,~-7Un,0)—gi)dt,
j=0 to to

t

p2 : Ui.Z(X17X27 cees Xn—1, t) - _/ (Ni(X], X2, ooy Xn—1, t» U],O! sy Un.Ov U],lv e Un,])) dta

to

t
P oUij(x1, X, ..o, Xpo, £) = —/ (Ni(x1, %2, -« ., Xn—1, £, Urgs o ooy Unjos oy Unjos ey Un,j—l)) dt,

to

Now if we solve these equations in such a way that U; 1 (X1X2, . . ., Xp—1, t) = 0, then Eqgs. (7) yield
Ui,Z(xle sy Xn—1, t) = qu3(X1X2, vy Xn—1, f) =...=0.

Therefore the exact solution may be obtained as the following:

o0 t
ui(xleZ»n-sxn—lvt)=Ui,O(X17X2»-~-sxnfl,t)Zfi(xlaxz’~-~7Xn—1)+zai.j/ P(t)dt, i=1,...,n
j=0 to
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It is worth mentioning thatif g;(x1, X, . .., X,—1, t),and u; o (X1, X2, . . ., Xp—1, t), are analyticaround t = t,, then their Taylor
series can be defined as

o0
Uio(X1, X2, ..., Xp—1, 1) = Zai,j(xu X2, oo Xn)(E —t)",

=0
> 9)
G, Xa, o X1, ) = )@ X - X 1) (E — 1)
=0
which can be used in Egs. (7), where a; j(x1, X2, . .. , Xo—1), i=1,...,n, j =0, ..., n,are unknown coefficients which must
be computed, and a;‘j(xl, X2, ...,%X—1),i=1,...,n, j=0,...,n,are known ones.

To show the capability of the method, NHPM has been applied to some examples in the next section.

3. Numerical results

To demonstrate the effectiveness of the method three examples of systems of non-linear partial differential equations
are presented.

Example 1. Consider the following system of three-dimensional partial differential equations:

u Ju Jdvau

ot Vox ot ay
v dv ou dv

o Yox  otoy
with initial conditions
ux,y,00=x+y-—1,
v(x,y,0)=x—y+ 1.
The exact solutions are
ux,y,t) =x+y+t—1,
vix,y,t) =x—y—t+1.
The HPM and NHPM methods are used to approximate the solutions.

First we apply the HPM method.
According to the homotopy perturbation method, we have

U=x+y—1,
Vo=x—y+1,
Uy =2t + —t2,

1
Vi =—=t%
! 2

1 1
Uy = ——t> — =2,

6 2

1 1
Vo= —t? 4+ —t3 —2t,
S 6

1 1
Uy = —t3+ —t* t? — 2t,
=30t

1 1
Vs =——t*4 —t%,
3 22t T3

Therefore, the solution will be as follows:

1+x+y+2t ! t7+1t5 1t3+
u=— X e J— — = cee
y 5040 40 2

1+ +2t+ ! t’ 1t5—|—1t3+
v= X— —t - — =
y 5040 40 2
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To solve Eq. (10) by using NHPM, we construct the following homotopies:

U aU 9V aU
E(x,y,t)=u()(x,y,t)—p uO(x,y,t)—Vf—ffy—lJrX—y—t ,

ox dt 9
(11)
av(x t) *,y,) (*,y,1) Uav oV T+x+y+t
&y, 0 =v&y, ) —plv®y,t) —U_— — ———— :
at y o(X, Y P\ volX,y Ix ot y y
Applying the inverse operator, L~! = fot (.)dt, to both sides of these equations, we obtain
t t ou 9V au
Ux,y,t) =U(x,y,0) + | uo(x,y, t)dt —p U, y,t) = V——— — —— — 1+x—y—t]dt,
0 0 0x at ay
(12)
t t v U oV
Vix,y,t) =V(x,y,0) + [ vo(x,y,t)dt —p vy, t) —U—— — ——— — 1+x+y+t)de.
0 0 0x at 8y

Suppose that the solutions of system (12) are as assumed in (5); substituting Eqs. (5) into Eqgs. (12), collecting the same
powers of p, and equating each coefficient of p to zero yields

t
Up(x,y,t) =U(x,y,0) +/ uo(x, y, t)dt,
0. 0
p t
Volx,y,t) =V(x,y,0) +/ vo(x,y, t)dt,
0
t U,  9Vp Uy
U1(x,y,t)_ —ux,y, ) +Vo—+ ——+1—-x+y+t)dt,
P ox ot dy
' Ve  9U, 3V,
Vl(x,y,t)— VX, Y )+ Up—o + 2 4 1 —x—y—t]dt,
ax at dy
U 8U Vo oU;  aV; AU,
Ur(x,y. t) = (Vo : LA Rt —1—°> dt,
0 Vox at dy at dy
' 1% av aUg 0V  dU; 3V,
Vz(x,y,t)_ Up— + Uj— 4 —2 1 120 ) gy,
" ax at dy Jat dy
td AU, avk AUy
X, y,t) = S =) dt,
- [Unr D= A;( ax o ay)
P =
J Vik Uk dVj_y
X, y,t) = — dt,
Vi1 (%, ¥, t) = [)k ( Ix + at 8y>
Assume {uo(x,y, D=y an(x y)Pa(D), Pku)—r’k U(x.y.0) = u(x.y, 0).
Vo (X%, 6) = D bu(X,Y)Pa(t), P(t) =¥, V(x,y,0) = v(x,y,0).

Solving the above equations for U; (x, y, t), Vi(x, y, t) leads to the result
Ui(x,y,t) = (—ao(x,¥) + bo(x,y) + 2)t

1 1 1 1 1 1
+ <—Eal(x, »+ Ebo(X, )+ & —y+ Da(x,y) + =bi1(x,y) + an,y(x, Mbo(x,y) + 5) t*

2 2
1 1 1 1
—zaX,y) + =bi1(x,y) + *(x —y+ Dan(x,y) + faOX(x, Whbo(x,y)
o T J
+3bz(x y) + aOy(X Vbi(x,y) + *aly(x Ybo(x,y)
1 1
—Zag(x ) + bz(X »+ —(x—y+ Daxnx,y) + aOX(x Nbi(x,y) + a]x(x Mbo(x,y) .
+ t

1
+Zb3(x, »+ ZaOy(x,y)bz(x, »+ galy(x,y)lh(x, »+ EGZy(X»}’)bo(X, N))
_|_ cee,
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Vitx,y,t) = (=bo(x,y) — ao(x, y))t

1 1 1 1 1 1
+ (—Ebl(x, V) + S0 y) + S x4y = Dbox(x.y) — Sa1(x.y) + 580X, y)boy(x. y) — 5) t?

1 1 1 1
—=b(x,y) + —a1(x,y) + =(x +y — Dbi(x,y) + = ao(x, y)box (X, y)
+ 3 6 6 3

¢3
1 1 1
_§GZ(X7 y) + éao(x» }’)bly(& y) + gal(x» }’)bOy(Xv y)
1 1 1 1 1
—=b3(x,¥) + — @, y) + —(x+y— Dbxu(x,y) + ca1(x, Ybox (%, y) + —ao(x, y)b1x(x, y)
4 12 12 8 8 4
R 1 1 1 t
2@ *, ¥ + Zaz(x,y)bOy(x, »+ gal(x,y)bly(x, »+ an(x, Vb (x,y)
4+ .-
By the vanishing of U, (x, y, t), V1(x, y, t), the coefficients a, (x, y), b,(x,y) (n = 1, 2, 3, ...) are determined as
ao(x,y) =1, ar(x,y) = ax(x,y) = a3(x,y) = as(x,y) = --- 0,
bo(x,y) = =1,  bi1(x,y) = ba(x,¥) = b3(x,y) = ba(x,y) = ---0.
Therefore we obtain the solution of Eq. (14) as
1 1 1
u(x,y,t) =Up(x, ¥, 1) =x+y — 1+ ap(x, y)t + Eal(x,y)t2 + §az(X7Y)f3 + 8K, Nt =x4y -1,
1 1 1
(.Y, ) = Vol y, D =X =y + 1+ bo(6, Nt + Shix NI + 2ha(x NE + 2bsx )+ =x—y —t 41,
which is an exact solution.
Example 2. Consider the following system of two non-linear equations:
Ju u ov _
— —v—+u— = —1+4e€"sint,
ox ot ot (13)
dv duodv Jdvau

oV | ouov  OVOU 4 axcost,
ox " arox ot ox ¢ cos

with boundary conditions
u(0, t) = sint,
v(0, t) = cost.
The exact solutions of this system are
u(x, t) = e*sint,
v(x,t) = e *cost.

This system will be solved by using HPM and NHPM.
First we apply the HPM method.
According to the homotopy perturbation method, we have

Uy = sint,
Vo = cost,
U; = e*sint — sint,
V; = —x+e*cost — cost,
X —X 1 2
Uy=¢e"—e " —2x — —x“cos(t),

Vo = —e¥cos’t +e¥sin®t + 2cos’t + xcost — 1,

Therefore, the solution will be as follows:

1
{u:e"sinH—e"—e"‘—zx—szcos(t)+...,

v=—e¥cos’t + e*sin’t +e¥cost +2cos’t +xcost —x—1+....
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To solve system (12) by using NHPM, we construct the following homotopy:

ou ou aV
—x, t) = up(x,t) —p|up(x,t) —=V— +U— +1—¢€"sint
0x ot at
(14)
BV( 0 . 6) ( t)+8U8V+8V8U+1+ ;
—(x,t) = vo(x, t) — p [ volx, ——t —— e ¥ cos
ox 0 P ™ ot 9x | ot ox
Applying the inverse operator, L~! = f(f (.)dx, to both sides of the above equations, we obtain
X X au av v
Ukx,t) =U(,t) + Up(x, t)dx —p U (x, t)—VE+U§+] —e*sint | dx,
0 0
15
X X ou av  aV U (15)
Vix,t) =V(O,t)+ vo(x, t)dx — p vo(x, t) + — + ——+1+e*cost )dx
0 0 at ox = at ox

Suppose that the solutions of system (15) have the form (5); substituting Eqs. (5) into Egs. (15), collecting terms with the
same powers of p, and equating each coefficient of p to zero results in

X
Up(x, ) = U(0, 1) + / o (x, £)dx,
0. 0
p’: N
Vox,t) =V (0, 1) +/ vo(x, 1)dx,
0
x AU, Vo
Ui(x, t) = —ug(x, t) + Vo— ot Uoﬁ—l—l—e sint ) dx,
1. 0
P x o Vo Vo s .
Vilx,t) = —vox,t) - —— — ———1—¢e"cost | dx,
o at ox  at ox
Up(x, £) /XV8U1+V8U° TRALRENTICACE W
X, t) = - ronll R9
, o % ot ot o ot
P X0oaUgdVy AUy 8V Ve dU, 9V U,
Va(x, t) = A Nt AL ALt A U 2
0 at  ox at ox at  ox at  ox
J aU; av;
' U1, t) = / Z Vi <4k — Uk E)Jt k) dx,

U 0Vj_ Vi 0U;—
oty = [ 30 (FI e M)
0 = at  ox at  dy

(e, ) =y an(0x, U, 1) =u(0,0),

and solving equations U (x, t), V;(x, t) leads to the following results:
v, ) = Y o ba(OX, V(0,0 =v(0,1), ged 1 0, V1%, ) &

Assuming that {

1 " (t t  bo(t t  b,(t)sint t)sint int
Ul(X,t)=(—ao(f)+Sint)X+(—Eal(f)'FaO()cos o®)cost_ bo()sin G() sin Sm>x2

2 2 2 2 2
1 aj(t)ycost  by(t)cost  bo(t)ag(t) bi(t)sint ai(t)sint  by(t)ag(t) sint) ,
—_— t — — I
+ ( 3Clz( )+ 6 + 6 + 3 6 + 5 3 + 5 X
1 o (t t b, (t t by (t)a,(t bo(t)d', (t
_703(0_’_‘12()“)5 2(t) cos 1()‘10()+ o(H)ay (t)
L 4 12 12 8 8 g
by(t)sint  ay(t)sint  by(t)ai(t)  bi(t)ag(t)  sint ’
12 12 8 8 24

Vi(x, t) = (—bo(t) — bo(t) cost + ag(t) sint — cost — 1) x
1 B bq(t) cost B bo(t)ap(t)  a;(t)sint B by(t)ag(t)  costy ,
(— by(t) 5 5 + ) > + 5 )x
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N (—1b2(r) B by (t) cost B bo(t)a; (t) B bi(t)ay(t) N a(t) sint B by (t)ao(t) B bg(t)as (t) B g) e
3 3 6 3 3 6 3 6
1 bs(t)cost  bo(t)ay(t)  bi(t)aj(t)  ba(t)ay(t)
——bs(t) — — - -
4 4 12 8 4 XA
as(t)sint by(t)ay (t) _ b (t)a;(t) _ b} (t)ao(t) cost '
4 4 8 12 24

By the vanishing of U; (x, t), Vi (x, t), the coefficients a,(t), b,(t) (n = 1, 2, 3, ...) are obtained as follows:

1 1 1
ap(t) = sint, a;(t) = sint, a(t) = 3 sint, az(t) = 5 sint, as(t) = 72 sint, ...

1 1 1
bo(t) = — cost, bi(t) = cost, by (t) = -3 cost, bs(t) = gcost, bs(t) = ~5a cost,....
This implies that
1 1 1
u(x,t) = Up(x,t) = sint + ag(t)x + ial(t)x2 + gaz(t)x3 + Za3(t)x4 + ... =¢€"sint,
1 1 1
v(x, t) = Vo(x, t) = cost + bo(t)x + Eb](t)x2 + 5bz(r)x3 + Zb3(t)x4 + .- =e*cost.

In this example the exact solutions are gained.
Example 3. Consider the following non-linear system of inhomogeneous partial differential equations:

u Jw dv 19w 9%u

— - — — — —— —— = —4xt,
ot ox ot 2 9t 0x2

v dw 3%u

— — —— = 6t,

ot ot 0x2

Jw 3%u  dvow

— — — — — — =4xt — 2t — 2,

ot  dxz  0x ot
subject to the initial condition
u(x,0) = X+ 1,
v(x,0) = X -1,
w(x, 0) =x° — 1.
The exact solutions are
ulx, t) =x> —t>+1,
vix, t) =x> +t2—1,
wx, ) =x —t>—1.

Using the homotopy perturbation method leads to

Up=x*+1,
Vo=2x>—1,
Wo = x> — 1,
U = —2xt?,
v, = 3t2,

W, = 2xt? — 2,
1 2
Uy = S (16x = 2)¢°,

1 2
V2 = E(SX - 4)t N
W, = x(4x — 2)t?,

Us = 3t% 4+ (x(8% — 4) + x(4x — 2))t2,
V3 = 2x(4x — 2)t2,
W; = 2x*(4x — 2)t2,

231

(16)
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Then, the approximate solutions, in series form, are

ur1+x —t%,
v%xz—l—l—tz,
waxE—1-—t%

For solving this system by using NHPM, we consider the following homotopy:

E)U( 5 ®.0) ®.0 AW 9V 10W 92U iy

—xt) =ug(x, t) —plup(x, 0) — —— — - ——

ar e o, )= P Hol, ax ot 2 9t o

Y %, 0) = votx. ) - WEU_g (17)
—x ) =vo(x,t) —p | vox,t) — — — —6t ],

ot 0 by v ot 9

W x. ) = wo(x. £) o LY VAW vt

—x ) =wox, t) —plwo(x, 1) — — — — — —4x .

ot 0 P\ o X2 ox ot

Applying the inverse operator, L=! = [;(.)dt, to both sides of the system (17) leads to

U(Xt)—U(x0)+/tu(xt)dt ft bty — WOV 1AW 4
5 — 5 ) o\A, po 0\A, ax at Zat axz 7

t t oW 92U
Vix,t) =V(,0) +/ v (x, t)dt —p/ vo(x, t) — — —— — 6t | dt, (18)
0 0 at 9x?
t t U AV oW
W(x, t) =W(x,0)+ wo(x, t)dt — p wox,t) — — — — — —4xt + 2t + 2 ) dt.
0 0 8x2 Jx ot

Suppose that the solutions of system (18) are in the form (5); substituting Egs. (5) into Egs. (18), collecting the terms with
the same powers of p, and equating each coefficient of p to zero results in

t
Up(x, t) = U(x, 0)+/ up(x, t)dt,
0
t
P Vot t) = Vix, 0) + / wox, D),
0

t
Wo(x,t) = W(x,0) + / wo(x, t)dt,
0

t W, aVy 1 3W, 92U,
Ui(x, t) = H+ —— — 4xt ) dt,
1x,t) = / ( Up(x, t) + ox 9t T3 ot o x)

Vo vix ) = x,t) + OWo 9°Up +6t)dt
: = —, —_—
p 1(X, o 9t ox2 ,
32U0 Vo OW,
W1(x,t): —wo(x, t) + 4 ——— +4Axt—2t—2)dt
0 3)( 8t

aw, av0 aWo 3V 13W, 92U, 1w, 32U,

U (x,t) = — dt,
9x ot | ox ot 2 ot 9x2 2 ot ox
oW, 92U aW 92U,

2 1 1 0
D Y Valx, t de,
P 2 1) = ( ax 0x* | ox ox2 )

92U, av0 AW, v, awo>dt

Wy(x, £) = ad]
2 ) ( x ot T ax ot
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S (AW Vi 10W, 82U
Uj+1(X,f)=/0 (;(ax 5 Y5 e ) dt,
; (-~ aw, 92U,

R T O 3 L
0 k=0 X X

L a%U; I 9V, aW:_,
Wii(x, t) = J =
/i1 (%, ) fo(ax2 Za ”

k=

Assume that

Up(x, t) = Zan(x)tk, U(x,0) = u(x, 0),

n=0
o0

vo(x, 1) = Y by(t*,  V(x,0) =v(x0),
n=0

wox, 1) = Y (', W(x,0) = w(x,0).
n=0

If we set the Taylor series of Uy (x, t), Vi(x, t), and W;(x, t) at t = 0 equal to zero, then

Ur(x,y) = (—ao(X) + 2xBo(x) + co(0) ¢ + (—1a1(x> +xby () + 1bo(x)cgoc) + 1«:1 ) + 1ag(x)co(x) - 2x> 2

1 1 1 1 1
+ <—*02(X) + sxby (%) + 3b1(><)co(><) + 6bo(X)c](X) + Cz(X) + a 1) co(x) + Gao(X)m(X))
1 1 1
_203(X)+ xba(x)+ bz(X)co(x)+ b1 (x)c1(><)+ bO(X)Cz(X)
o 1 1 1 =0,
+- 63(X)+ az(X)CO(X)+ a”(X)cl(X)Jr fao(X)Cz(X)
Vix,y) = (=bo(x) +2¢o(x)) t + <_*b1(x)+cl(x)+ 1cO(><)a£§(><)+3> t?
+ <— by (%) + Cz(X)+ CO(x)a’{(x)+ c](X)ao(X))

1 1
+ <—fb3(><) + 5C3(X) + cO(X)a’z’(x) + C1(><)a1 ) + ZCz(X)af)/(X)> t*+...=0,

Wix,y) = (—co(X) + 2xco(x)) t + <_§Cl(x) + Eag(x) + xc1(x) + by(X)co (x) + 2x — 1) 2
1 1, 2 1, 1, 5
+ —§C3(X) + 5% (x) + fch(X) + *bo(x)cl(x) + *b1(X)C0(X) t
+ <—163(X) + laz(x) +5xes() + b/ (02 (x) + b/ (e () + —b/ (X)CO(X)) =0

It follows easily that

apg(x) =0, a;(x) = =2, ay(x) =0, as(x) =0, as(x) =0,...
bo(x) =0, bi(x) = 2, by(x) =0, b3(x) =0, bs(x) =0, ...
co(x) =0, c1(x) = =2, c(x) =0, c3(x) =0, c4(x) =0,....

Therefore, the exact solutions of the system of partial differential equations can be expressed as follows:

2 1 2 1 3,1 4 2 2
ulx,t) =Up(x,t) =x"+ 14+ ap(x)t + 5a1(x)t + gaz(x)t + Za3(x)t + o =x =t 41,
1 1 1
v(x, t) = Vo(x, t) = x* — 1+ bo(x)t + 5b1 (Ot + gbz(x)t?' + Z193(x)t4 +.o=x 412 -1,

2 1 2, 1 3, 1 4 2.2
wx, t) = Wo(x, t) = x —1+c0(x)t+§c1(x)t +§cz(x)t +ZCB(X)t 4o =x"—t"—1.
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4. Conclusions

In this article, a new modification of HPM, called NHPM, has been introduced for solving systems of non-linear partial
differential equations. This method has been applied to three examples successfully, and exact solutions of the equations
are achieved, where traditional HPM leads to an approximate solution. Numerical results reveal that NHPM is a powerful
tool for solving linear and non-linear initial and boundary value problems. The basic idea described in this paper is strong
enough to be employed to solve other functional equations. The convergence of the method is under study by our research
group. The computations associated with the examples were performed using Maple 13.
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